
PARALLEL ADAPTIVE MESH REFINEMENT TECHNIQUES FOR
PLASTICITY PROBLEMS’

WILLIAM 3. BARRY, MARK T. JONES, AND PAUL E. PLASSMANNt

Abstract. The accurate modeling of the nonlinear properties of materials can be computation-
ally expensive. Parallel computing offers a n attractive way for solving such problems; however, the
efficient use of these systems requires the vertical integration of a number of very different software
components. To investigate the practicality of solving large-scale, nonlinear problems on parallel
computers. we explore the solution of two- and three-dimensional, small-strain plasticity problems.
We consider a finite-element formulation of the problem with adaptive refinement of an unstructured
mesh to accurately model plastic transition zones.

We present a framework for the parallel implementation of such complex algorithms. This frame-
work, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element
application without writing any parallel code. To demonstrate the effectiveness of this approach
on widely \arying parallel architectures, we present experimental results from an IBM SP parallel
computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the
parallel performance of the computational phases of the application during the process while the
material is incrementally loaded.

1. Introduction. The simulation of large-scale, nonlinear problems can repre-
sent a considerable computational challenge. Parallel computing offers a significant
resource for use in the solution of such problems; however, any parallel implementa-
tion must address a number of software and algorithmic issues to take advantage of
these machines. -4s an example, we consider the modeling of small-strain plasticity
problems. These problems exhibit multiple scales, if we wish to accurately model
the extent of plastic zones in the material, and nonlinear properties. These non-
linear material properties can be solved by incrementally applying external forces;
this incremental process requires the solution of a sequence of dynamically varying
subproblems.

Our approach is based on a finite-element discretization where the small-scale
structure is resolved by adaptive, h-refinement of the computational mesh. An effi-
cient parallel implementation for these problems requires the “vertical integration” of
a number of different computational tasks: (1) parallel adaptive refinement of an un-
structured mesh, (2) dynamic partitioning and redistribution of the mesh, (3) compu-
tation of internal stress with adjustments for plasticity, and (4) assembly and solution
of large. sparse linear systems. The software used in this exercise is from SUMAASd, a
project whose aim is the development of scalable algorithms and software for problems
based on unstructured meshes. This software has been used successfully in a similar
approach for the solution of linear elasticity problems [6] . An important feature of
this approach is that it the user need not write any parallel software.

This paper is organized as follows. In $2 we review the radial-return approach

* The first author received support from the Computational Science Graduate Fellowship Prc-
gram of the Mathematical, Information and Computational Sciences Division of the Office of Com-
putational and Technology Research within the DOE Offtce of Energy Research. The second author
received support from NSF grants ASC-9501583, CDA-9529459, and ASC-9411394. The third author
was supported by the Xiathematical, Information, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research, U S . Department of Energy, under Contract
1%’-31- 109-Eng-38.

!The address of the first author is Department of Civil and Environmental Engineering, Carnegie
Mellon Kniversity, 3000 Forbes Xvenue, Pittsburgh, P A 15213. The address of the second author
is 340 1Vhittemore Hall, Department of Electrical and Computer Engineering, Virginia Polytechnic
Institute and State University. Blacksburg, V.1 24061. The addressof the third author is Mathematics
and Computer Science Division. Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
IL 60439. The submitted manuscript has been created

by the University of Chicago as Operator of
Argonne National Laboratory (“Argonne“)
under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof. nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer. or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.

.

c

used in modeling small-strain plasticity. In 53 we present a high-level description of
the framework used to solve these problems, and we discuss issues particular to this
parallel implementation. In $4 we describe the experimental results from an IBM SP
system and an ATM-connected network of workstations. Finally, we summarize the
results in $5.

2. SmalLStrain Plasticity. For many engineering applications, the assumption
of a linear stress-strain relationship fails to accurately model the constitutive behavior
of real-world materials. Small-strain plasticity theory presents a method to solve
problems in solid mechanics that are geometrically linear, but materially nonlinear.
For materially nonlinear problems, it is not necessary to rewrite the basic variational
statements; rather, the nonlinear problem is solved by applying the external forces
incrementally and ensuring that force equilibrium is achieved at each load step before
proceeding to the next load step.

