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Abstract. The accurate modeling of the nonlinear properties of materials can be computation- 
ally expensive. Parallel computing offers a n  attractive way for solving such problems; however, the 
efficient use of these systems requires the vertical integration of a number of very different software 
components. To investigate the practicality of solving large-scale, nonlinear problems on parallel 
computers. we explore the solution of two- and three-dimensional, small-strain plasticity problems. 
We consider a finite-element formulation of the problem with adaptive refinement of an unstructured 
mesh to accurately model plastic transition zones. 

We present a framework for the parallel implementation of such complex algorithms. This frame- 
work, using libraries from the SUMAA3d project, allows a user to build a parallel finite-element 
application without writing any parallel code. To demonstrate the effectiveness of this approach 
on widely \arying parallel architectures, we present experimental results from an IBM SP parallel 
computer and an ATM-connected network of Sun UltraSparc workstations. The results detail the 
parallel performance of the computational phases of the application during the process while the 
material is incrementally loaded. 

1. Introduction. The simulation of large-scale, nonlinear problems can repre- 
sent a considerable computational challenge. Parallel computing offers a significant 
resource for use in the solution of such problems; however, any parallel implementa- 
tion must address a number of software and algorithmic issues to take advantage of 
these machines. -4s an example, we consider the modeling of small-strain plasticity 
problems. These problems exhibit multiple scales, if we wish to accurately model 
the extent of plastic zones in the material, and nonlinear properties. These non- 
linear material properties can be solved by incrementally applying external forces; 
this incremental process requires the solution of a sequence of dynamically varying 
subproblems. 

Our approach is based on a finite-element discretization where the small-scale 
structure is resolved by adaptive, h-refinement of the computational mesh. An effi- 
cient parallel implementation for these problems requires the “vertical integration” of 
a number of different computational tasks: (1) parallel adaptive refinement of an un- 
structured mesh, (2 )  dynamic partitioning and redistribution of the mesh, (3) compu- 
tation of internal stress with adjustments for plasticity, and (4) assembly and solution 
of large. sparse linear systems. The software used in this exercise is from SUMAASd, a 
project whose aim is the development of scalable algorithms and software for problems 
based on unstructured meshes. This software has been used successfully in a similar 
approach for the solution of linear elasticity problems [6] .  An important feature of 
this approach is that it the user need not write any parallel software. 

This paper is organized as follows. In $2 we review the radial-return approach 
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used in modeling small-strain plasticity. In 53 we present a high-level description of 
the framework used to solve these problems, and we discuss issues particular to this 
parallel implementation. In $4 we describe the experimental results from an IBM SP 
system and an ATM-connected network of workstations. Finally, we summarize the 
results in $5. 

2. SmalLStrain Plasticity. For many engineering applications, the assumption 
of a linear stress-strain relationship fails to accurately model the constitutive behavior 
of real-world materials. Small-strain plasticity theory presents a method to solve 
problems in solid mechanics that are geometrically linear, but materially nonlinear. 
For materially nonlinear problems, it is not necessary to rewrite the basic variational 
statements; rather, the nonlinear problem is solved by applying the external forces 
incrementally and ensuring that force equilibrium is achieved at each load step before 
proceeding to the next load step. 

In developing an adaptive scheme for the treatment of problems in incremental 
elastoplasticity, the main issues of concern are the calculation of a suitable error in- 
dicator function, the incorporation of a mesh refinement strategy, and the selection 
of a method for mapping the internal variables between successive meshes. Efforts 
have been directed toward the development of a posteriori error estimators for ap- 
plications in small-strain plasticity [1, 2, 3, 4, 5, 171, large-strain plasticity [ll, 151, 
and localized plasticity [14. 161. Aspects of nonlinear adaptive finite-element methods 
related to efficiency and implementation, however, have received comparatively little 
attention: we address these aspects here. We use (1) the parallel, h-adaptive software 
from the SUMAX3d project used to compute updated meshes; (2) linear 3-node tri- 
angular elements to produce a constant stress approximation over each element; and 
(3) a simple mapping scheme in which refined elements inherit the the interpolated 
internal variables of their parent elements. 

