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Sum marv: 

This investigation used sysmbolic manipulation in developing analytical 
methods and general computational strategies for solving both linear and 
nonlinear, regular and singular integral and integro-differential equations which 
appear in radiative and mixed-mode energy transport. 

Contained in this report are seven (7) papers which present the technical 
results as individual modules. Below are listed, for easy reference, the Abstracts of 
the individual papers: 

1. 
Equation" by J.I. Frankel (Quarterly of Applied Mathematics, in press). 

"A Galerkin Solution to a Regularized Cauchy Singular lntegro-Differential 

Abstract 

This paper presents a Galerkin approach for solving a regularized version 
the Cauchy singular, linear integro-diff erential equation 

-(x) d8 - f(z) = A /  -dy, B(Y) xe(0,l) 
dx y=o "--Y 

subject to e(0) = e(1) = 0. This equation has appeared in both combined infrared 
gaseous radiation and molecular conduction, and elastic contact studies. A 
regularized formulation is produced which suggests the use of an expansion 
technique where the orthogonal basis functions are chosen as the Chebyshev 
polynomialsof the first kind. Accurate results, requiring a minimal computational 
cost, are formally documented and compared to a purely numerical solution. 

2. "Several Symbolic Augmented Chebyshev Expansions for Solving the 
Equation of Radiative Transfet' by J.I. Frankel, (Journal of Computational 
Physics, in press) 

Abstract 

Three expansion methods are described using Chebyshev polynomials 
of the first kind for solving the integral form of the equation of 



radiative transfer in an isokopically scattering, absorbing, and emitting 
plane-parallel medium. With the aid of symbolic computation, the unknown 
expansion coefficients associated with this novel choice of basis functions 
are shown to permit analytic resolution. A unified and systematic solution 
treatment is offered using the methods of collocation, Ritz-Galerkin, and 
Weighted-Galerkin for determining the unknown expansion coefficients. 
Numerical results are presented contrasting the three expansion methods and 
comparing them with existing benchmark results. Theoretical considerations 
are also presented illustrating rigorous error bounds, residual characteristics, 
accuracy, and convergence rates. This paper presents the foundation for 
future works involving fully coupled, nonlinear heat transfer studies. 

3. 
(Journal of Computational and Applied Mathematics, in press). 

"A Note on the Integral Formulation of Kumar and Sloan" by J.I. Frankel, 

Abstract 

In this note, we present a methodology for developing a posteriori 
error estimates for the recently proposed method of Kumar and Sloan. Kumar 
and Sloan proposed a formulation which converts a Hammerstein equation into 
a conducive form for approximation by a collocation method. Symbolic 
computation is used in performing the numerous analytic manipulations leading 
to the establishment of the error estimates. Finally, some remarks on the 
generalization of the method of Kumar and Sloan to higher-dimensional 
systems are offered. 

4. "Chebyshev Series Solution for Radiative Transport in a Medium with 
a Linearly Anisotropic Scaftering Phase Function" by T. LaCiair and J.I. Frankel 
(International Journal for Numerical Methods in Heat and Fluid Flow , in press). 

Abstract 

One-dimensional radiative heat transfer is considered in a plane-parallel 
geometry for an absorbing, emitting, and linearly anisotropic scattering medium 
subjected to azimuthally symmetric incident radiation at the boundaries. The 
integral form of the transport equation is used throughout the analysis. This 
formulation leads to a system of weakly-singular Fredholm integral equations of 
the second kind. The resulting unknown functions are then formally expanded in 



Chebyshev series. Theseaeries representations are truncated at a specified 
number of terms, leaving residual functions as a result of the approximation. The 
collocation and the Ritz-Galerkin methods are formulated, and are expressed in 
terms of general orthogonality conditions applied to the residual functions. Error 
bounds are obtained for the approximating functions by developing equations 
relating the residuals to the errors and applying functional norms to the resulting 
set of equations. The collocation and Ritz-Galerkin methods are each applied in 
turn to determine the expansion coefficients of the approximating functions. The 
effectiveness of each method is interpreted by analyzing the errors which result 
from the approximations. 

5. 
Partial Iniegro-Differential Equation", by J.I. Frankel, (BEECH 94, Orlando, FL 
March 1994). 

"A New Orthogonal Collocation Solution to a Nonlinear, Weakly-Singular 

Abstract 

A new formulation is offered for a nonlinear, weakly-singular, partial integro- 
differential equation of mathematical physics. This new formulation highlights 
the use of an intermediate dependent variable and promotes the use of an 
expansion method by which highly accurate numerical results can be achieved in a 
computationally rapid fashion. The intention of this debut investigation is to 
demonstrate merit, accuracy and future potential. The expansion method makes 
use of orthogonal collocation in the spatial variable where Chebyshev polynomials 
of the first kind are used as the basis functions while the temporal variable is 
resolved by an initial value method. Some error analysis is presented and 
comparisons are made with existing solutions from the literature. All computational 
and graphical aspects of the study are performed with the aid of Mafhematica TM . 

6. 
Transport in Participating Media", by J.I. Frankel, (AIAA Journal of 
Thermophysics and Heat Transfer, in review). 

"A Cumulative Variable Formulation for Transient Conductive and Radiative 

A new mathematical formulation is proposed for transient conductive and 
radiative transport in a participating gray, isotropically scattering plane-parallel 
medium. The methodology can be easily extended to include numerous additional 
effects. A systematic and unified treatment is presented using cumulative 



variables which allows for high-order integration using standard initial-value 
methods in the temporal variable while allowing for an effective orthogonal 
collocation method to be implemented in the spatial variable. A spectral approach 
is incorporated in the present context where Chebyshev polynomials of the first 
kind are used as the basis functions. This paper illustrates the methodology and 
presents some comparisons with previously reported works. 

7. 
Equations" by J.I. Frankel (unpublished technical document). 

"Generalization of the Method of Pefers to Cauchy Singular Infegro-Differenfial 

An analytic methodology is presented for solving linear Cauchy singular 
integro-differential equations. A representative equation is studied detailing 
the approach. Peters' notion, conceived when studying Cauchy singular 
integral equations of the airfoil type, is generalized to include Cauchy 
singular integro-differential equations. The final outcome from the analytic 
preconditioning suggests the use of Chebyshev polynomials as the basis 
functions for developing the approximate solution. The proposed analytic 
procedure is augmented with symbolic computation for performing algebraic 
manipulations. Results indicate that the approach has merit and deserves 
additional consideration. 

As indicated by the number of accepted manuscripts, the work performed 
under the auspices of DOE proved to be successful and of interest to the research 
community. Papers # 2,3,5,6 are of particular merit owing to novel error and 
convergence analyses, and to the novel generalization of the method of Kumar and 
Sloan to nonlinear, weakly singular integro-differential equations. 

Complete papers containing mathematical details are attached. 
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This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied. or assumes any legal liability or responsi- 
bility for the accuracy. completeness. or usefulness of any information. apparatus, product. or 
process disclosed. or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process. or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not nccessarily state or reflect those of the 
United States Government or any agency thereof. 



A GALERKIN SOLUTION TO A REGULARIZED CAUCHY 
SINGULAR INTEGRO-DIFFERENTIAL EQUATION 

Jay I. Frankel 
Associate Professor 

Mechanical and Aerospace Engineering Department 
Florida Institute of Technology 
Melbourne, FL (USA) 32901 

ABSTRACT 

This paper 

larized version 

tial equation 

subject to e ( 0 )  

presents a Galerkin approach f o r  solving a regu- 

of the Cauchy singular, linear integro-differen- 

f(x) = x fy-o  x - y dy, 
= e(l) =O. This equation has appeared in both 

x E ( O , l ) ,  

combined infrared gaseous radiation and molecular conduction, and 

elastic contact studies. A regularized formulation is produced 

which suggests the use of an expansion technique where the 

orthogonal basis functions are chosen as the Chebychev polynomi- 

als of the first kind. Accurate results, requiring a minimal 

computational cost, are formally documented and compared to a 

purely numerical solution. 
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The mathematical formulation of physical phenomena often 

involves Cauchy-type (or more severe) singular integral equa- 

tions. Integral and integro-differential equations containing 

strongly singular kernels appear in studies involving elastic 

contact 111, stress analysis [ll, fracture mechanics 12-41, 

airfoil theory [5-lo], and combined infrared radiation and molec- 

ular conduction [11,12], Owing to their common appearance in 

practice, there exists a growing need to develop accurate approx- 

imate analytical and numerical solutions to a large variety of 

singular integral and integro-differential equations. Simulation 

techniques which take advantage of recent hardware and software 

developments are particularly appealing amid the rapidly chang- 

ing computational environment. 

Over the past thirty years, substantial progress has been 

made in developing innovative approximate analytical and purely 

numerical solutions to a large class of singular integral 

equations. The books edited by Golberg 113,141 are particularly 

enlightening and should be consulted since they contain fairly 

extensive literature surveys on both approximate analytical and 

purely numerical techniques. The interested reader should also 

consult the fine expositions by Linz 1153, Baker 1161, Delves and 

Mohamed [17], and Atkinaon [18] f o r  numerical methods, and 

consult the books by Tricomi 1191, Hochstadt 1201, Green 1211, 

and Porter and Stirling [ 2 2 ]  for information concerning 

analytical solution methods. 
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In formulating physical problems, 

many instances the initial formulation 

it is worth noting that in 

may not lend itself easily 

to approximation 123,241. Thus, it may be necessary to recast 

the original formulation into a form conducive to approximation. 

This preconditioning often permits additional interpretation and 

insight into choosing a well-suited numerical method. If 

analytical preconditioning is not performed, a less satisfactory 

but more expedient brute force technique is usually opted for, 

generally yielding marginal results. The present work 

illustrates that analytic preconditioning leads to a natural 

approximation process which requires little computational cost. 

This paper uses a classical expansion method f o r  solving a 

linear, Cauchy singular integro-differential equation. Cess and 

Tiwari 1111 derived 

where 

f(x) = - (x - t,, 
with the auxiliary conditions 

e ( o )  = e ( i )  = 0. 

This mathematical formulation was originally developed in the 

context of combined gaseous infrared radiation and molecular 

conduction in a plane-parallel geometry. Due to physical sgmme- 

try 1111, we know @(x) = 8(l - x). Here e(x) represents the 

unknown temperature, x represents'the spatial variable, and X is 

a constant composed of several physical properties, Equation 
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(1) represent the large path length limit to a more general 

equation.presented in 1111 (when CI = 1). Here 4 denotes 
integration in the Cauchy principal value sense. We suppose that 

0(x), x E [0,1] is continuous and that the derivative 0’(x) 

exists and is continuous on the interval x E (O,l), then 

1 
f y m 0  8(y) (x-y)-’dg exists in the principal 

value sense. Cess and Tiwari [ll] developed a purely numerical 

solution to Eq. (1) for e(x). Unfortunately, no details were 

furnished describing their numerical implementation. 

A similar equation to that expressed by Eq. (la) has also 

appeared in the study of elastic contact [I]. Sankar et al. [l] 

developed a power series solution method which included a term 

that moderated the solution tendencies at the endpoints. If CI = 

0 in Eq. (la), then the derivative term vanishes and 

classical airfoil equation is recovered. Peters [25,26] 

developed a simple yet insightful solution method to the 

airfoil equation based on reducing the airfoil equation to the 

solution of an Abel integral equation. More recently 

Golberg [13,14], and Porter and Stirling [22] have expounded on 

the merits of Peters’ approach. In fracture mechanics [27,281, 

Cauchy-type kernels (and stronger, i.e., (x - y)-=, u > 1) 

often arise. Kaya and Erdogan [27,281 have reported several 

interesting findings based on the evaluation of finite-part 

integrals (i.e., in the sense of Hadamard integration). 

Additionally, noteable papers (too many to cite) by Ioakmikis 
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[29,30] have considered numerous approximate analytic and purely 

numeric methods for resolving Fredholm integral equations with 

Cauchy type singularities. 

The present work describes a Galerkin approach for solving 

Eq. (1) for the case when U = 1. The approach begins by trans- 

forming the initial integro-differential equation into a alterna- 

tive form in which the unknown function e(x) is receptive to 

approximation by an expansion technique. The basis functions 

chosen for the expansion are based on Chebychev polynomials. 

This regularized form permits the use of several integral and 

algebraic relations, and the inclusion of the orthogonality 

property associated with Chebychev polynomials for determining 

the unknown expansion coefficients of the basis functions. 

Results indicate that the approach yields accurate results with a 

minimal computational cost. 