In developing an adaptive scheme for the treatment of problems in incremental
elastoplasticity, the main issues of concern are the calculation of a suitable error in-
dicator function, the incorporation of a mesh refinement strategy, and the selection
of a method for mapping the internal variables between successive meshes. Efforts
have been directed toward the development of a posteriori error estimators for ap-
plications in small-strain plasticity [1, 2, 3, 4, 5, 171, large-strain plasticity [ll, 151,
and localized plasticity [14. 161. Aspects of nonlinear adaptive finite-element methods
related to efficiency and implementation, however, have received comparatively little
attention: we address these aspects here. We use (1) the parallel, h-adaptive software
from the SUMAX3d project used to compute updated meshes; (2) linear 3-node tri-
angular elements to produce a constant stress approximation over each element; and
(3) a simple mapping scheme in which refined elements inherit the the interpolated
internal variables of their parent elements.

Owen and Hinton [13] presented a well-defined formulation for small-strain elasto-
plastic analysis based on a Von Mises yield condition and a radial-return method for
enforcing the yield condition. Plastic deformation begins once the stress level exceeds
the material's yield stress. For the case of metal plasticity, the yield condition may
be written as

(2.1) F = f (~) - I C (&) = 0,

where f(a) is some scalar measure of the stress level and IC is the yield limit, which may
depend on K , a material parameter that can represent strain-hardening phenomena.
For the case of ideal plasticity, IC(&) takes the constant value of the uniaxial yield
stress of the material, uy. The numerical results in this study were performed under
the assumption of ideal plasticity. We use the yield criterion suggested by Von Mises,

(2.2) i? = &UY,
where T? is the effective stress.

part and a plastic part so that

(2-3) de = (de) , +
The elastic strain increments are related to stress increments by a symmetric matrix
of material constants, D. The plastic strain increments are assumed to be normal to
the yield curve, F , based on the normality principle [18]. The total strain increment
at a point can be written as

During any increment of stress, the changes in strain are divided into an elastic

bF de = D-lda + dA-,
sa

2

where X is the plastic multiplier, which is nonzero only if the yield stress is exceeded.
This relation is the origin of the nonlinearity in the formulation; the plastic increment
of strain will occur only if the elastic stress increment puts the stress in violation of
the yield condition.

The radial-return method is an approach for handling this nonlinearity to obtain
material stresses consistent with its yield condition. In this method, the first iteration
of each load step is assumed to take place under elastic conditions. However, the
resulting stress level at any integration point may exceed the yield stress; the radial
return method reduces the effective stress by bringing the current stress back to
the yield curve in the direction normal to the yield curve. During the process of
returning stresses to the yield surface, plastic (irrecoverable) strains are accumulated.
The direction for the stress reduction is given by the product of the elastic material
coefficients D and the flow vector a, which has six components corresponding to
the partial derivatives of the yield surface with respect to the six independent Cauchy
stresses. This reduction ensures that the direction of plastic flow is normal to the yield
surface. The plastic multiplier dX determines the magnitude of the stress reduction
step and can be computed as

Therefore, for a material point which currently has a stress level up that exceeds the
yield stress u y , the radial-return method is used to bring the stress level back to the
yield curve as

The process described above still has a potential problem. Specifically, using large
load steps in an analysis can lead to an inaccurate prediction of the final point U,,d
on the yield curve, especially when the stress point nP is in the vicinity of a region
of large curvature of the yield surface. Greater accuracy can be obtained by reducing
the stress in successive stages through a so-called subincremental method 1131. This
method enhances the accuracy of the stress reduction procedure outlined above and
facilitates the use of larger load steps in nonlinear analyses. We use this approach
within the framework described in the next section.

3. Parallel Algorithms. In this section we outline the algorithm used to solve
these plasticity problems. We then describe the global mesh data structure used in
the parallel solution of these problems; this data structure is the framework used
by SURIIAA3d in finite-element applications. Within this framework] we discuss the
implementation of the major operations in the solution process for the plasticity
formulation in 52. We describe how, through the use of the framework, a user can
implement a complex finite-element application without writing any parallel code.

3.1. Solution Process. The parallel implementation is based on an explicit
integration scheme where the strains are increased subincrementally as first described
in [12]. Based on this approach, we give the algorithm in Figure 3.1. The first
integration step is accomplished in the linear region; the external force is scaled so that
the maximum internal stresses reach their elastic limit. Following this initial step, the
tangent stiffness matrix, I<T, is computed based on the current nodal displacements]
a, at each incremental step. The radial return method is used to ensure that the
stresses remain on the yield surface and satisfy the Von Mises relation as described
in the preceding section.