Owen and Hinton [13] presented a well-defined formulation for small-strain elasto- 
plastic analysis based on a Von Mises yield condition and a radial-return method for 
enforcing the yield condition. Plastic deformation begins once the stress level exceeds 
the material's yield stress. For the case of metal plasticity, the yield condition may 
be written as 

(2.1) F = f ( ~ )  - I C ( & )  = 0, 

where f( a) is some scalar measure of the stress level and IC is the yield limit, which may 
depend on K ,  a material parameter that can represent strain-hardening phenomena. 
For the case of ideal plasticity, IC(&) takes the constant value of the uniaxial yield 
stress of the material, uy. The numerical results in this study were performed under 
the assumption of ideal plasticity. We use the yield criterion suggested by Von Mises, 

(2.2) i? = &UY, 
where T? is the effective stress. 

part and a plastic part so that 

(2-3) de = (de ) ,  + 
The elastic strain increments are related to stress increments by a symmetric matrix 
of material constants, D. The plastic strain increments are assumed to be normal to 
the yield curve, F ,  based on the normality principle [18]. The total strain increment 
at a point can be written as 

During any increment of stress, the changes in strain are divided into an elastic 

bF de = D-lda + dA-, 
sa 
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where X is the plastic multiplier, which is nonzero only if the yield stress is exceeded. 
This relation is the origin of the nonlinearity in the formulation; the plastic increment 
of strain will occur only if the elastic stress increment puts the stress in violation of 
the yield condition. 

The radial-return method is an approach for handling this nonlinearity to obtain 
material stresses consistent with its yield condition. In this method, the first iteration 
of each load step is assumed to take place under elastic conditions. However, the 
resulting stress level at any integration point may exceed the yield stress; the radial 
return method reduces the effective stress by bringing the current stress back to 
the yield curve in the direction normal to the yield curve. During the process of 
returning stresses to the yield surface, plastic (irrecoverable) strains are accumulated. 
The direction for the stress reduction is given by the product of the elastic material 
coefficients D and the flow vector a, which has six components corresponding to 
the partial derivatives of the yield surface with respect to the six independent Cauchy 
stresses. This reduction ensures that the direction of plastic flow is normal to the yield 
surface. The plastic multiplier dX determines the magnitude of the stress reduction 
step and can be computed as 

Therefore, for a material point which currently has a stress level up that exceeds the 
yield stress u y  , the radial-return method is used to bring the stress level back to the 
yield curve as 

The process described above still has a potential problem. Specifically, using large 
load steps in an analysis can lead to an inaccurate prediction of the final point U,,d 
on the yield curve, especially when the stress point nP is in the vicinity of a region 
of large curvature of the yield surface. Greater accuracy can be obtained by reducing 
the stress in successive stages through a so-called subincremental method 1131. This 
method enhances the accuracy of the stress reduction procedure outlined above and 
facilitates the use of larger load steps in nonlinear analyses. We use this approach 
within the framework described in the next section. 

3. Parallel Algorithms. In this section we outline the algorithm used to solve 
these plasticity problems. We then describe the global mesh data structure used in 
the parallel solution of these problems; this data structure is the framework used 
by SURIIAA3d in finite-element applications. Within this framework] we discuss the 
implementation of the major operations in the solution process for the plasticity 
formulation in 52. We describe how, through the use of the framework, a user can 
implement a complex finite-element application without writing any parallel code. 