This paper is divided into three main sections. Section 2 

presents the alternative formulation based on Peters’ 1 2 5 , 2 6 1  

notion of the simplifying operator. Use of this concept allows 

us to transform the original integro-differential equation into a 

regularized form which is conducive to approximation by an or- 

thogonal series representation. Section 3 describes the Cheby- 

chev series expansion and describes the Fourier method used in 

determining the unknown expansion coefficients. Section 4 

presents some representative numerical results. 
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- 
In this section, we present a regularized form of Eq. ( 1 ) .  

The approach taken here uses the concept proposed by Peters 

[25,26] in studying the airfoil equation. Potter and Stirling 

[22] have coined the phrase "simplifying operator" to denote the 

effect of the transformation. 

Letting CI = 1 and following the well-documented approach 

offered by Peters 125,261, we arrive at the regularized form 

where C, is given by 

An alternative expression for the constant C, can be developed 

by first multiplying Eq. (2a) by and then 

following up by evaluating the resulting form at x = 0, 

so, we arrive at 

Doing 

Next, we substitute Eq. ( 3 )  into Eq. (2a) for C, to obtain 

x E (0,l). ( 4 )  

We shall refer to Eq. (2a) as our Chebychev form while we refer 

to Eq. ( 4 )  as o u r  Jacobi form. The rationale for this terminolo- 

gy will become clear in the next section. 

It is interesting to note that if we substitute Eq. (2b) 
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into the left-hand-side of Eq. (3) f o r  C, and substitute Eq. 

(la) into the right-hand-side of Eq. ( 3 ) ,  we find 

or upon interchanging the orders of  integration, we arrive at 

thereby identifying the value of the inner integral as 

Additionally, if we multiply Eq. (2a) by E- and 

evaluate the resulting expression at x = 1, and make use of e ( 1 )  

= 0, we obtain yet another expression for  C,, namely 

Similar logic can be used to show that 

which is identical to the contour integration result reported by 

Lu [31]. 

In closing this section, we state some alternative 

formulations. The first two forms are based on simple calculus 

manipulations which are intended to reduce the severity of the 

singularity. Clearly, an alternative formulation f o r  Eq. (la) 

can be expressed as 

I - f(x) = I,,,, &(y) dy loglx 2 yldy, x E [ O , l l ,  (7a) 

where 8 ( x )  can be recovered by direct integration, namely 



(7b) 

since 8(0) = 0 .  If one desires a formulation in terms of 6(x) 

directly, we can express Eq. (la) in the alternative form 

€ ) ( X I  = g(x) + XI:-o @ ( Y ) l o g w d Y ,  x E lO,lI, 

where 

g(x) = /J-o f(Y)dY. (ab) 

Both E q s .  (7a) and (8a) permit the use of product integration 

[13,15-18,241, and singularity subtraction [13,17,18,24], 

As an alternative to “decreasing” the order, as illustrated 

by E q ,  (8a), we present the contrasting notion of “increasing” 

the order. To illustrate this concept, we begin by taking the 

derivative of E q .  (?a) with respect to x to get 

x E (0,l). (9) 

In operator (or symbolic) form, we can express E q .  (la) when 

Ir = 1, and E q .  ( 9 )  as 

8’ = f + X K 8 ,  (loa) 

8”  = f ’  + X K 8 ’ ,  (lob) 

respectively. Substituting E q ,  (loa) into E q .  (lob) for 8 ’  yields 

e ’ ’  = f’ + XKf + X2K28, (1OC 1 
or explicitly 

x E ((),I), (10d) 

subject to 9(0) = 8(l) = 0. Using the Hardy-Poincarh-Bertrand 

formula 1191 reduces E q .  (10d) to 

7 



and with 

Notice that M(x,x) = [x(l - x)]-’. It is interesting to 

note that one can approximate the kernel M(x,y) in a separable 

form 1321. Conversion of Eq. (lla) into an equivalent integral 

equation can be accomplished with the aid of the Green’s function 

method. Using this formulation, one can develop a solution based 

on solving for the moments of the unknown function. This 

approach has been explored and some results have been documented. 

It should be noted that the approach presented in the next 

section appears to be the most acceptable solution method studied 

by the present author. 

8 





- 1  

weight function (1 - n2)'. 
It appears reasonable to attempt a series expansion to 0(n) 

in Eq. (13) in terms of Chebychev polynomials of the first kind. 

This choice is not arbitrary since one can identify a portion of 

the integrand as the weight function associated with Tm(Q).* 

It now becomes apparent why we have coined the phrases Chebychev 

and Jacobi forms when speaking of Eq. (2a) and Eq. (4), respec- 

tively. 

We assume that the function @(n) has the expansion of the 

form (other choices also exist which are acceptable) 

where T,(n) represents the mth Chebychev polynomial of 

the first kind. The unknown expansion coefficients h ,  m = 

0,2,,.. are to be determined by some means, say either by a 

collocation or Galerkin method. Notice that only 

even powers of the Chebychev polynomials are preserved. 

This is done in light of the physical fact (i.e., symmetry) that 

@(n) = 9(-n). Additionally, we impose the auxiliary 

condition shown in Eq. (12b), namely 8(*l) = 0. Imposing 

this constraint yields 

E a, = 1, 
r-0.2, ... 

since T,(fl) = 1, m = 0,2,... [33]. Thus, we can express 

Eq. (14a) as 

10 



The rationale f o r  this auxiliary profile condition is apparent 

due to the integro-differential form of the equation. The 

derivative of Eq. (14c) with respect to n becomes 

%(a) = 2 ma8um-l(1)y n E [-I,II, 
8-2 I4,. . . 

Here UI(B) denotes the mth Chebychev 

polynomial of the second kind. Substituting Eq. (14c) and Eq. 

(15) into Eq. (13) yields 

where we have made the substitutions 1 = T,(n) = T,(E), and 

&(E) = 2E. . 

For convenience, we state some well-known algebraic and 

integral relations associated with the Chebychev polynomials. 

ORTHOGONALITY PROPERTY 1331: 

CLOSED FORM INTEGRAL RELATIONS 127,281: 

E - s  = - TTn+,(n), n = 0,1,... 

11 



ALGEBRAIC RELATION r34-1: 

n=0,1,. . . 
THREE-TERM RECURRENCE [ 3 3 , 3 5 1 :  

T,+,(E) - ZET,(E) t T,-,(E) = 0, n = 1,2 ,... 
U,,,(F) - ZEU,(F) t U,-,(F) = 0 ,  n = 1,2,. . . (20b) 

The above expressions contain all the necessary ingredients for 

determining the unknown expansion coefficients h,  m = 0,2, . . .  

Using Eq. (181, Eq. (16) reduces to 

'p m-0.2,. 2 . . am[Tm(n) - To(n) J - L E  11B-o ,21 . .  . am I-+ I - m  - 21 t 

The salient property required for determining the unknown 

expansion coefficients is derived from the orthogonality relation 

shown in Eq. (17). Thus, our approach is to follow a classical 

Fourier technique f o r  determining the unknown expansion coeffi- 

cients. Dividing Eq. (21) by 41 - n2 and then operating 
on the result with 

12 



Making use of the previously reported closed-form integral 

relations, Eq. (22) then gives rise to the remarkably compact 

form 

n = 0,2,  ... 
where c,, is defined as 

c.ll - d + A - + i f 6 , , ,  - , (23b) 1 - (m t n) I - (m - n)’ 1 - n  

m = 0,2 ,... n = 0,2 ,..., 
and where 6m,n represents the Kronecker delta. Thus, Eq. 

(23a) leads to an infinite system of linear algebraic equations 

f o r  the unknown expansion coefficients a,, m = 0,2,... It is 

clear from viewing the above system of equations that con = 0, 

n = 0,2,.... Thus in order to assure a unique solution f o r  the 

unknown Chebychev coefficients, we replace the first equation in 

the system shown in Eq. (23a), i.e., n = 0, by the auxiliary 

profile condition expressed in Eq. (14b). 

Practically speaking, we must truncate the series 

represention shown in Eq. (14c) after some finite number of 

terms, say N (even), such that 

Thus, we are left with determining only [(N/2) t 11 

coefficients. We refer to @”(n) as the approximate solution 

to 8 ( n )  in terms of a finite Chebychev series. Results from 

several numerical experiments are presented in the next section. 
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TS AND DISCUSSION 

In this section, we present some representative numerical 

results illustrating the effectiveness of the regularized formu- 

lation/Galerkin solution discussed in the preceeding sections. 

Being a formal presentation, convergence [7,8,30] and accuracy 

are demonstrated by empirical means. A further study delving 

into theoretical issues is presently under consideration. 

The physical parameter X ,  known as the radiation-conduction 

number for the large path length limit, represents the single 

parameter of the dimensionless system shown in Eq. (1). As X 

increases, the effect of molecular conduction diminishes relative 

to infrared radiation. Also, the contribution of the integral 

term tends to increase as X increases. Through the 

approximation process, we must also consider the effect of the 

number of terms (N/2 + 1) retained in the expansion on the 
accuracy of the series representation for the unknown function 

@(n). The function e(n) can be reconstructed through Eq. ( 2 4 )  

once the expansion coefficients a,, m = 0,2, ..., N have been 
resolved. This approximation process naturally lends itself to a 

massively parallel computation since one can obtain numerical 

results for e ( S )  at some predefined set of spatial locations 

in a parallel fashion. 

Table 1 illustrates the effect of coupling among the expan- 

sion coefficients a,, m = 0,2,...iN as,a function of the radia- 

tion-conduction number X ,  Columns 3-5 contain only the 
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first eleven (dominant) terms. Clearly, as X increases the 

strength of the coupling among the corresponding coefficients 

becomes more pronounced. As X increases, we observe that the 

leading term becomes even more dominant relative to the next 

term. Additionally, as X increases, we see that the coeffi- 

cients a,, m = 0,2,...,N decrease in magnitude at a more moder- 

ate rate. For h = 0.1, we find aloo = 0(10-") for X = 1,lO we find 

that aloo = O ( l O - ' o ) .  

Tables 2 and 3 present a comparison between the approximate 

* solution based on E q .  (2a) that was formally programmed using 

E q s .  (23) and (24) to that of the purely numerical solution based 

on E q .  ( 7 ) .  The purely numerical solution was obtained with the 

aid of singularity subtraction [13,24] and simple trapezoidal 

integration [36]. 

Table 2 displays results from the approximate solution as a 

function of X at six spatial location n E [0,1] for different 

values of N. Here (N/2 t 1) denotes the actual number of terms 

retained in the series representation shown in E q .  (24). Only 

half of the physical domain is displayed due to symmetry, 8 ( n )  

= € I ( - V ) .  A s  indicated by this table, as N increases, conver- 

gence to at least 5 places of accuracy appears to occur for the 

three cases illustrated ( X  = O.l,l,lO). Knowing the behaviour 

of the coefficients, as depicted in Table 1, and since IT,(n)l 

I 1, m = 0,2,...N, we get a qualitative feel that 

convergence is close at hand. Numerical results for 

15 



the approximate solutien were obtained using both an IBM-XT with 

a math co-processor, and an Ardent Titan I1 Graphics Supercomput- 

er. Complete simulations (CPU time and I/O) required 

less than 8 seconds per test case on the IBM while complete 

simulations required less than 0.21 seconds on the Titan I1 

(single processor, i..e. serial mode). The developed 

computer code was not optimized in any manner. The results 

presented in Tables 2 and 3 were obtained using the Ardent Titan 

I1 Graphics Supercomputer. The generated results shown in Table 

3 took substantially longer run times when compared to the re- 

sults presented in Table 2 .  