3

We use two tolerances. The first, tdres, is a residual tolerance that specifies
how small the magnitude of the residual force vector (a measure of nonequilibrium)
should be in the solution of each nonlinear problem. A second tolerance, tolerr,
determines how small the local error estimates for each element should be before
another integration step is attempted.

Construct a mesh, M , to conform to the domain
Partition M across the processors
Q t 0 /* initialize the displacements */
Set Lext based on elastic limit of internal stresses
While (Lext < Lfinal) do

Do
Compute fext, the external stresses, based on Lext
Compute Ant, the internal stress

While (lIAfll > tdres) do
Af = fext - fint

Assemble I<T
Solve KTAa = -Af
a t a + A a
Compute Ant, the internal stress
A f = fest - Ant

endwhile
Compute local error estimates for every element
(Un)Refine mesh based on error indicator function
Repartition mesh

Until (local error 5 tderr)
Increment fext

endwhile

FIG. 3.1. Outline of the parallel plasticity algorithm

The incremental elastoplastic analyses comprise a series of load steps in which the
total external load, fext, is incrementally increased and applied to the structure. The
iterative reduction of the residual forces is required to obtain a force equilibrium of
the structure that is not in violation of the yield condition. We use a Newton-Raphson
scheme for the solution of the nonlinear systems; the method is simple and displays
good convergence. Refinement within the iterative solution process of each load step
would disrupt the solution of these systems. Thus, we perform the mesh refinement
after a solution is obtained for the load step.

The adaptive refinement of the finite-element mesh is facilitated by an indicator
function. The output of the function is an indication as to whether each element
should be refined or unrefined or is adequately resolved. Such functions are typically
local in the sense that they depend only on data local to an element and, in some
cases, neighboring elements. We have chosen to use a fairly complex indicator func-
tion for this problem to (1) demonstrate the generality of the parallel infrastructure
discussed in the paper, and (2) accurately resolve the region in which elements tran-
sition from elastic to plastic deformation. A characteristic of this transition region,
in the problems of interest, is that the second derivatives of the effective stress are
higher than elsewhere in the mesh. Our error indicator, therefore, is a function of the

4

second derivatives of the effective stress, (T, on element e

In Figure 3.2 we illustrate the steps for computing this quantity for linear elements
in two dimensions. We note that the complexity is somewhat reduced for quadratic
elements. The effectiveness of this indicator is evaluated in $4.

~ (I (I ~ ~ (I (I

(I (I (I

B
(I

FIG. 3.2. Computation and data required to compute an error indicator f o r the shaded triangle,
based on the second derivatives of the effective stresses. I n submesh (a) the effective stress a t each
triangle is computed; this Computation is local to the triangle because only the displacements at each
of i ts three vertices are required. In submesh (b) the stress at each vertex is computed by combining
the contribution o f all triangles adjacent to each vertex; note that data f r o m outside the submesh is
required fo r vertices on the outer edge of the submesh. Zn submesh (c) the gradient of the stress in
each triangle is computed using the vertex stresses computed in (b). Finally, in submesh (d) , the
gradient of the stress at each of the vertices is computed as for submesh (b). The second derivatives
o f the stresses can now be computed for the shaded triangle using only the information at each of
i ts three vertices.

3.2. Data Structures. In this subsection we describe the data structures that
are required for effective sequential and parallel computation. We then show how the
computations in the algorithm from Figure 3.1 are implemented on this data structure
and how the problem-specific aspects of these computations can be isolated from the
parallel operations.

First we define the global data structure used to store the mesh and the required
solution information. For convenient and effective computation, the mesh is stored
such that (1) each element knows and can access the elements with which it shares an
edge, (2) each element knows and can access the vertices contained by the element,
and (3) each vertex knows and can access the elements containing it. Further, for this
plasticity computation, solution information is associated with each of the vertices
as well as with each of the elements. This global data structure is illustrated in
Figure 3.3.

For parallel computation the mesh is must be partitioned into submeshes that are
assigned to each processor: however, the properties of the global data structure must

5

FIG. 3.3. i ln exploded view of the data structure f o r the mesh on the left i s depicted on the right.

be maintained. Each processor owns a unique set of vertices and a set of elements
belonging to its submesh. Recall that the global data structure allows for each vertex
to access all the elements containing that vertex. For the parallel case each owned
vertex should be able to access all the elements to which it is adjacent; in some cases
these elements will be owned by other processors. This access can be accomplished
either by sending a message’ requesting data from another processor or by storing u p
teda te “ghost” copies of the nonlocal elements. We have chosen to store ghost copies
because they can be used to reduce the number of messages sent and, as described
later, allow for problem-specific code to be isolated from the parallel code.

