Incorporating uncertainties into risk assessment with an application to the exploratory studies facilities at Yucca Mountain

PDF Version Also Available for Download.

Description

A methodology that incorporates variability and reducible sources of uncertainty into the probabilistic and consequence components of risk was developed. The method was applied to the north tunnel of the Exploratory Studies Facility at Yucca Mountain in Nevada. In this assessment, variability and reducible sources of uncertainty were characterized and propagated through the risk assessment models using a Monte Carlo based software package. The results were then manipulated into risk curves at the 5% and 95% confidence levels for both the variability and overall uncertainty analyses, thus distinguishing between variability and reducible sources of uncertainty. In the Yucca Mountain application, ... continued below

Physical Description

131 p.

Creation Information

Fathauer, P. M. August 1995.

Context

This thesis or dissertation is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this document can be viewed below.

Who

People and organizations associated with either the creation of this thesis or dissertation or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this thesis or dissertation. Follow the links below to find similar items on the Digital Library.

Description

A methodology that incorporates variability and reducible sources of uncertainty into the probabilistic and consequence components of risk was developed. The method was applied to the north tunnel of the Exploratory Studies Facility at Yucca Mountain in Nevada. In this assessment, variability and reducible sources of uncertainty were characterized and propagated through the risk assessment models using a Monte Carlo based software package. The results were then manipulated into risk curves at the 5% and 95% confidence levels for both the variability and overall uncertainty analyses, thus distinguishing between variability and reducible sources of uncertainty. In the Yucca Mountain application, the designation of the north tunnel as an item important to public safety, as defined by 10 CFR 60, was determined. Specifically, the annual frequency of a rock fall breaching a waste package causing an off-site dose of 500 mrem (5x10{sup -3} Sv) was calculated. The annual frequency, taking variability into account, ranged from 1.9x10{sup -9} per year at the 5% confidence level to 2.5x10{sup -9} per year at the 95% confidence level. The frequency range after including all uncertainty was 9.5x10{sup -10} to 1.8x10{sup -8} per year. The maximum observable frequency, at the 100% confidence level, was 4.9x10{sup -8} per year. This is below the 10{sup -6} per year frequency criteria of 10 CFR 60. Therefore, based on this work, the north tunnel does not fall under the items important to public safety designation for the event studied.

Physical Description

131 p.

Notes

INIS; OSTI as DE97053097

Source

  • Other Information: TH: Thesis (Ph.D.)

Language

Identifier

Unique identifying numbers for this document in the Digital Library or other systems.

  • Other: DE97053097
  • Report No.: DOE/OR/00033--T689
  • Grant Number: AC05-76OR00033
  • DOI: 10.2172/505684 | External Link
  • Office of Scientific & Technical Information Report Number: 505684
  • Archival Resource Key: ark:/67531/metadc698057

Collections

This document is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this thesis or dissertation?

When

Dates and time periods associated with this thesis or dissertation.

Creation Date

  • August 1995

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 18, 2016, 5:46 p.m.

Usage Statistics

When was this document last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 13

Interact With This Thesis Or Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Fathauer, P. M. Incorporating uncertainties into risk assessment with an application to the exploratory studies facilities at Yucca Mountain, thesis or dissertation, August 1995; Tennessee. (digital.library.unt.edu/ark:/67531/metadc698057/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.