Results from the numerical solution based on singularity 

subtraction and trapezoidal integration are shown in Table 3 .  The 

number of panels used in the trapezoidal rule are indicated 

as M - 1. If the integrand is smooth, it is well known that the 

global truncation error associated with trapezoidal integration 

is o(An*) [36]. However, in the presence of a weakly 

singular kernel, this error is not anticipated [18]. The global 

truncation error of the implemented trapezoidal rule can be 

empirically approximated [18] if one assumes that the results 

presented in Table 2 (N = 100) are numerically "exact" to the 

indicated places. 'In the present study, we found that the global 

truncation error is O(An') where 1.7 < r < 1.8 which is in 

line with our expectations, i.e., r < 2 .  As the number of 

panels in the integration rule is increased, results from the 

purely numerical solution appear to be approaching the finite 

Chebychev series results shown in Table 2 .  
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CONCLUSIONS 

This paper demonstrates that analytic preconditioning of the 

Cess and Tiwari equation, using the method of Peters, allows for 

the development of an accurate approximate solution based on a 

finite Chebychev series representation. The tantalizing 

results offered here illustrate that Peters’ approach can be 

easily extended to Cauchy singular integro-differential equations 

to produce a formulation highly receptive to approximation by an 

expansion technique. Extensions to and theoretical issues con- 

cerning the presented approach are under consideration. A sym- 

bolic (computation) augmentation is also being pursued which will 

be useful in error analysis. 
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I 

I 
I 

Expanaion coefficients for finite I 

N = 4 0  I N = 80 I 

I 
I 
I 
I Chebychev series, aj, j = O,B,..,,N 
I I 
I I 

I 1 I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

I I I 1  I J : N = 2 0  

; 0.1 0 f 0.10582203+01 ; 0.1058220Et01 f Oe105822O3+01 ; 
I I 2 -0,57864903-01 i -0.57864903-01 1 -0.57864903-01 f 
I I 4 f -0.32178633-03 f -0.32178603-03 -0.32178-603-03 
I I f 6 -0.25604513-04 -0.25604433-04 i -0.25604433-04 
I I 8 i -0.52160133-05 f -0.52159833-05 -0,52159813-05 f 
I I 10 -0.16001683-05 -0*16001553-05 i -0.16001543-05 i 

I I 14 -0,28148153-06 f -0.28148143-06 f -0*28148103-06 
I I f 16 f -0,14245873-06 f -0.14246323-06 -0.14246293-06 
I I 18 -0.78327373-07 i -0.7834016E-07 f -0.78340003-07 f 
I I 20 f -0.45904723-07 -0,45958993-07 -0,4595889E-07 

I I : 12 f -0.62110323-06 f -0.62109823-06 : -0.62109763-06 I 

I I I I I I 
I I I I I I 

f 1 f 0 0.10363503+01 0,10363513t01 f 0.10363516+01 f 
I I f 2 : -0.34549413-01 -0.34549303-01 f -0.3454929E-01 I 
I I I I 4 f -0.15499883-02 I -0,15499663-02 f -0.1649965E-02 f 
I I f 6 I -0.18899903-03 f -0.18899263-03 f -091549922E-03 I 
I I 8 i -0.40559713-04 -0.4056730E-04 i -004055712E-04 * i 
I I 10 f -0.12428043-04 -0.1242701E-04 I -0.12426923-04 i 
I I 12 f -0.47869963-05 -0.47865943-05 -0,47865443-05 
I I f 14 f -0.21538643-05 f -0.21538463-05 f -0.21538163-05 

I I 18 -0.59233053-06 I' -0.59330783-06 f -0.59329553-06 
I I 20 -0.34290423-06 f -0,34682243-06 f -0-34681443-06 

I I 16 -0o10835043-05 -0.10838473-05 -0.10838283-05 i 

I I I I I I 
I I I I I 1 

f 10 0 I 0.1008119E+01 0.1008120Et01 0.1008120E+01 f 
1 1 2 f -0.66081893-02 -0.66072343-02 -0.66071753-02 
I I 4 f -0.10266733-02 1 -0.1026240E-02 f -0.10262133-02 
I I 6 -0.29746723-03 f -0.29725853-03 -0.29724503d03 
I I 8 -0,10594353-03 -0.10583953-03 -0.10583243-03 
I I 10 f -0.42851363-04 -0.42800093-04 : -0.42796083-04 
I I f 12 1 -0.19143183-04 f -0.19121223-04 f -0.19118853-04 f 
I I f 14 I -0.92993243-05 f -0.92969013-05 -0.92954313-05 f 
I I 16 :.-0.4&478513-05 f -0.48636653-05 -0.48627253-05 
I I i 1 8 . ' :  -0.26663223-05 f -0.27106673-05 -0.27100533-05 f 
I I I 20 -0.14660653-05 f -0.15952843-05 I -0.15948833-05 f 
I I *  ' :  I I I I I I I I 1 

Table 1. First eleven Chebychev expansion coefficients for 

X = 0.1,1,10. Here [(N/2) + 11 represents the number 
of terms retained in the series expansion, 
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I I 
I 
I I 

I 
I I 

Approximate Analytic Solution, Eq. (llb) I 

I for e(n) 
I I I I 

I N = 4 0  'I N = 8 0  I N = 100 I ' 1 ; " ;  I I I 1 I I I I I I 

I I I I I I 
I I I I I . I  

I 
I ; 0 . 1 : 1  i o  I O  I O  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 1  
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 10 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

f 0.8 I 
I 0.6 I 
I 0.4 f 
0.2 

I O  'I 

1 1  I 
0.8 I 
0.6 'I 

I 0.4 I : 0.2 : 
I O  I 

I 1  I 
I 0.8 
I 0.6 I 
1 0.4 I 
f 0.2 
I O  ! 

I I 
I I 

I I 
I 1 

I I 
I I 

0.04230519 
0.07467375 
0.09757693 
0.1112420 
0.1157850 

0 
0.02809824 
0.04718276 
0.05984623 
0.06712799 
0.06950770 

0 
0.007278492 
0.01060173 
0.01253844 
0.01358764 
0.01392214 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
8 
I 
I 
I 
I 
I 
I 
I 
I 

0.04230520 
0.07467375 
0.09757693 
0.1112420 
0.1157850 

0' 
0.02809828 
0.04718280 
0.06984626 
0.06712802 
0.06950773 

0 
0.007278689 
0.01060179 
0.01253848 
0.01358768 
0.01392220 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
8 
I 
I 
I 

0.04230520 
0,07467375 
0.09757693 
0.1112420 
0.1157850 

0 
0.02809828 
0.04718280 
0.05984626 
0.06712802 
0.06950773 

0 
0.007278593 
0.01060179 
0.01253848 
0.01358768 
0.01392220 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 

I I I I I 
I I I I I I 

Table 2. Approximate analytic solution for = 0f-n) using 

the finite Chebychev series reprementation shown in 

Eq. ( 3 3 ) .  Here [(N/2) + 11 denotos the actual 

number of terms retained in the series expansion. 

(Note that when 1 = 10, #(0.8) = 0.007278595 

for N = 150,  2 0 0 . )  



I I 
I 

I I 
I 
I I 
I I I 

I I I 

Numerical Solution, Eq. (16) I 

for 9 ( n )  I 

M = 5 1  f M = 101 I M = 201 I 
I I ; ' . I " :  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

i I I I 1 
I I I I I 
I I I I I 

1 
0.1 : 1 : 0 i o  i o  I I 0.8 f 0.04231206 0.04230719 i 0.04230576 I 

{ 0.6 0.07468139 0,07467594 0.07467436 
0.4 f 0.09758491 f 0.09757920 f 0.09757756 * I 

0 0.1157932 0.1157874 0.1157857 
I 

I 
I 
I 

0.2 0.1112502 0,1112444 0.1112427 I 

I I I I 
I I I I I I I f l  f l  0 i o  i o  I 
I 1 f 0.8 f 0,02813853 0.02811001 0.02810163 I 
I I i 0.6 0,04722369 i 0.04719451 f 0.04718609 I 
I I f 0.4 f 0.05988672 1 0.05985778 0.05984948 f 
I I I 0.2 1 0.06716808 f 0.0671394 I 0.06713119 1 
I I I 0 f 0.06954765 f 0.06951906 I 0.06951088 1 
I I I I I I 
I I I I I I I 
I 1 0  : 1  0 I O  f 0  I 
I I 0.8 I 0.007343878 I 0.00729894 0.007284601 I 
I I 0.6 f 0.01065554 I 0.01061828 1 0.01060661 1 
I I i 0.4 0.01258667 : 0.01255319 0.01254276 I 
I I I 0.2 0.01363321 0.01360155 0.01359171 
I I 1 0 1 0.01396694 0.01393582 0.01392616 
I I I I I I 
I I I I I I 
I I I I 1 I 
I I I I I I 

Table 3. Results for @(a) u obtained by singularity 

subtraction and trapezoidal integration. Here 

M - 1 denotes the number of panels used. 



Appendix C: 

Paper entitled: "Generalization of the Method of Peters to 
Cauchy Singular Integro-Differential Equations", by J.I. 

Frankel, Ph.D.,Proceedings of the Royal Society of London, 
Series A (in review). 
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ABSTRACT 

Three expansion methods are described using Chebyshev 

polynomials of the first kind for solving the integral form of 

the equation of radiative transfer in an isotropically 

scattering, absorbing, and emitting plane-parallel medium. With 

the aid of symbolic computation, the unknown expansion 

coefficients associated with this choice of basis functions are 

shown to permit analytic resolution. A unified and systematic 

solution treatment is offered using the projection methods of 

collocation, Ritz-Galerkin, and Weighted-Galerkin. Numerical 

results are presented contrasting the three expansion methods and 

comparing them with existing benchmark results. New theoretical 

results are presented illustrating rigorous error bounds, 

residual characteristics, accuracy, and convergence rates. 
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1. INTRODUCTION - 

In radiative [1,2] and neutron [3] transport theories, 

utilization of the equivalent integral form of the Boltzmann 

transport equation has often been called upon when considering 

highly anisotropic scattering in either a plane-parallel [4,51 or 

spherical medium [ S ] .  Peierl’s equation produces (i) a reduc- 

tion in dimensionality leading to a pure (smoothing) integral 

form, and (ii) a direct relation with several key physical quan- 

tities of interest [4,5]. Unfortunately, the equivalent integral 

form also leads to a system of weakly-singular Fredholm integral 

equations of the second kind. The appearance of the first expo- 

nential integral function, as a kernel function, introduces a 

logarithmic singularity as its argument vanishes. 

Recently, Frankel [4] alluded to the natural implementation 

of symbolic computation to the integral form of the transport 

equation. Unfortunately, no symbolic implementation was actually 

performed. indeed, only a crude numeric solution, based on singu- 

larity subtraction 17-91 and trapezoidal integration 1101, was 

used. It is interesting to note that accurate results still 

resulted. 

Owing to a lack of satisfactory closure on several fronts 

141 ,  this paper addresses three particular issues not previously 

resolved. In order to illustrate several fundamental points, 

this study focuses on radiative transport in an isotropically 

scattering plane-parallel medium. Extension to the general 

anisotropic scattering case will be evident. Thus, the purpose 
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of the present exposition is threefold; (i) to develop 

three expansion methods which make use of Chebyshev polynomi- 

als of the first kind as the set of orthogonal basis functions, 

(ii) to implement and demonstrate the utility of symbolic compu- 

tation, such as offered by the packages MathematicaTM and Maple, 

for augmenting the solution methodology, and (iii) to present 

some informative residual/error and convergence analyses which 

are intended to indicate performance and accuracy of the methods. 

This paper is divided into three major sections. In Section 

2, we formulate the problem of interest. In Section 3 ,  we intro- 

duce a series representation f o r  the zeroth Legendre moment of 

the intensity and develop the three solution methods f o r  finding 

the unknown expansion coefficents. In Section 4 ,  we present 

results and discuss the merit of the proposed approach. 
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2. FORMULATION 

In this section, we present the necessary formulation of the 

equations governing the zeroth Legendre moment of the radiative 

intensity in a plane-parallel, isotropically scattering, absorb- 

ing, and emitting medium. The transformation from the integro- 

differential form of the equation of radiative transfer to the 

pure integral form can be found in the fine expositions by 

Ozisik C11 and Duderstadt and Martin [3]. 

2.1 Peierl’s Equation 

We begin by considering the integral form of the transport 

equation [1,3,4], namely 

(2.la) G(n) = f a ( n )  + ~ ( a t n  - EI)G(E)dE, n E [-1,11, 

where G(n) is the zeroth Legendre moment of the radiative inten- 

sity, defined as [41 

(2.lb) 
1 

G(n) E 274--, I(~,cL)~D, n E [-i,11. 

Here I ( 9 , D )  is the radiation intensity, K(ol1n - E l )  is the 

kernel which is explicitly given as 

K ( &  - El) = E,(cYIV - E l ) ,  (2.lc) 

where the exponential integral function is given as 111, p. 2281 

E,( z) = !:-o t”-’e-‘‘’dt, n > 0, 

and where n is the optical variable and CL is the cosine of the 

angle between the positive n-direction and the direction of the 

beam. The optical thickness and single scattering albedo are 

denoted by L and 0, respectively. Here the two real parame- 

(2.ld) 
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ters seen in Eq. (2.la) are expressible in terms of the single 

scattering albedo and optical thickness as ct = L/2 and X = act. 

The forcing function, f"(n) contains the imposed boundary con- 

straints in terms of surface intensities and/or internal sources. 