Similar to the vertex case, each owned element must be able to access elements
with which edges are shared and each of the vertices contained within the element.
This access is facilitated by storing ghost copies of the necessary nonlocal elements.
The required ghost elements and vertices for an example mesh are illustrated in Fig-
ure 3.4. This approach can be used for higher-order elements; for example, it has
been used to solve an elasticity problem with fourth-order elements [6]. We note that
every ghost element and vertex must have upto-date copies of the solution informa-
tion; for example. each ghost vertex must have copies of the most recently computed
displacements. Clearly, some method must be used to coordinate the updates to these
ghost copies and the associated data. This updating is part of any parallel operation
on the global data structure; we will discuss several such operations in the following
subsection.

Finally, we note that other data structures, including vectors and matrices, are
partitioned according to vertex ownership. For example, consider a vector represent-
ing the displacements at all the vertices; if a processor owns a vertex, then it owns
and stores the entries associated with the displacements at that vertex.

3.3. Parallel Operations. Virtually every operation of the algorithm in Fig-
ure 3.1 requires parallel computation on the global data structure. In this subsection
we describe how this global data structure, in combination with certain parallel li-
brary operations, allows for a user to construct a complex parallel application without

’We assume that the parallel architecture is based on message passing or that there is memory
‘‘local’’ to processors such that it is advantageous to store frequently accessed data on this local
memory. For simplicity, we will refer to all nonlocal memory accesses as messages.

6

I I

FIG. 3.4. The dashed lines depict a partitioning of the data. The shaded vertices and elements
are owned 3y the processor assigned the center part i t ion. The unshaded elements and vertices are
the ghost copies of nonlocal e lements and vertices required for the global mesh data structure.

writing any parallel code. The fundamental idea is that users write subroutines that
operate on individual elements, individual vertices, and local vectors and then call
library operations to coordinate the parallel operations.

3.3.1. Matrix and Vector Assembly. The plasticity computation requires
the assembly of the tangent stiffness matrix, K T , and the external and internal stress
vectors, Jest and fint. Similar assemblies are required for elasticity computations as
well as most other finite-element applications. The size of the element matrices and
vectors and the relative cost of the element computations differs widely across these
applications. For example, unlike standard linear elasticity, the computation of the
element matrix for this plasticity formulation depends on the computed stresses for
the element. What is common across the vast majority of applications is that element
matrix and vector computations require only information that is local to that element
and, further, that these element matrices be assembled into a global matrix whose
structure depends on the underlying finite-element mesh.

We have constructed parallel library routines that, based on the underlying mesh,
compute the structure of the global sparse matrix and allocate the necessary stor-
age. Another library routine calls the user’s element matrix computation subroutine,
passed as an argument, for every element in the mesh, and assembles these element
matrices into the global matrix. The user need only write the subroutine for evalu-
ating a single element and then call the appropriate parallel library subroutines. A
similar set of routines exists for the assembly of vectors from element-based vectors.

3.3.2. Vector Operations. Most applications require a small number of paral-
lel vector operations. In the algorithm in Figure 3.1, an inner product is required to
compute the norm of the residual force vector, Af, a vector subtraction/addition is
required to compute Af and a , and gather/scatter operations are required to apply
these vectors to the global mesh data structure.

First we recall that a processor is responsible only for the entries of a vector
corresponding to vertices that it owns. A processor can therefore allocate a vector
whose size is proportional to the number of local vertices and operate only on this
“local” vector. For example, a vector addition/subtraction is purely local and can be
implemented without parallel computation. An inner product requires only a single
global reduction, a library routine that is available in most message-passing libraries,
including MPI [lo].

The vector operations that depend on the global mesh data structure are those
that project newly computed values onto the mesh or t ry to recover values from the -

mesh and place them in a vector. Because of the complexity of the global mesh data
structure and the need for updating ghost copies, library routines are used to isolate
the user from the global data structure. The means of isolation must allow for a
variety of operations because of the wide range of applications under consideration.
We have implemented two basic operations: (1) a gather operation, in which the
information associated with vertices, or a subset of the information, is gathered into
a vector, and (2) a scatter operation, in which the entries of a vector are scattered to
the corresponding vertices, including all ghost copies. Note that a similar function-
ality exists for element-based information. The user can implement a wide range of
operations on these local vectors without writing any parallel code and then call the
gather/scatter operations to update the global mesh data structure.