3.1. Solution Process. The parallel implementation is based on an explicit 
integration scheme where the strains are increased subincrementally as first described 
in [12]. Based on this approach, we give the algorithm in Figure 3.1. The first 
integration step is accomplished in the linear region; the external force is scaled so that 
the maximum internal stresses reach their elastic limit. Following this initial step, the 
tangent stiffness matrix, I<T, is computed based on the current nodal displacements] 
a,  at each incremental step. The radial return method is used to ensure that the 
stresses remain on the yield surface and satisfy the Von Mises relation as described 
in the preceding section. 
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We use two tolerances. The first, tdres, is a residual tolerance that specifies 
how small the magnitude of the residual force vector (a measure of nonequilibrium) 
should be in the solution of each nonlinear problem. A second tolerance, tolerr, 
determines how small the local error estimates for each element should be before 
another integration step is attempted. 

Construct a mesh, M ,  to conform to the domain 
Partition M across the processors 
Q t 0 /* initialize the displacements */ 
Set Lext based on elastic limit of internal stresses 
While (Lext < Lfinal) do 

Do 
Compute fext, the external stresses, based on Lext 
Compute Ant, the internal stress 

While (lIAfll > tdres) do 
Af = fext - fint 

Assemble I<T 
Solve KTAa = -Af 
a t a + A a  
Compute Ant, the internal stress 
A f  = fest  - Ant 

endwhile 
Compute local error estimates for every element 
(Un)Refine mesh based on error indicator function 
Repartition mesh 

Until (local error 5 tderr) 
Increment fext 

endwhile 

FIG. 3.1. Outline of the parallel plasticity algorithm 

The incremental elastoplastic analyses comprise a series of load steps in which the 
total external load, fext, is incrementally increased and applied to the structure. The 
iterative reduction of the residual forces is required to obtain a force equilibrium of 
the structure that is not in violation of the yield condition. We use a Newton-Raphson 
scheme for the solution of the nonlinear systems; the method is simple and displays 
good convergence. Refinement within the iterative solution process of each load step 
would disrupt the solution of these systems. Thus, we perform the mesh refinement 
after a solution is obtained for the load step. 

The adaptive refinement of the finite-element mesh is facilitated by an indicator 
function. The output of the function is an indication as to whether each element 
should be refined or unrefined or is adequately resolved. Such functions are typically 
local in the sense that they depend only on data local to an element and, in some 
cases, neighboring elements. We have chosen to use a fairly complex indicator func- 
tion for this problem to (1) demonstrate the generality of the parallel infrastructure 
discussed in the paper, and (2) accurately resolve the region in which elements tran- 
sition from elastic to plastic deformation. A characteristic of this transition region, 
in the problems of interest, is that the second derivatives of the effective stress are 
higher than elsewhere in the mesh. Our error indicator, therefore, is a function of the 
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second derivatives of the effective stress, (T, on element e 

In Figure 3.2 we illustrate the steps for computing this quantity for linear elements 
in two dimensions. We note that the complexity is somewhat reduced for quadratic 
elements. The effectiveness of this indicator is evaluated in $4. 
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FIG. 3.2. Computation and data required to compute an  error indicator f o r  the shaded triangle, 
based on the second derivatives of the effective stresses. I n  submesh ( a )  the effective stress a t  each 
triangle is  computed; this Computation is local to  the triangle because only the displacements at each 
of i ts  three vertices are required. In submesh (b)  the stress at each vertex is  computed by combining 
the contribution o f  all triangles adjacent to  each vertex; note that data f r o m  outside the submesh is 
required fo r  vertices on the outer edge of the submesh. Zn submesh ( c )  the gradient of the stress in 
each triangle is  computed using the vertex stresses computed in  (b). Finally, in submesh (d ) ,  the 
gradient of the stress at each of  the vertices is  computed as for  submesh (b). The  second derivatives 
o f  the stresses can now be computed for the shaded triangle using only the information at  each of 
i ts  three vertices. 

3.2. Data Structures.  In this subsection we describe the data structures that 
are required for effective sequential and parallel computation. We then show how the 
computations in the algorithm from Figure 3.1 are implemented on this data structure 
and how the problem-specific aspects of these computations can be isolated from the 
parallel operations. 