For purpose of demonstration, we will consider a classical prob- 

lem (similar to the slab albedo problem in neutron transport) 

where numerous citation exist. Thus, we will assume that 

no internal sources are present and that transparent 

surfaces are present at both R = -1 and n = 1, Further, we 

assume that the front surface at rl = -1 is irradiated by an 

externally symmetric source while the back surface at 11 = 1 is 

free of any external source. Thus, the forcing function reduces 

* to the nonsingular form 

f"(n) = ~ T E ~ ( O C ( ~  + n)), n E [-i,1]. (2.2) 

Equation (2,la) represents a linear, weakly-singular Fred- 

holm integral equation of the second kind. The weakly-singular 

kernel displayed in Eq. (2.1~) is quadratically integrable 1121 in 

the square n E [-1,13 and E E [-1,1], and is also symmetric. 

Purely numeric solutions [13,14] and approximate analytic 

solutions [15-221 have been presented in the literature. 

Analytic approaches have typically been based on expansion 

methods. Legendre polynomials [18,19] and simple monomials [20- 

221 have been popular choices for the basis function. 

2.2 Physical Quantities 

Following the notation of Thynell and Ozisik [5J, and 

Frankel 1 4 1 ,  we can define two important surface properties. 



Using the definitions presented in [ 4 ] ,  one can express the 

refectivity, R as 

G(n)E,(a(l -+ n))dn, (2.3) 2n 4 - 1  
X I  R = -  

and transmissivity, T as 

( 2 . 4 )  1 1  T = 2~,(201) i Z j q - +  ~(n)~,(a(1 - n))dn. 

These properties (and/or exiting surface heat fluxes) are often 

used as the sole basis f o r  demonstrating accuracy. 
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3. ANALYSIS 

Traditional expansion methods for solving the integral form 

of the transport equation have used Legendre polynomials [18,19] 

and monomials [ZO-223 as the basis functions. In the present work, 

we illustrate that Chebyshev polynomials of the first kind, augment- 

ed with symbolic computation, can be added to the solution arena. 

It should be noted that Kamiuto E231 developed a Chebyshev 

collocation solution for the spherical harmonics equation. In 

that work, no error o r  convergence analysis was provided. 

3.1 Chebyshev Expansions 

Assume that our real-valued function G(n) can be expressed 

in the form 

G(n) = 2 atT,(n), n E [-1,1] 
E - 0  

where {T,(n)}r-o are the Chebyshev polynomials of the first kind 

1241 and follow several well-known relations 1113. The 

Chebyshev polynomials are defined as 

TPI(n) = cos[m(cos-'~)], m = O,I,. .. 
where IT,(n)l I 1 for m 2 0. Here the coefficients {a~}~-. are 

to be determined by some practical means. It is well known 124,253 

that {T,(n)},",, form an orthogonal sequence of functions with respect 

to the weight function dl - n2. 
expansion method, the main goal lies in determining the unknown 

expansion coefficients {a: I:-"-, . 
several exploitable features [11,24,25] and have been the topic 

of much research and interest with regard to spectral methods 1261 

Thus, when implementing an 

Chebyshev polynomials have 
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boundary value problems [27], nonsingular integral equations 

[28], and the solution of Cauchy singular integral and integro- 

differential equations [27-321. 

In general, we seek an approximate solution to G(n) by 

truncating the infinite series displayed in Eq. (3.1) at a cer- 

tain order N, namely 

GN(n) = 5 < T = ( Q ) ,  E [-1,1], (3.2) 
I-0 

where a! is an approximation to a: for each fixed m. Thus, we 

may express Eq. (2.la) as 

RN(n) = G,(fl) - f"(n) - "1' 2 E--' E,(& - €l)GN(E)dE, 
n E [-1,1], X > 0, CY > 0, 

where we have introduced the local residual function, RN(n). 

Unless the true solution is a linear combination of {Tn(n)}E-o,  

(3.3) 

we cannot choose {a:}:-* to make RN(n) vanish for all n E [-1,1]. 

However, suitable expansion coefficients can be obtained by 

making the residual RN(n) small in some sense. 

Let us define the inner product of two real functions g,(t) 

and g,(t) as 

(3.4a) 

llglll,k = ZJs:.-, w,(t)g:(t)dt (3.4b) 

where w,(t) is a non-negative, real and integrable weight func- 

tion. 

A particular expansion method is defined by any restrictions 

imposed on the residual function displayed in Eq. ( 3 . 3 ) .  Our aim 
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is to determine the unknown expansion coefficients {a:}:-o in such a 

manner that some measure of R N ( n )  is small. A systematic way of 

expressing this is to require that the orthogonality condition 

<h(fl))gk(n)>.k = 0, k=O,l,...,N, (3.5) 

be enforced for k = O,l,...,N . In other words, we will require 

that the residual R H ( n )  be orthogonal to the first (Ntl) q k ( 3 )  

functions with respect to the weight function ~ ~ ( 3 ) .  

Let the local error in the approximation be defined as 

EN(‘ l )  = G ( n )  - G N ( n ) ,  (3.6) 

and its size may be measured by means of some functional norm. 

Unfortunately, the error is as inaccessible as the 

exact solution. However, the residual R N ( n )  is a computable 

measure of how well GN(TI) is to G ( n ) .  One can develop a 

corresponding weakly-singular Fredholm integral equation of the 

second kind for the error EN(TI) in terms of the residual 

R N ( n ) ,  namely 

pth operator norm of K as IlKlI, then one may derive in symbolic 

form t h e  rigorous error bound [ 3 3 ]  

x (when 1 - ~ I l K l I ,  > 0). 

such as defined by 

Note that K denotes an integral operator, 

1 
K 8  = jt--l K(n,E)g(E)dE, 

where K(n,E) is the kernel and g represents some unknown function. 
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This estimate will be discussed further in the next section. It 

should be noted that we can obtain an analytic expression for the 

residual, RN(n). 

Substituting Eq. (3.2) into Eq. (3.3) yields 

where 

1 
I,"W = i,,-, E,(a ln  - Cl)T,(E)dE, m=0,1,..., N, a > 0 (3.9b) 

or explicitly 

E ~ + ~ ~  (0 )TizJ '  (n) ( -l)J+lEj+z(ct( l+n) )T:J'( -1) 
I,"(n) = 2 J - 0  C a ZJ+1 + e  J - 0  c t J + l  

where [t] denotes the integer resultant. Here, we denote 

the kth spatial derivative on the mth Chebyshev polynomial 

as Tik)(n). 

Three methods f o r  determining the expansion coefficients 

are developed in accordance to the concept displayed N 

in Eq, (3.5). 

functions indicated in Table I. Formally proceeding and requiring 

<FL,,,qk> = 0 for k = 0,1,. ..N, we arrive at the general expression 

The three proposed methods use the weight and test 

I I,,-, ~,(n)q,(n)f"(n)dn, k = o,i, ..., N, x > 0 ,  01 > 0. (3.10) 

This equation will be made use of throughout the present analysis. 

9 



3.2 Collocation. 

Referring to Table I, the corresponding collocation method 

requires that wk(n) = 6(n - n,) and * k ( n )  = 1. This implies 

that the residual RN(n) be zero at (N i 1) discrete collocation 

points defined by 9,. Thus, we arrive at 

where I:(n) is defined in Eq. (3.9~). This provides (N i 1) 

equations for determining (N t 1) unknown expansion coefficients. 

This approach is clearly simple to implement and computationally 

inexpensive in terms of operation count. 

3.3 Ritz-Galerkin 

Referring to Table I, and using w,(n) = 1, *,(n) = Tk(n), 

and requiring that <RN,'Pk> = 0 for k = O , l , .  ..,N, we arrive at 

where 

k = O,l,...,N, 

m=O,1, ..., N, k=Oyl, ..., N, 
m=O,l,...,N, k=O,l, ..., N, 

(3.12a) 

(3.12b) 

(3.12~) 

(3.12d) 
1 fl: = I,,-, f(n)Tk(n)dn, k=0,1,. .,Ne 

Explicit expressions for these constants have been derived and can 

be found in Appendix A. Thus, we are left with a system of 

(N t 1) linear equations for the (N t 1) unknown expansion 

coefficients. 

10 



3.4 Weighted-Galerkin 

Some discussion is warranted with regard to this approach. At 

first glance, it appears that several insurmountable obstacles 

are present owing to the appearance of the singular weight 

function displayed in Table I. We can quickly overcome these 

apparent impediments by expressing the exponential integral 

function E,(aln - El)  in terms of its standard series 

representation 1111 

E, (aln - El) = - logln - 51 - 2 byln - E l ’ ,  
’ - 0  

(3.13a) 

where 

b: = Y + log(a), (3.13b) 

(3.13~) 

where Y is Euler’s constant. We now express Eq. (3.9a) in the 

explicit form 

Forming the inner product, in accordance to Eq. (3.5), we 

formally arrive at 

where 4, is defined in Eq. (3.12b) and 

(3.14) 

(3.15) 

(3.16) 

In deriving Eq. (3.15), we made use of the following well-known 

orthogonality condition associated with Chebyshev polynomials of 

the first kind, namely 1241 



where N,, is the normalization integral. Additionally, we 

made use of 

I Tk(9)logln - El 
d9 = BkTk(E), (3.18a) I,--, 4G-7 

where 

(3.18b) 

(3.18~) 

Equation (3.18a) can be derived from [11,34] 

k = 0, 0, 

where U , - , ( E )  is the ( k - l ) t h  Chebyshev polynomial of 

the second kind [24]. Here 4 represents integration in the 
Cauchy principal value sense [35,361. 

In arriving at Eq. (3.15), we expanded the forcing function 

f"(n) in terms of a Chebyshev series expansion, namely 

fu(9) = 2XE,(a(l + 9)) = 2n 2 vyTj(n). (3.20) 

This series representation converges fairly rapidly. In Appendix 

B, we develop the procedure for determining the expansion 

coefficients, v y ,  j = O,l,. .. 

j - 0  

Symbolic computation was called upon to integrate, in an 

exact fashion, the double integral displayed in Eq. (3.16) for 

B,,, m = O,l,...,N, n = O,l,...,N. Manually, this intermediate 
U 

12 



level computation is rather tedious. Again, we are now in a 

position of determining the expansion coefficients from a 

well-behaved system of linear equations. 

13 



4 .  RESULTS 

In this section, we highlight some findings concerning 

the nature of the Chebyshev polynomials of the first kind and 

make some comparisons with previously reported results. The 

rationale for choosing Chebyshev polynomials of the first kind as 

the basis functions are twofold, namely (i) to develop some new 

theoretical results, and (ii) to extend the results of 

Kamiuto’s 1 2 3 1  to t h e  integral form of the transport equation. 

It should be noted that Kamiuto presented only operational 

results and did not discuss convergence or error estimates in his 

development of the solution for the integro-differential form of 

the transport equation. 

The two parameter (w,L - >  X,a) problem posed here has 

been previously considered by Lii and Ozisik 1371. The symbolic 

computation software package MathematicaTM, implemented on 

a NeXT Turbostation with 16 MBytes of memory, was used for 

developing the solutions and graphics (with exception to Fig. 2.) 

presented here. 

Using Eqs. (2.3) and (2.4) for R , T ,  respectively, and the 

finite Chebyshev series representation for G ( n )  displayed in 

Eq. (3.2), we find 

and 

14 



T = 2E3(2a) t & 5 a: -2 w[TLn)(l)En+s(0) an+ 1 - Tin’(-l)En+3(2a)1. (4.2) 
.-0 n-0 

It is interesting to note that most studies merely compare R and T 

results to indicate accuracy. In light of this, we illustrate 

the effectiveness of the simple collocation method previously 

described using the Chebyshev polynomials of the first kind. 

Table I1 indicates that the collocation approach produces 

acceptable numerical results for R and T when compared with the 

exact solution [1,37] over a range of optical thicknesses and 

single-scattering albedos. The collocation points were 

established from a closed, Gauss-Chebyshev (Lobatto-Chebyshev) 193 

rule, i.e. , nk = cos(?), k = 0,1,. . . ,N. This closed 

rule ensures R,(l) = R,,(-1) = 0. 

Lii and Ozisik 1371 also included exact and approximate 

results when the optical thickness, L was 15 and 30 for the cases 

where the single-scatter albedo approached unity. The orthogonal 

collocation method outlined here proved to produce excellent 

numerical results when compared to the exact results reported in 

[37]. For example, when 0=0.995, L=15 and L=30, the exact 

results f o r  the reflectivity and transmissivity were reported 

1371 as R=0.8438, T=0,0450 and R=0.8497, T=0.0071, respectively. 