For example, consider the updating of the nodal displacements a t a + Aa. At
the beginning of the operation, the incremental and current displacements reside with
each of the vertices and, given that Aa was computed as part of a matrix solution
on the previous step, Aa exists only as a vector with entries only on the owning
processor. At the end of the operation, every vertex, including ghost copies, must
have the correct value of a. To perform this update, (1) a library routine is called
to gather the current displacements into a local vector on each processor; only owned
vertices are involved, no ghost vertices, (2) the two local vectors, representing a and
Au, are added in a local vector operation implemented by the user, and (3) a library
routine is called to scatter the resulting sum back onto the mesh, including the ghost
copies.

3.3.3. Mesh Refinement. A parallel library has been written for adaptive
mesh refinement [9]; a user makes a call to the library, which handles the refinement
and updating of the global mesh data structure. The user must provide a function
that indicates whether an element is to be (un)refined. This function accesses only
information local to an element and the vertices contained in that element.

Because of its complexity, the error indicator evaluation described in Figure 3.2
involves several of the operations described above: (1) compute the effective stress for
each element and assemble these stresses into a vector that represents the effective
stress at each vertex, (2) compute the gradient of the effective stress for each element
and assemble these stresses into a vector that represents the gradient of the effective
stresses a t each vertex, and (3) compute the norm of the second derivatives of the
effective stress at each element and determine whether (un)refinement of the element
is required. Note that each step requires the vertex data that we computed at the
prior step (we are computing a sequence of derivatives).

The effective stress on an element in Step 1 can be computed from the displace-
ments at the vertices contained in the element. The stresses at the vertices can
therefore be computed by an assembly operations just as for fext.2 The vector con-
taining these vertex stresses is then scattered to the appropriate vertices, including
the ghost copies. Sote that the user need only write the code to compute the effective
stress on a single element.

Given that the effective stress at every vertex is now available, the gradients of
the effective stress can be computed from information local to an element. Step 2
can therefore be computed exactly as Step 1 with the user writing only the code to
compute the gradient of the stress on a single element given the stresses at each of
the vertices. After Step 2, the gradients of the effective stress are available at every
vertex of the mesh, thereby allowing the computation of the error indicator function

2Recall that, for linear elements, the stresses are constant on each element. We are computing
the stress at a vertex by averaging the stress at each of the neighboring elements.

8

to proceed using information local to the element.
3.3.4. Additional Parallel Libraries. Some additional parallel operations are

required for most applications. These libraries operate on the global mesh data struc-
ture or the associated matrices/vectors. They are sufficiently complex that a user
cannot and should not be expected to write them. The BlockSolve95 library [7, 81
is used to solve the linear systems; the user simply makes a call to BlockSolve95
indicating the matrix and vector to be solved as well as the desired options.

Because the mesh is refined more in some areas than others, a load imbalance
occurs after each refinement step. This imbalance is remedied by the repartitioning
step indicated in the algorithm in Figure 3.1. The repartitioning is accomplished by
using the unbalanced recursive bisection algorithm presented in [6] . The computation
of the new partition requires no interaction with the user; however, moving vertices
and elements to their new location does require some interaction. This interaction
is necessary because the information stored with every vertex and element is defined
by the user. This flexibility is required to implement a wide range of applications.
However. because the structure of the information is not defined in the global data
structure, the user must supply code to pack and unpack the information at vertices
and elements. The partitioning library software calls these pack/unpack routines €or
each vertex and/or element being moved to a new location.

3.3.5. Summary of User-Supplied Code. The user is responsible for writing
a main routine, similar to that in Figure 3.1, that calls the appropriate parallel library
functions. In addition, the user must supply code for operations on individual elements
and vertices. These operations include the computation of an element stiffness matrix
and the packing/unpacking of user data associated with a single vertex. The user need
not write any parallel code nor operate directly on the mesh data structure.

4. Experimental Results. In this section we present results that illustrate
the performance of this application on two parallel architectures. In addition, we
demonstrate the utility of the adaptive refinement technique proposed in $3. The
results are given for two- and three-dimensional versions of a pressure vessel with a
single crack on the outer edge. Meshes for the two problems at an intermediate stage
of the refinement process at moderate loading are shown in Figure 4.1.

5 I
.S

1

IS

3

2 5

2

O S

0
0 Q 5 1 1 5 2 2 5 3 1 5 4 4 5 5

FIG. 4.1. A partially refined mesh f o r the two-dimensional pressure vessel i s given on the left
and the surface triangles f o r a partially refined mesh f o r the three-dimensional pressure vessel is
given on the right. All dimensions are in millimeters.