First we define the global data structure used to store the mesh and the required 
solution information. For convenient and effective computation, the mesh is stored 
such that (1)  each element knows and can access the elements with which it shares an 
edge, (2) each element knows and can access the vertices contained by the element, 
and (3) each vertex knows and can access the elements containing it. Further, for this 
plasticity computation, solution information is associated with each of the vertices 
as well as with each of the elements. This global data structure is illustrated in 
Figure 3.3. 

For parallel computation the mesh is must be partitioned into submeshes that are 
assigned to each processor: however, the properties of the global data structure must 
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FIG. 3.3. i ln exploded view of the data structure f o r  the mesh on the left i s  depicted on the right. 

be maintained. Each processor owns a unique set of vertices and a set of elements 
belonging to its submesh. Recall that the global data structure allows for each vertex 
to access all the elements containing that vertex. For the parallel case each owned 
vertex should be able to access all the elements to which it is adjacent; in some cases 
these elements will be owned by other processors. This access can be accomplished 
either by sending a message’ requesting data from another processor or by storing u p  
teda te  “ghost” copies of the nonlocal elements. We have chosen to store ghost copies 
because they can be used to reduce the number of messages sent and, as described 
later, allow for problem-specific code to be isolated from the parallel code. 

Similar to the vertex case, each owned element must be able to access elements 
with which edges are shared and each of the vertices contained within the element. 
This access is facilitated by storing ghost copies of the necessary nonlocal elements. 
The required ghost elements and vertices for an example mesh are illustrated in Fig- 
ure 3.4. This approach can be used for higher-order elements; for example, it has 
been used to solve an elasticity problem with fourth-order elements [6]. We note that 
every ghost element and vertex must have upto-date copies of the solution informa- 
tion; for example. each ghost vertex must have copies of the most recently computed 
displacements. Clearly, some method must be used to coordinate the updates to these 
ghost copies and the associated data. This updating is part of any parallel operation 
on the global data structure; we will discuss several such operations in the following 
subsection. 

Finally, we note that other data structures, including vectors and matrices, are 
partitioned according to vertex ownership. For example, consider a vector represent- 
ing the displacements at all the vertices; if a processor owns a vertex, then it owns 
and stores the entries associated with the displacements at that vertex. 

3.3. Parallel Operations. Virtually every operation of the algorithm in Fig- 
ure 3.1 requires parallel computation on the global data structure. In this subsection 
we describe how this global data structure, in combination with certain parallel li- 
brary operations, allows for a user to construct a complex parallel application without 

’We assume that the parallel architecture is based on message passing or that there is memory 
‘‘local’’ to processors such that it is advantageous to store frequently accessed data on this local 
memory. For simplicity, we will refer to all nonlocal memory accesses as messages. 
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FIG. 3.4. The dashed lines depict a partitioning of the data. The shaded vertices and elements  
are owned 3y the processor assigned the center  part i t ion.  The  unshaded elements and vertices are 
the ghost copies of nonlocal e lements  and vertices required for the global mesh  data structure. 

writing any parallel code. The fundamental idea is that users write subroutines that 
operate on individual elements, individual vertices, and local vectors and then call 
library operations to coordinate the parallel operations. 

3.3.1. Matrix and Vector Assembly. The plasticity computation requires 
the assembly of the tangent stiffness matrix, K T ,  and the external and internal stress 
vectors, Jest and fint. Similar assemblies are required for elasticity computations as 
well as most other finite-element applications. The size of the element matrices and 
vectors and the relative cost of the element computations differs widely across these 
applications. For example, unlike standard linear elasticity, the computation of the 
element matrix for this plasticity formulation depends on the computed stresses for 
the element. What is common across the vast majority of applications is that element 
matrix and vector computations require only information that is local to that element 
and, further, that these element matrices be assembled into a global matrix whose 
structure depends on the underlying finite-element mesh. 