Correspondingly, Lii and Ozisik [37] reported that their approximate 

solution produced R=0.8429, T=0.0453 and R=0.8489, T=0.0070, 

respectively. The orthogonal collocation method embodied here 

for the case L=15, w=0.995 produced R=0.843896, T=0.044943 (when 

N=13), and R=0.843853, T=0.044956 (when N=15). When L=30, 

15 



0=0.995, the present method produced R=0.850151, T=0.007036 

(when N=13), R=0.849919, T=0.0070495 (when N=15), and R=0.849816, 

T=0.0070556 (when N=17). Clearly, the exact solution is 

supportive of these representative results. At various other 

albedos, it has been shown that accurate numerical results are 

obtained. Additionally, no numerical instabilities emerged from 

the computations required in arriving at any results reported in 

this paper. 

When = 1, Lii and Ozisik E371 did not report any results 

f o r  the reflectivity and transmissivity and thus no basis of 

comparison can be made with that study. However, the present 

methoaology has provided accurate results when w = l  as verified 

by rigorous error estimates and by physical trends (i.e., 0 ->  
1) without any special modification to the analytic procedure or 

computer code. 

Being an exploratory investigation, some additional 

characteristics associated with the approximation should be 

elucidated. Some additional theoretic considerations can be 

developed from knowledge of the residual function, RN(n). As 

remarked early, an analytic expression for RN(n) can be 

developed, namely 

31 
(-l)J+lE,+z(O1(l + V ) ) T : J ’ ( - l )  EJ+Z(O1(l - )T:J’(l) + c  j-0 OIJ + 1 - E  J - 0  OIJ+ I  

n E [-i,11, 01 > 0, x > 0, 
which is valid for the three methods previously discussed. 



Some clarification concerning the Weighted-Galerkin method 

must be made here. In order to perform all the integrations 

analytically, the forcing function f"(n) , which contained the 
exponential integral function, E 2 ( a ( l  t n)), was expanded into 

an equivalent Chebyshev series (see Appendix B). Thus, the 

forcing function was approximated to some extent. Appendix B 

contains some details on the errors associated with this 

approximation. The Ritz-Galerkin method did not suffer a similar 

fate since the integration involving the forcing function, weight 

function, and coordinate function could be performed without 

approximation. 

Figure 1 (a-d) present GN(n) and & ( V )  for the three 

discussed methods (b-collocation, c-Ritz-Galerkin, d-Weighted- 

Galerkin) where N = 7, 01 = 1, and X = 0.8. In Fig. lb, the 

kn collocation points were chosen in accordance to nk =cos(v), 

k = O,1, ..., N. The oscillatory characteristic associated with 

the residual are somewhat similar to each other with the exception 

of the obvious enforcement of RN(l) = R N ( - l )  = 0 by the collocation 

method. The effect of the Chebyshev weight function is also 

evident when comparing the Ritz- and Weighted-Galerkin methods 

near n = -1 and f l  = 1. These approaches produced graphically 

identical GN(n) results as displayed in Fig. la. Observe that 

the approximate solution GN(n) is bounded while the kernel 

shown in Eq. (2.1~) is not. 

It is clear from viewing Fig. lb that the residuals for the 

orthogonal collocation method at the endpoints are zero as forced 
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by construction using the collocation points defined by a closed 

rule. Some numerical methods have indicated that large errors 

take place at the endpoints in G(n). However, the orthogonal 

collocation method offered here (and also clearly demonstrated by 

Frankel [ 4 4 ] )  illustrates that excellent numerical results can be 

achieved at these locations. Clearly, the residual plots offer 

some insight into this phenomena, 

From the residual plots, the collocation method appears to 

produce comparable results to that of the Galerkin methods. 

Realizing the extensive amount of arithmetic associated 

with Galerkin methods due to multiple integrals, it appears that 

- the collocation method represents an economical and 

accurate Nth order approximation to G(n). 

for the collocation method using MathematicaTn on a NeXT workstation 

typically took less than 30 seconds for determining the expansion 

coefficients depending on the number of terms retained in the 

expansion. Most of the CPU time used in a single run was 

attributed to calculating the norms of the various functions and 

kernels required in arriving at rigorous error estimates. 

Computer times 

As alluded to earlier, the unknown expansion coefficients 

{a:}:., are found by solving a system of coupled linear algebraic 

equations by matrix means. Owing to the obvious coupling among 

the coefficients, the effect of N on the accuracy of a: must 

also be considered. Table I11 illustrates the effect of the 

number of terms retained in the collocation expansion on the 

convergence of the expansion coefficients when ct = 1 and X = 

0 . 8 .  Clearly, the dominant terms are converging as N grows. 

18 



With regard to Tables IV and V, both the Ritz-Galerkin and 

Weighted-Galerkin methods produce similar convergence trends on 

the expansion coefficients as compared with the collocation 

method. Tables I11 through V also present the resulting 

numerical values for the reflectivity R and transmissivity T 

using a finite Chebyshev series representation for the unknown 

function, G(n). From viewing Tables I11 through V, it is clear 

that as N grows, accurate numerical results for these two surface 

properties are being generated. From Table 11, the exact values 

corresponding to Tables III-V for R and T are 0.03280 and 0.01973, 

respectively. It appears that 4 places of accuracy can be 

quickly obtained for both R and T even though the expansion 

coefficients have not converged to a comparable number of places 

for small N. Some care should be exercised when using GN(n) 

when N is small. 

At this point, it is instructive to define the infinity 

norm of a function as 

11011, E sup le( n ) l .  
r le1 -1 ,11  

(4.5a) 

Correspondingly, the infinity norm of the integral operator K is 

C7, P* 141  

(4.5b) 

and where the infinity norm of the residual function becomes 

llR&l, sup iRN(n)l. 
r l € f - l , I l  

(4.5c) 
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Observe that, for this physical problem, the Galerkin 

methods produce their extremal at n = - 1 unlike the collocation 
method where the extremal of h(n) is located in the interior 

of the physical domain. Thus, when calculating the L,-norm of 

the residual f o r  the collocation method, some additional 

numerical/symbolic analysis is performed in order to locate the 

corresponding extremal. 

A rigorous L,-error bound lKNll, for G,(n) is available from 

Eq. ( 3 . 8 ) .  For the three methods, the error bounds are also 

. presented in Tables I11 through V. The upper-error bound has the 

superscript U while the lower-error bound has the superscript L .  

It is clear from viewing Tables I11 through V that there is more 

error in G(n) for fixed N than is realized in either R o r  T .  

Fo r  comparison purposes, a simple numeric solution 

for solving the weakly-singular Fredholm integral equation for 

the local error €,(n), shown in Eq. ( 3 . 7 )  has been carried 

out using the residual generated by the collocation method when 

01 = 1 and X = 0.8. Table VI presents the discrete L,-error 

as obtained by direct numerical simulation for this illustrative 

case. These numerical results were obtained by solving the weakly- 

singular Fredholm integral equation of the second kind shown in 

Eq. (3.7) using singularity subtraction and trapezoidal integration 

[ 4 1 .  Here, the numerically obtained L, norm of EN(n) 

denoted by I I € , I I ~  (superscripted with a "n" for numerical) is 

contrasted to the upper- and lower-bounds as developed by Eq. 



( 3 . 8 ) .  

lower bound for this case rather rapidly. 

shown in column 4 for the numerically obtained L,- error from 

the integral equation, we can extract useful information 

concerning the convergence rate of the method. The convergence 

rate associated with a solution method is a crucial factor in 

determining the success of the method. The information presented 

in Table VI p e r m i t s  empirical interpretation toward estimating 

the convergence rate. Examination of column 3 in Table VI 

circumstantially indicates that the convergence rate can be 

It is interesting to note that the error tends toward the 

Using the results 

approximated by the expression 

where N is the order of the expansion. In Appendix C, a 

pessimistic estimate is developed based on a projection method 

[7,34,40,41]. This approach produces 

IIE,II, = o ( W )  , 
N (4.7) 

where G E C' [-1,13. Note that our observational skill relied 

on fairly low values of N while the estimate developed in 

Appendix C required N sufficiently large (greater than our 

observational data). In general, a viable expansion technique 

should have rapid convergence. 

Finally, Table VI1 demonstrates the influence of the 

parameters L, 0 on the upper and lower La-error bounds as the 

number of terms in the Chebyshev series is increased. As the 

optical thickness increases and the single-scattering albedo 

decreases, the bounds appear to be tightening (though apparently 

large in magnitude) rapidly as N increases. 
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1 

5, CONCLUSIONS 

Several expansion methods have been implemented for solving 

the equation of radiative transfer in a isotropically 

scattering, absorbing, and potentially emitting media using 

Chebyshev polynomials of the first kind as the basis functions. 

The practical analytical/computational procedure offered here 

was assisted by the implementation of symbolic computation in 

determining the expansion coefficients. Symbolic manipulation was 

effective in assisting in developing some of the error analysis 

presentation within. The collocation technique using this choice 

of basis augmented by symbolic computation offers an easy and 

obvious generalization to situations involving anisotropic scatter 

[4,5], and spatially varying albedos [22,38] in both plane-parallel 

and spherical geometries [38]. The rate of convergence for the 

series representation offered by the orthogonal collocation 

method is deemed moderate. The collocation method appears 

especially noteworthy with regard to flexability as noted by 

Frankel E451 when investigating transient, radiative-conductive 

transport in a participating medium. 

LaClair and Frankel [ 4 6 ]  extended the present work to 

include a linear anisotropic scattering phase function. Novel 

error estimates were also obtained extending the procedure 

offered here to two coupled, weakly-singular, Fredholm integral 

equations of the second kind. Again, symbolic computation w a s  

called upon for performing numerous and often tedious analytic 

manipulations. Future generalization to radiative transport 



involving highly anisotropic scattering, such as in coal-fired 

combustion 1391, now becomes assessible by approximation using a 

finite series representation. 

In closing, the accuracy of a numerical method for the 

radiative equation of transfer based on R and T comparisions 

should be carefully examined. In many practical applications, 

the actual spatial distribution of the intensity or the zeroth 

( o r  first) moment of the intensity appear crucial owing to 

coupling to another dependent variable such as temperature. 

clear error estimate (or bounds) on the unknown function(s) 

certainly serves to permit a proper evaluation of accuracy. 
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Appendix A 

Explicit expressions for the constants displayed in Eqs. 

(3.12b)-(3.12d) are now provided: 

1 
1 - Im - kI2 

= 

1 - (m + k) 

m,k mixed odd/even 

both m , k  even or odd 

and 

where M = int[m/21 and where the integral term is expressible as 

for evaluation purposes. Symbolic software packages such as 

MathematicaTn or Maple permit the rapid evaluation of 

the constants cJkna as needed when expressing TIZJ’(I1) in 

terms of a finite Chebyshev sum. Maple has a function already 

prepared for doing this operation. 

done by hand by initiating the following process [241: 

This tedious procedure can be 

m odd 

m even 
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m odd 

e . . .  m = 0,1,..., 

where Un(n) is the nth Chebyshev polynomial of the second kind 

[ 2 4 ] .  Clearly, a pattern is developing but symbolic manipulation 

appears to be more prudent and better suited to such computation 

than the author. 

Finally, 

f; = - 25r 2 --L[E3+n(2a)T:n'(1) - E3+n(0)TLn)(-l)], k = 0,1, ... ( A . 4 )  
n-0 an*' 
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Appendix B 

In this appendix, we briefly describe the approximation of 

the second exponential integral function in terms of a Chebyshev 

series representation. Consider [ll] 

E , ( a ( l  + n)) = a(l + tl)ln(l + TI) - 5 S E ( 1  + n)k, n E [-l,l],(B.l) 
k- 0 

where 

6; = -1 

6; = a(1 - Y - ln(a)) 

. Assuming that E,(a(l + V ) )  can be expressed as 

(B.2a) 

where 

where the normalization integral, N,, is defined in Eq. (3.17). 

Making use of [241 

k 2 1, 

we arrive at 

m = O,l, ... 

.29 



The evaluation of the remaining integral in (B.5) for each fixed 

m is performed analytically with the aid of MathematicaTn. 

Table VI11 presents the relative error, as defined by 

Clearly, even at N = 11 (i.e., 12 terms in the series 

representation) a fair amount of error persists. Thus, it 

appears that a d i r e c t  numerical approximation for 

is preferable. 
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Appendix C 

A brief discussion concerning the rate of convergence 

associated with the approximate solution based on the collocation 

method using the closed-rule collocation points previously 

described is now presented. The results obtained in this 

appendix are intended to clarify the observed convergence rate 

conjectured by Eq. (4.6). Our approach relies on the projection 

method framework described by Atkinson 171, Baker 1401, and 

others [34,41]. We refer the reader to these fine sources f o r  

the particulars. 