The application is implemented in the C programming language using MPI for
communication [lo] and the parallel mesh libraries from SUMAA3d described in $3.

9

The results are collected from two architectures: (1) an IBM SP parallel computer
with SP3 thin nodes, each node with two 128 megabyte memory cards, and a TB3
switch, and (2) an ATM network of workstations composed of a set of 12 Sun Ultra 2
Model 21TO workstations each with 256 megabytes of memory connected via 155 Mbs
ATM links to a Synoptics ATM switch.

TABLE 4.1
Characteristics of the final mesh for each of the testbed problems.

Load Max. Number of Number of Number of Number of
Name Steps Load Vertices Elements Unknowns Nonzeros
PVSDO 10 15.0 16.804 85.874 50.412 1.047.948

I ,

PV3Dl 10 14.0 35,972 187,223 107,916 2,264,997
PV3D2 10 15.0 140.615 747.3 1 9 421.845 8.935.752

I , ,

PV3D3 10 I 14.0 2693044 1,445;OOl 807,132 17,216,412
PV3D4 10 I 14.0 419,873 2,262,898 1.259.619 26,898.195

I , , , . , ,

PV'ZD1 10 14.0 47,555 98,211 95,110 709,957
PV2D2 10 14.0 93,908 194,976 187,816 1,404,396
P W D 3 10 14.0 185.548 369.449 371.096 2.776.628

We give basic characteristics of the final mesh for each of the problems in the
testbed in Table 4.1. The two-dimensional pressure vessel problems begin with PV2D
and the three-dimensional problems begin with PV3D; different size problems are
obtained by adjusting the error tolerance tolerr. The number steps used in the in-
cremental loading in given in the column labeled Load Steps. The maximum loads
are given in dynes per unit surface area. Of significant concern is the partitioning
of the global data structure. This partitioning affects the amount of interprocessor
communication as well as the number of ghost copies that must be kept. In Table 4.2
we give statistics that indicate the quality of the partitioning as well as the number of
ghost copies. The maximum volume of data sent by any processor is proportional to
the maximum number of cross edges, and the maximum number of messages sent is
proportional to the maximum number of neighbors for any single processor. We note
that it is advantageous to have large subproblems assigned to each processor: the
quality of the partitioning and the percentage of ghost copies improve as the prob-
lem size per processor increases. We can expect higher parallel efficiencies for larger
subproblem sizes.

4.1. Execution Characteristics. We now examine the characteristics of the
runtime on the two architectures. In Table 4.3 we examine the percentage of time
spent in the operations discussed in $3. The vast majority of the execution time is
spent in the solution of the linear systems; the proportion of the execution time spent
in this phase typically increases as the problem size increases.

In Tables 4.4 and 4.5, respectively, we give the maximum and average execution
rates for several operations. The maximum rate is the highest rate for any solution
iteration and the average rate is the weighted average of the rates for all solution
iterations. The maximum rates typically are achieved when the mesh has reached
its maximum size because the parallel efficiency is higher for the larger mesh sizes.
Because most of the execution time is spent with these larger mesh sizes, however, the
average rates will be fairly close to the maximum rate. The average refinement rates
for the three-dimensional problems are much lower than the maximum because there
are many steps during which little or no refinement takes place. In addition, there is
still a significant cost involved in evaluating the error indicator for each element in

10

TABLE 4.2
Indicators of the quality of the partitioning, The number of processors is denoted by p .

Max. Number of Max. Number of
Name p Cross Edges Neighbors
PV3DO 8 4,205 7
PV3DO 12 3,044 9
PV3D1 8 6.840 7

I I ,
PV3D1 I 12 I 3,184 1 8
PV3D2 I 2 4 I 8.011 I 13
PV3D3 48 7,836 25
PV3D4 64 8.626 21

I

PV2D1 16 503 6
PV2D2 32 499 6
PV2D3 64 477 10

Total Ghost Total Ghost
Vertices Elements

12.401 33.478
12,810 33,836
22,846 64,016 ,
14,764 I 37,683
60,321 1 162.613

122,588 331,875
202,627 557,739

6,126 3,942
12,704 8,215
26.400 17.053

TABLE 4.3
Percentage of the execution t ime spent in the major phases of the solution process. The number

of processors is denoted by p.