We have constructed parallel library routines that, based on the underlying mesh, 
compute the structure of the global sparse matrix and allocate the necessary stor- 
age. Another library routine calls the user’s element matrix computation subroutine, 
passed as an argument, for every element in the mesh, and assembles these element 
matrices into the global matrix. The user need only write the subroutine for evalu- 
ating a single element and then call the appropriate parallel library subroutines. A 
similar set of routines exists for the assembly of vectors from element-based vectors. 

3.3.2. Vector Operations.  Most applications require a small number of paral- 
lel vector operations. In the algorithm in Figure 3.1, an inner product is required to 
compute the norm of the residual force vector, Af, a vector subtraction/addition is 
required to compute Af and a ,  and gather/scatter operations are required to apply 
these vectors to the global mesh data structure. 

First we recall that a processor is responsible only for the entries of a vector 
corresponding to vertices that it owns. A processor can therefore allocate a vector 
whose size is proportional to the number of local vertices and operate only on this 
“local” vector. For example, a vector addition/subtraction is purely local and can be 
implemented without parallel computation. An inner product requires only a single 
global reduction, a library routine that is available in most message-passing libraries, 
including MPI [lo]. 

The vector operations that depend on the global mesh data structure are those 
that project newly computed values onto the mesh or t ry  to recover values from the - 



mesh and place them in a vector. Because of the complexity of the global mesh data 
structure and the need for updating ghost copies, library routines are used to isolate 
the user from the global data structure. The means of isolation must allow for a 
variety of operations because of the wide range of applications under consideration. 
We have implemented two basic operations: (1) a gather operation, in which the 
information associated with vertices, or a subset of the information, is gathered into 
a vector, and (2) a scatter operation, in which the entries of a vector are scattered to 
the corresponding vertices, including all ghost copies. Note that a similar function- 
ality exists for element-based information. The user can implement a wide range of 
operations on these local vectors without writing any parallel code and then call the 
gather/scatter operations to update the global mesh data structure. 

For example, consider the updating of the nodal displacements a t a + Aa. At 
the beginning of the operation, the incremental and current displacements reside with 
each of the vertices and, given that Aa was computed as part of a matrix solution 
on the previous step, Aa exists only as a vector with entries only on the owning 
processor. At the end of the operation, every vertex, including ghost copies, must 
have the correct value of a. To perform this update, (1) a library routine is called 
to gather the current displacements into a local vector on each processor; only owned 
vertices are involved, no ghost vertices, (2) the two local vectors, representing a and 
Au, are added in a local vector operation implemented by the user, and (3) a library 
routine is called to scatter the resulting sum back onto the mesh, including the ghost 
copies. 

3.3.3. Mesh Refinement. A parallel library has been written for adaptive 
mesh refinement [9]; a user makes a call to the library, which handles the refinement 
and updating of the global mesh data structure. The user must provide a function 
that indicates whether an element is to be (un)refined. This function accesses only 
information local to an element and the vertices contained in that element. 

Because of its complexity, the error indicator evaluation described in Figure 3.2 
involves several of the operations described above: (1) compute the effective stress for 
each element and assemble these stresses into a vector that represents the effective 
stress at each vertex, (2) compute the gradient of the effective stress for each element 
and assemble these stresses into a vector that represents the gradient of the effective 
stresses a t  each vertex, and (3) compute the norm of the second derivatives of the 
effective stress at each element and determine whether (un)refinement of the element 
is required. Note that each step requires the vertex data that we computed at the 
prior step (we are computing a sequence of derivatives). 

The effective stress on an element in Step 1 can be computed from the displace- 
ments at the vertices contained in the element. The stresses at the vertices can 
therefore be computed by an assembly operations just as for fext.2 The vector con- 
taining these vertex stresses is then scattered to the appropriate vertices, including 
the ghost copies. Sote that the user need only write the code to compute the effective 
stress on a single element. 

