Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996

PDF Version Also Available for Download.

Description

With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air ... continued below

Physical Description

19 p.

Creation Information

Zygarlicke, C.J. & McCollor, D.P. August 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

With the advent of the Clean Air Act Amendments of 1990, the coal-fired power industry began a more accelerated move toward using low-NOx burner (LNB) technologies to reduce NOx emissions. Most LNBs incorporate less oxygen with the coal initially, creating a cooler and somewhat substoichiometric initial combustion zone, with additional oxygen added further on in the combustion process to complete char combustion. Another method used to achieve lower NOx emissions is to fire the coal substoichiometrically and add additional air through overfire air ports. Both of these methods create certain impacts on fireside performance that are different from conventional high-excess-air firing arrangements. Some of the impacts that have been noticed by the utility industry are higher levels of unburned carbon in the fly ash and bottom ash, increased boiler tube corrosion, higher particulate loadings on control devices, and changes in slagging in the main furnace. Work on the fundamental mechanisms of entrained ash and ash deposit formation during low-NOx combustion has been sparse. This project by the Energy and Environmental Research Center (EERC) focuses on the issues of entrained ash formation and slagging for low-NOx combustion systems in general. Time-resolved combustion tests under conventional and low-NOx conditions have been conducted to note particle-size formation and slagging deposition. The results from this work are yielding an increased understanding of the mechanisms of ash formation during low-NOx combustion along with methods for enhancing heat transfer and fly ash collectability. Specific objectives of this research project include (1) determining whether initial char and ash generated under low-NOx conditions have greater tendencies for slagging than conventionally generated ash and (2) determining the differences, if any, between particle size and composition for entrained ash generated under low-NOx and conventional combustion conditions.

Physical Description

19 p.

Notes

OSTI as DE97002234

Source

  • Other Information: PBD: Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97002234
  • Report No.: DOE/MC/30097--5587
  • Grant Number: FC21-93MC30097
  • DOI: 10.2172/634174 | External Link
  • Office of Scientific & Technical Information Report Number: 634174
  • Archival Resource Key: ark:/67531/metadc697901

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 2, 2016, 1:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Zygarlicke, C.J. & McCollor, D.P. Task 3.15 -- Impacts of low-NOx combustion on fly ash and slagging. Semi-annual report, July 1--December 31, 1996, report, August 1, 1997; Grand Forks, North Dakota. (digital.library.unt.edu/ark:/67531/metadc697901/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.