Let G E C'[-1,1], N > r ,  and let the points nk E [-1,1] be given 

Define the interpolatory projection by n k  = cos[y] , k = 0,1, . . . , N. 
- operator PN such that 

where h ( n )  is a real function such that h E C' [-1,1] and 

where I , ( n )  is the Lagrange interpolation polynomial [421 

For  implementation purposesy we express Eq. (C.lb) as 

where 

Let us also define sN such that it is a polynomial of 

degree S N. The linear operator PN has the following 

property [TI 

from which we can derive the idempotent property E71 

P N s N  = s N t  

(c.la) 

(C.lb) 

(C.lc) 

(C.ld) 

(C.le) 

(C.2a) 
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- P: = PN, (C.2b) 

also note that IIPNII, 2 1 for N 2 1. Let the previously defined 

collocation points also represent the interpolatory points. 

Also, note that nk, k = O,l,.. .,N are real, distinct, and 

symmetric around n = 0. For large N, the points are more dense 

around the endpoints than toward the center of the interval n E 

[-1,1]. With this in mind, it is clear from its construction that 

PHRNfq) = EN(nk)lk(n) = 0, (C.3a) 
w 

k- 0 

and 

(C.3b) 

where 6,k is the Kronecker delta function: and RN(n) is 

the local residual fanction defined in Eq. (3.3) and explicitly 

expressed in Eq. (4.3). Recall Eq. (3.3) and Eq. (2.la), 

rcspectively, in their corresponding operator form as 

RN = GN - fa - - KGN, (C.4a) 

0 = G - fa - KG, (C.4b) 

where we assume that X/2 is a regular value of K. Operating 

on Eqs. (C.4a-b) with P, and noting that G, is a polynomial 

of degree N, we find 

(C.5a) 

O = PNG - PNf" - P,KG. (C.5b) 

x 0 = GN pNfa - 3 PNKGN, 

Adding and subtracting G from Eq. (C.5b) then taking the 

difference between E q s .  (C.5a) and (C.5b) yields 

x (I - 5 PNK)(G - GN) = G - PNG, 
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Lim IIPNK - Kll, = 0 

x 
N-., 

than for sufficiently large N, (I - P,K)-' exists [7]. Taking 

the infinity norm of Eq. (C.6) produces 

or 
IIG - P,GII,. x IIG - GHle 5 

1 - z IIPNKIIa 

Introducing the best uniform approximation [401 Y, (a 

polynomial of degree I N), we find 

IIG - GNIIm I x1 II( G -Y, + Y,- PNG)II,. 
1 - 2 IIPNKIIa 

but since Y, = PNYN, we find 

IIG - GNII, = O[ ( 1 + IIPNII,) IIG - Y,II,] 
From Baker [40, p. 931, one can show 

IIG - YNll, = O(F) 1 . 
These results came about from the use of a Jackson theorem 

[40,42,431. Before proceeding, a digression is warranted. 

Rivlin [42] and others have investigated a similar case to 

the present study except that they considered an open-rule set of 

Chebyshev collocation points. 

collocations points defined by T1; = cos[( J2N 

has been analytically developed in several sources 142,433. 

Rivlin [40, pp.93-971 showed I 

The values of IIP,II~ for N > 0 with 

3 ,  j = 1,. ..,N 2' - l ) X  

N 

I- 1 
1111 = II ,(n)l  < %ln(N) + 4, (C.lOa) 

where A i  is the Lebesgue constant which has at most 

logarithmic growth. Conforming to our notation, let 

IIP,II: = $ln(N) + 4. (C.lOb) 
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Rivlin [42, p.931 remarks that the proof of this result is 

"rather long". In fact, Baker [40, p.941 adds that this result is 

'Ipessirnistict'. Baker [40, p. 941 further remarks that for N < 1000 

A i  < 5.4. (Note that a typograpical error exists in his result for 

A: on p. 94.) Baker 140,  p.1041 does indicate that the closed-rule 

collocation points should produce a similar relation as indicated 

in Eq. (C.lOa) though the constants involved would be different. 

Owing to the numerous applications of the triangle 

inequality, an empirical approach for bounding IIP,II, 

appears quite reasonable. With these remarks in mind, a 

contemporary approach representing a compromise between theory 

and practice is offered with the aid of symbolic manipulation. 

One can empirically demonstrate, to a high degree of confidence 

and accuracy, that 

IIP,II, = Aln(N) + B, (c.11) 

for sufficiently large N. This is graphically demonstrated in 

Figure 9 .  The approximate numerical values for A and B agree 

well with Reference 24 (page 13). Figure 9 presents a semilog 

graph which indicates a straightline for sufficiently large N. 

Numerical results for this figure were generated using the 

definition of IIP,II, based on Eqs. (C.lc-e) and implemented using 

MathematicaTn. 

Thus, it appears that from our theoretical development that 

IIE,II, = IIG - G&,, = O( In( N)/N' ) . (C.12) 

These results indicate that rapid convergence will occur if 

G(n) is sufficiently smooth. This result appears to have direct 
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bearing on regularity of the unknown function G(n). The reported 

discrepency between Eq. (C.12) and Eq. ( 4 . 6 )  could come about due 

to i) the conjecture for extracting Eq. ( 4 . 6 )  is based on N < 9, 

(not sufficiently large), and ii) Eq. (C.12) is a pessimistic 

result due to the bounding processes involved-. 

In the general anisotropic case o r  in situations involving 

mixed-mode, nonlinear heat transfer, this type of analysis 

appears quite formidable though in some cases it does appear 

possible. 
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Figure 1. T h e  approximate solution, G N ( f l )  and residual 

plots, R N ( f l )  for the methods of: (b) collocation, 

(c) Ritz-Galerkin, and (d) Weighted-Galerkin where 

N = 7, w = 0 . 8 ,  L = 2 ( X  = 0.8, OL = 1). 

Figure 2. Symbolically calculated relation indicating 

functional dependence of IIP,II, on N with 

interpolatory points defined by fl, = cos[kn/Nl, 

k = O,l,...,N. 



0.06 . 

- 0 . 0 4 .  

-0.06 '_ 

-0.02 

- 0 . 0 4 -  

- 

L 

n 



I 

5 

4 

8 3  

2 

1 

0 
0-1 

...... I ......... -. ................................................................. 

......... ........................... 

..................... 

I I I I I I I I I  I I I I 1 1 1 1 1  I I I I I 1 1 1 1  I I l l  

1 10 100 

Nth Order, (N+1) terms 
1000 



Table I, 

- 
Weights and test functions for the three expansion 

methods. 

Table 11. Comparison of the present collocation results f o r  R 

and T to the exact r e s u l t s  [37] for various optical 

thicknesses, L and albedos, 0. 

Table 111. Convergence of the collocation expansion coefficients 

when w = 0.8, L = 2 ( X  = 0.8, a = 1). 

Table IV. Convergence of the Ritz-Galerkin expansion 

coefficients when 0 = 0.8,  L = 2 ( X  = 0.8, a = 1). 

Table V. Convergence of the weighted-Galerkin expansion 

coefficients when w = 0.8,  L = 2 ( X  = 0.8, a = 1). 

Table VI. Error bounds (La-norm) for the collocation method 

when 0 = 0.8, L = 2 (1 = 0.8, a = 1). 

Table VII. Error bounds (L,-norm) for several optical 

thicknesses, L and albedos, 0. 

Table VIII. Relative error of E , ( a i ( l  + f l ) )  as a function of 

the terms retained in the finite Chebyshev expansion 

(a = 1). 
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L INTRODUCTION 

The transfer of heat which is due to thermal radiation is referred to as radiation heat transfer and 
is a significant mode of heat transfer in many modern engineering applications. Some specific 
areas in which radiation heat transfer is important include the design and analysis of energy 
conversion systems such as furnaces, combustors, solar energy conversion devices, and engines, 
where high temperatures must exist in order to improve thermodynamic efficiency of the 
processes, and where the other modes of heat transfer may also be significant Also, for the 
processing of materials such as glass, crystals, and metals, in which elevated temperatures are 
used to remove impurities from the material and temperatures must be controlled to enhance 
crystal formation for improved properties of the material, radiation is an important consideration. 
The use of materials such as optical components and fibrous and porous insulations, where the 
distribution of heat determines the operational performance of the material, requires knowledge 
of the radiative effects which may influence the temperature within these materials. In both 
nuclear reactor safety, where the temperatures must constantly be monitored and controlled, and 
diagnostics such as spectroscopy, remote sensing of atmospheric pollutants, and satellite 
reconnaissance, where radiation fields are measured and analyzed, radiation heat transfer is a 
very important factor.' Numerous other applications may also be found in the literature. 

Radiation heat transfer developed primarily due to activities involving astronomy and 
astrophysics. Early analytical work was performed by Lord Rayleigh in 187 1, Schuster in 1905, 
and Schwartzschild in 1906.2 Since that time the importance of thermal radiation has increased 
in engineering owing to increased high temperature applications. Many analyses of thermal 
radiation in an absorbing, emitting, and scattering medium have appeared in the literature?-* 
Complete treatment of this problem, however, was next to impossible prior to the development 
of modem digital computers, and often several simplimg assumptions were made in order to 
solve the equations. Essentially identical equations also arise in neutron transport, thus 
additional investigations for solution of the equations have been made in this field as well.2 

Numerous analytical and numerical approaches have been offered for solving the linearized 
Bolmann transport equation. Case's normal mode expansion 9-12 can supply reliable analytical 
solutions for idealized problems. The facile method, Le., FN methodl3, has been applied 
successfully to produce highly accurate results but has only been implemented on relatively 
simple geometries. Again, this approach is very useful for obtaining benchmark results but 
doesn't appear to be tractable to difficult geometries. The conventional pN method 1 W W  is an 
expansion based method which has been used for solving numemus pertinent problems in 
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radiative and neutron transport. Again, irregular geometries may cause some difficulties unless 
some modifications are made. 

Galerkin methods 5 9 6 ~ ~ 5 ~ 7  have been developed in the context of an integral formulation where 
Fredholm integral equations of the second kind are produced in terms of the Legendre moments 
of the intensity. Power series expansions in the optical variable have been used often in this 
context 6915~16. Legendre polynomials of the fmt kind were used as basis functions by Cengel 
and Ozisikl7 in developing a Galerkin solution of radiative transport in a slab geometry. 
Recently, Frankel5 illustrated that Chebyshev polynomials of the first kind can be used as the 
basis functions. Theoretical considerations concerning error bounds and convergence rates were 
reported in that study when considering an isotropically scatfering phase function. The use of 
Fourier transforms18 and eigenfunction expansions19 have been implemented to produce 
accurate results in a slab geometry. Thynell and OZiSikl9 considered several highly anisotropic 
scattering phase functions and developed accurate solutions based on eigenfunction expansions. 
It has been observed14 that an expansion in the optical variable produces fast convergence. 
However, little theoretical work has appeared quantifying the rate of convergence and the 
accurate establishment of error bounds especially with regard to anisotropic scattering. 

In practical applications, the most direct solution procedure is based on the discrete-ordinates 
method 10711. This method is well-suited to many physical situations. The transport equation is 
discretized by using a numerical quadrature for approximating the integrals while a finite 
difference method is typically used for approximating the spatial variable. 

Many of the currently proposed solution methods attempt to determine the radiative intensity 
distribution throughout the medium of interest and subsequently determine the radiative flux and 
divergence of the radiative flux to determine heat transfer rates and temperature distributions. 
However, by first manipulating the radiative transfer equation into an equivalent integral form, 
we can reduce the number of independent variables and obtain the quantities of interest much 
more readily than from the radiative intensity. Therefore, this method allows us to both simplify 
the analysis of the radiation problem itself and gives us the principal quantities of engineering 
interest without extensive further calculation. 

The purpose of the present exposition is threefold; (i) to develop a simple yet elegant expansion 
method using Chebyshev polpornids of the first kind as a set of orthogonal basis functions, (ii) 
to present a new and informative residudenor analysis which is useful in assessing 
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performance/accuracy, and (E) to implement and demonstrate the utility of symbolic 
computation in arriving at the numerical results. 

II. INTEGRAL FORMULATION 

In this section, we present the integral form of the radiative transfer equation. This integral 
formulaton reduces the number of independent variables in the unknown functions and leads to 
much simpler calculation of many quantities of engineering interest, such as the radiative flux 
and the divergence of the radiative flux. Furthermore, there appears to be greater stability in the 
calculations of these quantities as obtained from the integral formulation than from the 
differential form. 

In a plane-paralleI, hear-anisotropically scattering, absorbing, and emitting medium of optical 
thichess ZD subject to transparent boundary conditions, the appropriate 4-8 integral form 
becomes: 

and 

where 
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ZD 
+ I S ( T ~ ) K O , ~ ( T -  To)dro, n =  0,1, ... 