Given that the effective stress at every vertex is now available, the gradients of 
the effective stress can be computed from information local to an element. Step 2 
can therefore be computed exactly as Step 1 with the user writing only the code to 
compute the gradient of the stress on a single element given the stresses at each of 
the vertices. After Step 2, the gradients of the effective stress are available at every 
vertex of the mesh, thereby allowing the computation of the error indicator function 

2Recall that, for linear elements, the stresses are constant on each element. We are computing 
the stress at a vertex by averaging the stress at each of the neighboring elements. 

8 



to proceed using information local to the element. 
3.3.4. Additional Parallel Libraries. Some additional parallel operations are 

required for most applications. These libraries operate on the global mesh data struc- 
ture or the associated matrices/vectors. They are sufficiently complex that a user 
cannot and should not be expected to write them. The BlockSolve95 library [7, 81 
is used to  solve the linear systems; the user simply makes a call to  BlockSolve95 
indicating the matrix and vector to be solved as well as the desired options. 

Because the mesh is refined more in some areas than others, a load imbalance 
occurs after each refinement step. This imbalance is remedied by the repartitioning 
step indicated in the algorithm in Figure 3.1. The repartitioning is accomplished by 
using the unbalanced recursive bisection algorithm presented in [6] .  The computation 
of the new partition requires no interaction with the user; however, moving vertices 
and elements to their new location does require some interaction. This interaction 
is necessary because the information stored with every vertex and element is defined 
by the user. This flexibility is required to implement a wide range of applications. 
However. because the structure of the information is not defined in the global data 
structure, the user must supply code to pack and unpack the information at vertices 
and elements. The partitioning library software calls these pack/unpack routines €or 
each vertex and/or element being moved to a new location. 

3.3.5. Summary of User-Supplied Code. The user is responsible for writing 
a main routine, similar to that in Figure 3.1, that calls the appropriate parallel library 
functions. In addition, the user must supply code for operations on individual elements 
and vertices. These operations include the computation of an element stiffness matrix 
and the packing/unpacking of user data associated with a single vertex. The user need 
not write any parallel code nor operate directly on the mesh data structure. 

4. Experimental Results. In this section we present results that illustrate 
the performance of this application on two parallel architectures. In addition, we 
demonstrate the utility of the adaptive refinement technique proposed in $3. The 
results are given for two- and three-dimensional versions of a pressure vessel with a 
single crack on the outer edge. Meshes for the two problems at an intermediate stage 
of the refinement process at moderate loading are shown in Figure 4.1. 
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FIG. 4.1. A partially refined mesh f o r  the two-dimensional pressure vessel i s  given on the left 
and the surface triangles f o r  a partially refined mesh f o r  the three-dimensional pressure vessel is 
given on the right. All dimensions are in millimeters. 

The application is implemented in the C programming language using MPI for 
communication [lo] and the parallel mesh libraries from SUMAA3d described in $3. 
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The results are collected from two architectures: (1) an IBM SP parallel computer 
with SP3 thin nodes, each node with two 128 megabyte memory cards, and a TB3 
switch, and (2) an ATM network of workstations composed of a set of 12 Sun Ultra 2 
Model 21TO workstations each with 256 megabytes of memory connected via 155 Mbs 
ATM links to a Synoptics ATM switch. 

TABLE 4.1 
Characteristics of the final mesh for  each of the testbed problems. 

Load Max. Number of Number of Number of Number of 
Name Steps Load Vertices Elements Unknowns Nonzeros 
PVSDO 10 15.0 16.804 85.874 50.412 1.047.948 

I ,  

PV3Dl 10 14.0 35,972 187,223 107,916 2,264,997 
PV3D2 10 15.0 140.615 747.3 1 9 421.845 8.935.752 

I , ,  

PV3D3 10 I 14.0 2693044 1,445;OOl 807,132 17,216,412 
PV3D4 10 I 14.0 419,873 2,262,898 1.259.619 26,898.195 

I , ,  , .  , ,  

PV'ZD1 10 14.0 47,555 98,211 95,110 709,957 
PV2D2 10 14.0 93,908 194,976 187,816 1,404,396 
P W D 3  10 14.0 185.548 369.449 371.096 2.776.628 