Partition Matrix Assembly Gather & Mesh
Name Arch. p & Move Solution (matrix/rhs) Scatter Refine
PV3DO ATM 8 0.7 91.1 6.9 0.6 0.4
PV3DO ATM 12 1.2 92.4 5.4 0.6 0.4
PV3D1 ATM 8 0.9 89.4 8.0 0.8 0.6
PV3D1 ATM 12 1.3 91.1 6.3 0.5 0.6
PV3D3 SP 48 2.7 87.6 7.2 0.6 0.9
PV3D4 SP 64 2.7 88.6 6.4 0.5 0.9
PV2Dl SP 16 1.2 96.8 1.3 0.14 0.19
PV2D2 SP 32 1.1 97.7 0.9 0.13 0.14
PV2D3 SP 64 1.1 97.5 0.6 0.11 0.43

the mesh which is included in the refinement times. The indicator functions must be
evaluated whether or not elements are refined.

Most of the operation rates scale well as the problem size scales with the number of
processors. Again, the exception is the refinement algorithm. In [9] we show that this
refinement algorithm is scalable under certain conditions. For this plasticity problem,
however, the three-dimensional case has two inherent difficulties: (1) the number of
elements refined relative to the total number of elements is small, and hence there is
a large overhead associated with examining all the elements when refining only a few,
and (2) the elements being refined are concentrated on a small number of processors,
leading to an imbalance in the work.

4.2. Adaptive Refinement Results. The refined meshes in Figure 4.1 illus-
trate the refinement of elements transitioning from elastic deformation to plastic de-
formation. The purpose of using adaptive refinement is to significantly reduce the
number of vertices required to achieve an acceptable error. In Figure 4.2, we compare
the approximation error as a function of the number of vertices used for adaptive
refinement and for uniform refinement. These results are obtained from the the two-
dimensional pressure vessel problem. For uniform refinement, a mesh is constructed
for which the area of all elements is approximately equal. Note the significant advan-

11

TABLE 4.4
Denoted are the

number of vertices added per second (refinement), the megaflops rate f o r the m a t r i z solution process,
and the number of elements assembled per second f o r the matrix assembly process. The number of
processors i s denoted by p .

Maximum rates of execution f o r the major phases of the solution process.

Name
PV3DO
PV3DO
PV3Dl
PV3D1
PV3D3
PV3D4

Vertices Refined Elements Assembled
Arch. p per Second Mflops per Second
ATM 8 319 46.5 33,920
ATM 12 339 45.8 46,194
ATM 8 411 64.7 38,681
ATM 12 636 73.3 57,983
SP 48 3,361 1,033 360,844
SP 64 3.445 1,369 485.188

PV2D1 1 SP 1 16 I 20,659 I 251 I 413,219
PV2D2 I SP I 32 I 34,791 I 452 I 812,538

Name
PV3DO

1 PV2D3 I SP I 6 4 I 34,296 I 835 I 1,5101330 I

Arch p 1 per Second Mflops per Second
ATM 8 1 169 41.1 28,191

TABLE 4.5
Average tates of erecution f o r the major phases of the solution process. Denoted are the number

of vertices added per second (ref inement) , the megaflops rate f o r the matrix solution process, and the
number of elements assembled p e r second f o r the matrix assembly process. The number ofprocessors
is denoted by p .

PVSDO ATM
PV3Dl ATM
PV3D1 ATM
PV3D3 SP
PV3D4 S P
PV2D1 SP
PV2D2 SP
PV2D3 SP

I i Vertices Refined I I Elements Assembled I

12 180 38.5 401612
8 186 56.5 29,463

12 213 59.1 46,452
48 1,502 926 289,711
64 1 1,688 1,174 369,677
16 7,374 243 372,331
32 13,169 428 689,995
64 6.227 779 1.435.557

tage obtained in the use of adaptive refinement.

5. Summary. We have given a framework for implementing a variety of a p
plications on unstructured finite-element meshes. This framework allows a user to
construct a complex, large-scale application without writing any parallel code. This
is accomplished by providing a carefully selected set of parallel library subroutines that
operate on a shared global data structure representing an unstructured finite-element
mesh.

To demonstrate the utility of this framework we have constructed a code for
solving large-scale small-strain plasticity problems in two and three dimensions. This
code is implemented with adaptive refinement to allow for the efficient modeling of
elastic/plastic transition regions. We have demonstrated that the resulting parallel
application runs effectively on an IBM SP parallel computer in addition to a network
of workstations. A similar approach could be used in the parallel implementation of
a wide variety of other finite-element applications.