To= 0 

and 

with 

where the partial kernel functions Q,,,JJT-ToJ) reduce to 

Here, the unknown functions, G, (T), m 4 , l  are the m* Legendre moments of the intensity and 
are defined * as 

where P, (p) is the m* Legendre poynomial of the first kind and I (T, p) is the local radiative 
intensity. The boundary conditions flu) and f2@) correspond to externally incident, 
azimuthally-symmetric radiationg, namely 
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whereas the function S(T) is given by 

where o is the single-scattering albedo, n is the index of refraction, 0 is the Stefan-Boltzmann 
constant, and T is the local temperature in the medium at optical depth 2. The exponential 
integral functions appearing in &.(I) are defined as 10 

1 
En (4 = e- " j L  pn-2dp, z 2 0, n = 1,2 ,... 

jL= 0 

The constants %,a1 are associated with the linearly anisotropic scattering phase function, 
namely9 

1 

(5)  

where P(p,p') is the scattering phase function under our imposed constraints. 

The phase function is normalized by requiring that a=l. When al=-l the scattering is said to be 
"highly backward", while when al=l the scattering is said to be "highly forward". The case 
when al=0 represents isotropic scattering. When la1121 in linearly anisotropic scattering, the 
phase function is actually an approximation of a higher-order phase function which describes 
highly-forward or highly-backward scattering. This approximation yields accurate results in 
many important  application^.^ The attributes of the integral formulation are well- 
documented4s*6*8. Equations (la, lb) represent a set of linear Fredholm integral equations of the 
second kind The kernel, El (ITo-T I) shown in Eq. (la) contains a logarithmic singularity as 
TO+. 

At this point, it is convenient to transform the physical domain fiom TE [o,TD] to x~[-1,1] in 
order to introduce OUT expansion of the unknown functions in terms of a Chebyshev series. 
Transforming the domain via a linear transformation, we let 
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22-2, 

TD 
XE-  

2z0-2, 

=D 

X E  7 
0 

and define 

noting that x= - ' - 1. We therefore define 
a 

* TD Gn (x) E Gn (a x + -) = Gn (a(x + I)), 
2 

and 

* 
Fn(x) = Fn(a(x+l)) n = 0,l. 

The transformed equations governing the zeroth and fxst Legendre moment of the intensity 
become 

and 
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* 1 

xo= x 
1 

xo= - 1 

- a0 I E2("(Xo-x))G0(xo)dx0 

* 
+ al E3(aix- xol)G1 (xo)dxo], x E [-1,1] . 

We are now in a position to formally expand G',(x)and G;(x) in terms of Chebyshev series 
representations. Thus, we write 

and 

where Tn(x) is the nth Chebyshev polynomial of the first kind, given by20-z 

T~ (x) cos(n cos- 1 x), n=0,1,2, ... 

To simplify notation we express Eqs. (9a) and (9b) in operator form, 

* * - F * + a  K G  + a  K G  G t ; - 0  0 0 0  1 1 1  

and 

* *  * * 
G1 =F +a K G  +a K G 1 0 1 0  1 2 1  
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where we interpret our symbolic notation as 

where k .(x,y) are the appropriate kernels and ~ ( y )  is any arbitrary function. 
3 

* 
We seek an approximate solution to G (x), m = 0, I, by truncating the infinite series 

representations for Gm (x) , m = 0, 1, at a certain order, say N, leaving 
m * 

and 

N 

i=O 
G:(X)= CY Ti(x), X E  [- 1,1], 

where b. N and c. N are approximations to b. and ci, respectively. Thus, we may express Eqs. 
1 1 1 

(12a) and (12b) as 

G:= Fo * + a K G N + alKIGl N N  -Ro , 
0 0  0 

and 

GY = F; + aoKIGr + alKzGy -TN, 

respectively, where we have introduced the resruda . 
error resulting from the approximation. 

,cinctions RN anl 0 RN to account for the 1 

Substituting Eqs. (14a) and (14b) into Eqs.(l5a) and (15b) and, formally interchanging orders at 
summation and integration produces 
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N 

i=O 
RF(x) + b p  Ti(x)= 

and 

RP(x) + N N  C ci Ti(x) = 
i=O 

We now notice that, for specified boundary conditions such that F*(x) and F*(x) are known 

functions given by Eq. (IC), we have reduced the problem to a point where all integrals involved 
can be determined analytically. These expressions are developed in the next section of analysis. 
Therefore, we are in an excellent position to perform a numerical analysis to determine the 
unknown expansion coefficients b p  and c?, i=4,1, ...,N, by placing some type of restriction on 

0 1 

the functions Rr(x) and R1 N (x). 
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III. COLLOCATION AND RITZ-GALERKIN METHODS 

In this section, we present a systematic approach for determining the unknown expansion 
coefficients shown in Eqs.(l6a) and (16b) . Projection methods encompass techniques such as 
collocation, Galerkin methods, and least-squares procedures and have been the topic of much 
re~earch*3-~7. The proposed numerical methods used here are presented in a weighted-residual 
framework. An exact solution is given if the residual functions are identically zero for XE [-1,1]. 
This is not possible for our finite Chebyshev series approximation unless the actual solution is a 
linear combination of the Chebyshev polynomials {Tn(x)}, n = OJ, ..., N. Therefore, we attempt 

to minimize the residuals Rt(x) and RP(x) in some manner. A particular expansion method is 

defined by any restrictions imposed on the residual functions shown in Eqs. (16a,b). We wish to 
determine the unknown expansion coefficients { bn } and { cn } , n = O,l,.. . ,N , in such a manner 

that some measure of the residual functions is small. A systematic way of expressing this is to 
require that the orthogonality condition5 

N N 

(RjN(x), pk(x)) = 0, j= 0,l and k=0,1, ..., N, 
wi 

be enforced for i=Ql,...,N. For the point-collocation method wk(x)= 6(x-xk) and 
cm((x)=l, where 6(x) is the Dirac delta function, while for the Ritz-Galerkin method wk(x)=l and 
cm((X)=Tk(X). Note that the inner product of two real functions gl(t) and g2(t) is given by 

where Wk(t) is a non-negative, real, integrable weight function. 

Collodon Method 

Imposing the orthogonality concept displayed in Eq( 17), where Wk(X)=6(X-Xk) and (pk(x)=l, on 
Eqs.(l6a) and (16b) produces 

11 



I 

and 

a w  [ao N N  z b -  I .(x )+ al C c. I .(x )I, k=0,1, ..., N, 
1 2.1 k 1 3s k + -  

2 i=o i=O 

where the integral functions In,i(x), n=1,2,3, i=0,1,2 ,..., N, are defined by 

I . ( X ) E  
1 9 1  

I .(x)= 24 

1 
I .(x) = I E3(alx- xol) Ti(xo)dx0. 
391 xo= - 1 

N 

k=l 
Here, X j  represents the collocation points in the finite set {xk} 

straightforward set of manipulations, one can show 

.Through a lengthy but 
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where we have defined 

1, n even, 
rn ~ { o ,  n 

Pitz-Galerkin Method 

We now proceed with the determination of the expansion coefficients of the Legendre moments 
of intensity using a Ria-Galerkin method. As indicated previously, for the Ritz-Galerkin method 
we use wk(x)=1 and (pk(x)=Tk(x) in the restriction pTovided by Eq. (17). This provides a uniform 
weighting of the residual function over the entire interval as opposed to the discrete weighting 
associated with the collocation method. 

From our analysis in the preVious section, we can rewrite Eqs. (16a,b) as 

and 

where ~ J x ) ,  n=1,2,3, i=O,l, ...,N, are given by Eqs. (20a,b). After introducing our chosen 
functions for wk(x) and q K ( x )  into the orthogonality condition shown in Eq. (17), we find 

N 

i=O i=O 
+ -[ao ao z b -  N N  B +al X$B2 3, 

1 li,j 5, j 2 

and 
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N N N 

i=O i=O 

N + -[aoxbi a w  B2,i,j+alCci B3i j], j=O,l, ..., N. 
> ,  2 

where 

which, with the aid of Eq. (1 1), can be expressed as536 

2, i+j even, 1 

A. .= 
1,’ 10, i+j 

and where 

1 

x= -1 
= I I,,i(x)Tj(x)dx, i,j=O,l, ..., N, n=1,2,3. Bn,i,j - 

After a straightforward set of manipulations, we anive at 

[ $ 3 1  2k+rn+l i-2k-rn 
=2(-1fn 2 (-) a 2k+rn+n m=O d~ , i , 2k+r ,A~ , j  k=O Bn,i,j 

where 
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and where we expressed ~ j )  (x) as a finite Chebyshev series, namely 
1 

i- j 

m=O 
~ j )  (x) = C dm,ij?h, (x). 
1 

We note that '$j) (x) is simply a polynomial of order (i-j) . With the use of symbolic 

computation, the calculation of these coefficients is trivial and represents a one-time 
computation. 

In the next section, error analysis is performed to quantify the accuracy of the proposed 
solutions. 

IV ERROR ANALYSIS 

After determining the expansion coefficients by the chosen method, the residuals are given by 
Eqs. (16.a,b). The size of the residuals provides us with an indication of the accuracy of the 
approximation, but we wish to calculate the emrs in the functions G N (x) and G N (x) 

0 1 
themselves. 

Using our operator notation, Eqs. (15a,b), are expressible as, 

Rf = Fi + ao'coGr + a,KIGfJ - G r  , 

and 

respectively. The exact solution produces no residual, that is, 

* * * *  O =  Fo+ a K G + alKIGl -Go , 0 0 0  



* * * *  
O =  F, + a K G  + a,K2G1 -G, . 0 1 0  

Let us define the error as 5*n 

N * N  
E Go- Go , 

* 
€1 N =  G, - GF. 

By subtracting &e corresponding equations in Eqs. (29 a,b) from those in Eqs. (30 a,b), and 
using the definitions of the enors, we obtain a relationship between the errors and the residuals, 
namely 

N N N N =  R~ + a K E + alKIEl €0 0 0 0  

€7 = R, N + aoKIEo N + alK2el N . 

N Unfortunately eN and E 

the errors may be measured by means of some functional norm. 

are as inaccessible as the exact solutions Go and GI, but the sizes of 0 1 

We now introduce the concept of the functionahom, in particular the L, norm. We may define 
this nom as 

for an arbitrary function 8 (x). The infinity nom corresponds to the maximum absolute value 
that a function takes on in its domain of existence. The L nom of the emrs  expressed in E q s .  

(32a,b), therefore, is given as 
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This definition of the error is graphically depicted in Fig. 1, where the maximum absolute error 
corresponds to the definition displayed in Eq. (33b). The corresponding infmity norm of the 
integral operator is expressible as5~26 

xo= -1 

where k(x,w) is the kernel corresponding to the integral operator K. Since we will consider only 
the infinity norm, we shall drop the subscripted "=" in order to simplify the notation. 

We shall use the following elementary results of funcrional analysis:B 

(34a-d) 

where A and B are any arbitrary functions and/or operators and where "a1' is a scalar constant. 
Also, note from our definitions of the norm that lbu 2 0. Then we begin our error bound 
calculations by considering Eqs. (32a,b). Subtracting one from the other, we arrive at 

= R ~ - R ~  N + ao('co-Kl)eo N + al(Kl- K2>eI N . 
€0 -1 (35) 

We now apply the definition of the infinity norm and, with the aid of Eqs. (34 a-d), we obtain 

The terms.U~0-~1[ and U K ~ - K ~ [  represent the noms of the differences of the corresponding 

kernels. Note, however, that these are not equivalent to uKo[-IIK1u and ~ I C ~ ~ - [ K ~ I / ,  
respectively. In Eq. (36), we first consider the case that U E ~ U  2 IE?~.  Then we may write 

or 

1 7  



This then yields the following inequality: 

where we define 

Next, we consider the case that EO < €1 . Then Eq. (36) gives us U"I U * I l  

or 

We thus attain 

provided K12 is positive,where 

r2 N N  - R ~  1 

(38 b-d) 

(ab-d) 

Next, we rearrange Eqs. (30 a.b) in the form 
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Summing the two inequalities and simplifying, we arrive at 

We may therefore write 

where 

(44b-d) 

Once again we begin with Eqs. (5.1.14a,b). Applying the norm to these equations we obtain 

and 
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Adding the two inequalities yields 

which we may rewrite as 

Thus we obtain 

where 

(47b-d) 

The relations given by Eqs. (38a-d), (4Oa-d), (44c-d), and (47a-d) therefore provide us with a 

region in the first quadrant of the plane with abscissa kt 1 and ordinate ky 1 in which the errors 

must lie. This gives us a rigorous error bound for the cases in which the denominators of Eqs. 
(40a) and (47a) are positive. An exemplary plot of this region will be provided in the results 
section. 