We give basic characteristics of the final mesh for each of the problems in the 
testbed in Table 4.1. The two-dimensional pressure vessel problems begin with PV2D 
and the three-dimensional problems begin with PV3D; different size problems are 
obtained by adjusting the error tolerance tolerr. The number steps used in the in- 
cremental loading in given in the column labeled Load Steps. The maximum loads 
are given in dynes per unit surface area. Of significant concern is the partitioning 
of the global data structure. This partitioning affects the amount of interprocessor 
communication as well as the number of ghost copies that must be kept. In Table 4.2 
we give statistics that indicate the quality of the partitioning as well as the number of 
ghost copies. The maximum volume of data sent by any processor is proportional to 
the maximum number of cross edges, and the maximum number of messages sent is 
proportional to the maximum number of neighbors for any single processor. We note 
that it is advantageous to have large subproblems assigned to each processor: the 
quality of the partitioning and the percentage of ghost copies improve as the prob- 
lem size per processor increases. We can expect higher parallel efficiencies for larger 
subproblem sizes. 

4.1. Execution Characteristics. We now examine the characteristics of the 
runtime on the two architectures. In Table 4.3 we examine the percentage of time 
spent in the operations discussed in $3. The vast majority of the execution time is 
spent in the solution of the linear systems; the proportion of the execution time spent 
in this phase typically increases as the problem size increases. 

In Tables 4.4 and 4.5, respectively, we give the maximum and average execution 
rates for several operations. The maximum rate is the highest rate for any solution 
iteration and the average rate is the weighted average of the rates for all solution 
iterations. The maximum rates typically are achieved when the mesh has reached 
its maximum size because the parallel efficiency is higher for the larger mesh sizes. 
Because most of the execution time is spent with these larger mesh sizes, however, the 
average rates will be fairly close to the maximum rate. The average refinement rates 
for the three-dimensional problems are much lower than the maximum because there 
are many steps during which little or no refinement takes place. In addition, there is 
still a significant cost involved in evaluating the error indicator for each element in 
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TABLE 4.2 
Indicators of the quality of the partitioning, The  number of processors is  denoted by p .  

Max. Number of Max. Number of 
Name p Cross Edges Neighbors 
PV3DO 8 4,205 7 
PV3DO 12 3,044 9 
PV3D1 8 6.840 7 

I I , 
PV3D1 I 12 I 3,184 1 8 
PV3D2 I 2 4  I 8.011 I 13 
PV3D3 48 7,836 25 
PV3D4 64 8.626 21 

I 

PV2D1 16 503 6 
PV2D2 32 499 6 
PV2D3 64 477 10 

Total Ghost Total Ghost 
Vertices Elements 

12.401 33.478 
12,810 33,836 
22,846 64,016 , 
14,764 I 37,683 
60,321 1 162.613 

122,588 331,875 
202,627 557,739 

6,126 3,942 
12,704 8,215 
26.400 17.053 

TABLE 4.3 
Percentage of the execution t ime spent in  the major  phases of the solution process. The number 

of processors is denoted by p. 

Partition Matrix Assembly Gather & Mesh 
Name Arch. p & Move Solution (matrix/rhs) Scatter Refine 
PV3DO ATM 8 0.7 91.1 6.9 0.6 0.4 
PV3DO ATM 12 1.2 92.4 5.4 0.6 0.4 
PV3D1 ATM 8 0.9 89.4 8.0 0.8 0.6 
PV3D1 ATM 12 1.3 91.1 6.3 0.5 0.6 
PV3D3 SP 48 2.7 87.6 7.2 0.6 0.9 
PV3D4 SP 64 2.7 88.6 6.4 0.5 0.9 
PV2Dl SP 16 1.2 96.8 1.3 0.14 0.19 
PV2D2 SP 32 1.1 97.7 0.9 0.13 0.14 
PV2D3 SP 64 1.1 97.5 0.6 0.11 0.43 

the mesh which is included in the refinement times. The indicator functions must be 
evaluated whether or not elements are refined. 