12

0.0
L

W

1 .oe-2

Uniform Mesh

R
m

m

A

A

A

A

A

1.oe-4 1 I
1 .Oe3 1 .Oe4 1 .Oe5 1 .Oe6

Number of vertices

FIG. 4.2. A comparison of the maximum element error as a funct ion of the number of vertices
used for a mesh using elements gf uniform area and a n adaptive mesh.

REFERENCES

[l] C. AL!dEIDA, An effective adaptive procedure in nonlinear finite element analysis, in Proceed-
ings of the International Computers in Engineering Conference and Database Management
Symposium, A. Busnaina and R. Rangan, eds., Sept. 17-20 1995, pp. 197-203.

[2] I. BABUSKA, 0. ZIENKIEWICZ, J. GAGO, AND E. DE OLIVEIRA, eds., Accuracy Estimates and
.<daptive Refinements in Finite Element Computations, Wiley, 1986.

[3] C. CARSTENSEN, D. ZARRABI, AND E. STEPHAN, On the h-adaptive coupling of f e and be for
tiscoplastic and elasto-plastic interface problems, Journal of Computational and Applied
Mathematics, 75 (1996), pp. 345-363.

[4] H. CRAMER, M. RUDOLPH. G. STEINL, AND W. WUNDERLICH, A hierarchical adaptive finite
element strategy for elastic-plastic problems, in Advances in Finite Element Technology,
B. Topping, ed., Civil-Comp Press, Edinburgh, UK, 1996, pp. 151-159.

[5] C. JOHNSON AND P. HANSBRO, Adaptive finite element methods for small-strain plasticity,
in Finite Inelastic Deformations-Theory and Applications, D. Besdo and S. Stein, eds.,
Springer, 1992, pp. 273-288.

[6] M. T. JONES AND P. E. PLASSMANN, Computational results for parallel unstructured mesh
computations, Computing Systems in Engineering, 5 (1994), pp. 297-309.

171 - , Scalable iterative solution of sparse linear systems, Parallel Computing, 20 (1994),
pp. 753-773.

181 - , BlockSolve95 users manual: Scalable library software for the parallel solution of sparse
linear systems, ANL Report ANL-95/48, Argonne National Laboratory, Argonne, Ill., Dec.
1995.

[91 - . Parallel algorithms for adaptive mesh refinement, SIAM Journal on Scientific Comput-
ing, 18 (1997), pp. 686-708.

[lo] MESSAGE PASSING INTERFACE FORUM, MPI: A message-passing interface standard, Interna-
tional Journal of Supercomputing Applications, 8 (1994).

[ll] L. XAM-SUA AND K. BATHE, Error indicators and adaptive remeshing in large deformation
f ini te element analysis. Finite Elements in Analysis and Design, 16 (1994), pp. 99-139.

[12] G. KAYAK AND 0. ZIENKIEWIC, Elasto-plastic stress analysis. Generalization for various con-
stitutive relations including strain softening, Int. J. Num. Mech. Sci., 5 (1972), pp. 113-35.

[13] D. OWEN AND E. HINTON. Finite Elements in Plasticity: Theory and Practice, Pineridge Press
Limited, 1980.

13

[14] D. PERIC, J. Yu, AND D. OWEN, O n error estimates and adaptiuity in elastoplastic solids:
applications t o the numerical simulation of strain localization in classical and cosserat
continua, International Journal for Numerical Methods in Engineering, 37 (1994), pp. 1351-
1379.

[15] R. TATAMBE, S. YUNUS, C. RAJAKUMAR, AND S. SAIGAL, Examinat ion offlus projection-type
error estimators in nonlinear finite element analysis, Computers and Structures, 54 (1995),

[16] N. WIBERG, x. LI, , AND F. ABDULWAHAB, Adaptive f inite element procedures in elasticity and
plasticity, Engineering with Computers, 12 (1996), pp. 120-141.

[17] K. YUGE AND N. IWAI, Nonlinear finite element analysis by progressive mesh refinement. 4 .
studies of the criteria f o r mesh requirement, Technical Reports of Seikei University, Japan,

[18] 0. ZIENKIEWICZ AND R. TAYLOR, T h e Finite Element Method Volume 2: Solid and Fluid
Mechanics, Dynamics and Non-linearity, McGraw-Hill Book Company (UK) Limited,
fourth ed., 1991.

pp. 641-653.

32 (1995), pp. 25-26.

14