Most of the operation rates scale well as the problem size scales with the number of 
processors. Again, the exception is the refinement algorithm. In [9] we show that this 
refinement algorithm is scalable under certain conditions. For this plasticity problem, 
however, the three-dimensional case has two inherent difficulties: (1) the number of 
elements refined relative to the total number of elements is small, and hence there is 
a large overhead associated with examining all the elements when refining only a few, 
and (2) the elements being refined are concentrated on a small number of processors, 
leading to an imbalance in the work. 

4.2. Adaptive Refinement Results. The refined meshes in Figure 4.1 illus- 
trate the refinement of elements transitioning from elastic deformation to plastic de- 
formation. The purpose of using adaptive refinement is to significantly reduce the 
number of vertices required to achieve an acceptable error. In Figure 4.2, we compare 
the approximation error as a function of the number of vertices used for adaptive 
refinement and for uniform refinement. These results are obtained from the the two- 
dimensional pressure vessel problem. For uniform refinement, a mesh is constructed 
for which the area of all elements is approximately equal. Note the significant advan- 
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TABLE 4.4 
Denoted are the 

number of vertices added per  second (refinement), the megaflops rate  f o r  the m a t r i z  solution process, 
and the number of elements  assembled per  second f o r  the matrix assembly process. The number of 
processors i s  denoted by  p .  

Maximum rates of execution f o r  the major  phases of the solution process. 

Name 
PV3DO 
PV3DO 
PV3Dl 
PV3D1 
PV3D3 
PV3D4 

Vertices Refined Elements Assembled 
Arch. p per Second Mflops per Second 
ATM 8 319 46.5 33,920 
ATM 12 339 45.8 46,194 
ATM 8 411 64.7 38,681 
ATM 12 636 73.3 57,983 
SP 48 3,361 1,033 360,844 
SP 64 3.445 1,369 485.188 

PV2D1 1 SP 1 16 I 20,659 I 251 I 413,219 
PV2D2 I SP I 32 I 34,791 I 452 I 812,538 

Name 
PV3DO 

1 PV2D3 I SP I 6 4  I 34,296 I 835 I 1,5101330 I 

Arch p 1 per Second Mflops per Second 
ATM 8 1 169 41.1 28,191 

TABLE 4.5 
Average tates  of erecution f o r  the major  phases of the solution process. Denoted are the number 

of vertices added per  second (ref inement) ,  the megaflops rate f o r  the matrix solution process, and the 
number of elements assembled p e r  second f o r  the matrix assembly process. The  number ofprocessors 
is denoted by p .  

PVSDO ATM 
PV3Dl ATM 
PV3D1 ATM 
PV3D3 SP 
PV3D4 S P  
PV2D1 SP 
PV2D2 SP 
PV2D3 SP 

I i Vertices Refined I I Elements Assembled I 

12 180 38.5 401612 
8 186 56.5 29,463 

12 213 59.1 46,452 
48 1,502 926 289,711 
64 1 1,688 1,174 369,677 
16 7,374 243 372,331 
32 13,169 428 689,995 
64 6.227 779 1.435.557 

tage obtained in the use of adaptive refinement. 

5. Summary. We have given a framework for implementing a variety of a p  
plications on unstructured finite-element meshes. This framework allows a user to 
construct a complex, large-scale application without writing any parallel code. This 
is accomplished by providing a carefully selected set of parallel library subroutines that 
operate on a shared global data structure representing an unstructured finite-element 
mesh. 

To demonstrate the utility of this framework we have constructed a code for 
solving large-scale small-strain plasticity problems in two and three dimensions. This 
code is implemented with adaptive refinement to allow for the efficient modeling of 
elastic/plastic transition regions. We have demonstrated that the resulting parallel 
application runs effectively on an IBM SP parallel computer in addition to a network 
of workstations. A similar approach could be used in the parallel implementation of 
a wide variety of other finite-element applications. 
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