V. RESULTS 
Numerical results obtained using the Collocation and Ritz-Galerkin methods applied to the finite 
Chebyshev series approximations are compared to each other and to previously reported results 
obtained using other methods. Graphical representations of the Legendre moments of intensity 
and of the residual functions and errors are presented for the Chebyshev series solutions. Finally, 
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convergence trends of the two methods are presented empirically for a specific example. All 
calculations and graphics presented here were performed with the symbolic computation 
software package Mathematica”, version 2.0 for WindowsN, and executed on a PC with 8 
MBytes of memory. 

We consider the case of uniform radiation of unit intensity incident on the boudary at 2=0 and 
no radiation incident at the boundary 232~. This gives us the boundary conditions I(O,p)=l and 
I(zD ,-p) = 0, p 0 ,  corresponding to Eqs. (3a,b). We further assume that no internal sources are 
present, i.e., s(Z)=O. Therefore, the forcing functions of the integral form of the RTE reduce to 
Fo (2) = E2 (2) and FI (2) = E (2) , from Eq. (IC). We consider this case for comparison 

purposes since it is a classical problem and numerous results corresponding to this problem exist 
in the literature. For the collocation points, we use a closed, Gauss-Chebyshev rule,599*7 Le. 

k=O,l, ..., N which ensures that the residuals vanish at x = +1. Xk 

3 

=  COS(^), nk 

The principle quantity of interest in engineering is the radiation heat flux, which can be 
expressed as Q(x)=2Gl(x). Table 1 compares the radiation heat flux at the boundaries obtained 

from the finite Chebyshev series approximation for both the collocation and Ritz-Galerkin 
methods to results obtained by other methods. A Galerkin method similar to that presented here 
was utilized by Krim6, and is used as the standard for comparison in this study. Three different 
phase functions are considered and solutions for different values of the single-scattering albedo 
o are given for an optical thickness of m=1. The Chebyshev collocation method is indicated by 
TC while the Chebyshev Ritz-Galerkin is denoted by TG. The Galerkin approach presented by 
Krim6 is denoted by G. Results from the F N ~  and PNI4 methods are also included, as are those of 
the double-spherical harmonics @P) method7 The FN and pN methods, in the past, have served 
as benchmarks for comparison and as such, are included for cases where results were available. 
The numerical subscripts represent the order of the approximation used in each case. The FN 
method has generally been considered to produce the most accurate results of any other method. 

It is interesting to note that the collocation method results tend to agree more closely to the 
weighted Galerkin results G6 than the higher order Chebyshev Ritz-Galerkin results. This fact 
makes the TC method quite favorable over the other two due to the computational simplicity of 
this approach. The TQ results seem also to confirm the accuracy of these figures. In light of the 
similarity between these three approximations, however, the accuracy of the Fg and Pg appear to 
be in error.* 

*This was apparently shown by Siewert. This was related to authors by a reviewer. 
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We see in this table that as the single-scattering albedo o is increased, the radiative flux 
decreases at the left boundary while it increases at the right boundary, due to the increased role of 
the (forward) scattering. The radiant energy is thus scattered forward rather than being absorbed 
within the medium. Similarly, as al increases, the scattering becomes more highly forward and 
the back scattering is reduced. This results in less of the incident radiation being scattered back 
out and more energy passing into and through the medium. Therefore, the radiative flux is 
increased at both boundaries as compared to the flux for a smaller value of al with fixed a. 

In Table 2, we illustrate the effect of the optical thichess on the radiation heat flux and compare 
the results to different methods. The results presented correspond to a value of a1=2.602844 with 
d . 8 .  From the table, we see that as the optical thickness is increased, the radiative flux 
decreases at the boundaries, due to absorption and scattering within the medium. 

Table 3 compares the zeroth Legendre moment of intensity obtained from the Chebyshev 
collocation and Rim-Galerkin methods to resuits reported by Krim.6 Again, it is seen that the 
Chebyshev collocation method gives results which are in excellent agreement with the higher 
order method G6 over a large range of values for al, TD, and 0. 

We present in Figure 2 plots of the zeroth Legendre moment of intensity along with the resulting 
residuals and errors for the case where ~D=1.0, d . 8 ,  N=6, and a1=0.643833 obtained by the 
collocation method, and in Figure 3 we present a similar plot for the Ritz-Galerkin method. The 
error was calculated numerically using a product integration27 trapezoid rule with 161 equally 
spaced points. Figures 4 and 5 include plots for the first Legendre moment of intensity and the 
resulting residuals and errors for the case where Zo=l.O, d . 8 ,  N=6, and a1=0.643833 for the 
collocation and Ritz-Galerkin methods, respectively. 

The region obtained from the error bounds represented by Eqs. (38a-d), (40ad), (Mad), and 
(47ad) is plotted for the collocation method in Figure 6 and for the Ritz-Galerkin method in 
Figure 7, both for the case corresponding to N=6,7~=1.0, w4.8, and a1=0.643833. For the 
collocation method, the location of the numerically calculated error noms can be seen to lie 
roughly in the center of the corresponding region, as indicated in Figure 6, while for the Ritz- 
Galerkin method, the location of these norms is in the low center portion of Figure 7. From 



Figures 3(b) through 6(b) it is clear that the L, norm of the residuals is greater for the Ritz- 
Galerkin method than for the collocation method. As a result, the L, norm of the errors is 
expected to be correspondingly greater for the Ritz-Galerkin method. This is indeed the case for 11; 1. based on the numerical calculation of the errors. However, by 1 is actually smaller in the 

case of the Ritz-Galerkin solution. This is clearly due to the smaller residual over the interior 
portion of the domain in the Ritz-Galerkin method. An analysis of the errors using some other 
norm, for example the & norm, may more accurately illustrate this effect. 

Figures 8 and 9 show the region of the error bound for the collocation and Ritz-Galerkin 
methods, respectively, for three different values of N in order to show the rates of convergence 
for the two methods. It is interesting that the polygons which represent the error bounds appear 
geometrically similar for different values of N, although based on the actual bound inequalities, 
it was found that the polygons are not mly similar. The convergence rates for the two methods 
are essentially identical, based on the figures, although the collocation method does have slightly 
tighter bounds for this case. 

From the error plots in Figures (2) through (3, we see that the average error resulting from the 
Ritz-Galerkin method may be smaller than that arising from the collocation method The 
maximum residual occurs at the boundary for the Ria-Galerkin method, and as a result the 
maximum error may be expected to occur there as well. In much of the literature, accuracy of 
results has been measured by comparing the Legendre moments of intensity (or radiative fluxes) 
which occur at the boundaries. Since the largest errors may occur at the boundaries, this may be 
a rather poor measurement. The collocation method, on the other hand, produces zero residual at 
the boundaries if the boundary points are used as collocation points, and as a result the error there 
is quite small. Therefore, without performing a detailed error analysis, the accuracy of any given 
method may be improperly interpreted if boundary results are the only means of comparison. 

The suitability of one method over another may depend on the purpose of the radiation analysis. 
For example, if the solution to a radiation problem is required to obtain the boundary condition 
for a conductioxdconvection problem, then accurate boundary radiation heat fluxes are required 
and the collocation method may produce the best results. On the other hand, if one desires the 
temperature distribution within a medium in which radiation is significant, then accurate 
boundary results alone will not suffice. 



In Table 4, we compare the expansion coefficients which are obtained using the collocation 
method for the case where ~~=1 .0 ,  c i ~ O . 8 ,  and a14.643833, for different values of N, in order to 
show convergence trends for this method. In Table 5 the same comparison is made for the Ritz- 
Galerkin method. It is interesting to note that the leading coefficients-- b t  and c:--are within 

less than one percent of their corresponding values for N=4 and N=10 in the Ritz-Galerkin 
Method, while the convergence is much slower for the collocation method. 

From these results, it is apparent that the collocation method provides excellent results at the 
boundaries of the domain. However, within the interior the Ritz-Galerkin method may provide 
somewhat more reliable results. Both methods provide results which are within one percent of 
the values obtained by other methods and therefore should be acceptable for most engineering 
applications. Since the collocation method requires much less computational effort, this may be 
preferable over the other methods. 

VI CONCLUSIONS 

The problem of one-dimensional radiation in a medium which absorbs, emits, and scatters 
radiation subjected to uniform incident radiation at one of the boundaries and with no internal 
emission source was solved for the case of a linearly anisotropic scattering phase function using 
the integral form of the transport equation. After transforming the domain via a linear 
transformation, the unknown functions were approximated by a finite Chebyshev series solution. 
Two separate orthogonality conditions were applied to the residual functions resulting from the 
approximation to obtain the two separate methods, collocation and Ritz-Galerkin, for 
determining the unknown expansion coefficients. 

Following determination of the expansion coefficients, the residuals were calculated and enor 
bounds were obtained from these residuals. This provided us with a quantitative means of 
analyzing the accuracy of the approximation. The results obtained were also compared to those 
obtained using other methods, and the benefits of the different methods were discussed as well as 
applications for which one method might be more suitable than another. It was found that the 
collocation method produced quite accurate results by using closed rule Chebyshev-Lobatto 
collocation points. Due to the relative ease in numerical computation, this method appears to be 
quite applicable to a variety of applications. 



References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Viskanta, R., "Radiation Heat Transfer: Interaction with Conduction and Convection and 
Approximate Methods in Radiation," Heat Transfer--Proceedings of the 7th International 
Heat Transfer Conference 2,  pp. 103-121, 1982. 

Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960. 

Mengiic, M. P. and Viskanta, R., "Comparison of Radiative Transfer Approximations for 
Highly Forward Scattering Planar Medium," J. Quant. Spectr. Rad-Trans. 29, pp. 381- 
394,1983. 

Thynell, S. T. and ijzisik, M, M., "Use of Eigenfunctions for Solving Radiation Transfer 
in Anisotropically Scattering, Plane-Parallel Media," J.  Appl. Phys. 60, pp. 541-55 1, 
1986. 

Frankel, J. I., "Several Symbolic Augmented Chebyshev Expansions for Solving the 
Equation of Radiative Transfer," J. Cornp. Physics (in review). 

Abdel Krim, M. S., "Radiation Transfer for Linearly Anisotropic Phase Functions," 
Astrophys. Space Sci. 164, pp. 69-77,1990. 

Kumar, S. and Felske, J. D., "Radiative Transport in a Planar Medium Exposed to 
Azimuthally Unsymmetric Incident Radiation," J .  Quunt. Spectr. Rad-Trans. 35, pp. 187- 
212,1986. 

Frankel, J. I., "Computational Attributes of the Integral Form of the Equation of 
Transfer," J.  Quant. Spectr. Rad.Trans. 46, pp. 329-342, 1991. 

Case, K.M., and Zweifel P.F., Linear Transport Theory, Addison-Wesley, Reading, MA, 
1967. 

Ozisik, M.N., Radiative Transfer, Wiley, New York, 1980. 

Duderstadt, J.J., and Martin W.R., Transport Theory, Wiley, New York, 1979. 

McCormick, N.J. and Mendelson M.R., "Transport Solution of the One-Speed Slab 
Albedo Problem", Nucl. Sei. Engng., 20, pp. 462-467, 1964. 

Siewert, C.E., "The FN Method for Solving Radiative-Transfer Problems in Plane 
Geometry", Astro. Space Sei., 58, pp. 131-137,1978. 

Benassi, IN, Cotta R.M., and Siewert, C.E., 'The pN Method for Radiative Transfer 
Problems with Reflective Boundary Conditions", JQSRT, 30, pp. 547-553,1983. 

Ozisik, M.N., and Yener, Y., 'The Galerkin Method for Solving Radiation Transfer in 
Plane-Parallel Participating Media", J. Heat Transfer, 104, pp. 351-354,1982. 

Cengel, Y.A., Ozisik, M.N., and Yener, Y., "Determination of Angular Distribution of 
Radiation in an Isotropically Scattering Slab", J .  Heat Transfer, 106, pp. 248-252,1984. 

Cengel, Y.A., and Ozisik, M.N. "Radiation Transfer in an Anisotropically Scattering Slab 
with Directional Dependent Reflectivities", ASME Paper 86-HT-28. 



18. 

19. 

20. 

21. 

22 

23. 

24. 

25. 

26 

27. 

28. 

Sutton, W.H. and Ozisik, M.N., "A Fourier Transform Solution for Radiative Transfer in 
a Slab with Isotropic Scattering and Boundary Reflection", JQSRT, 22, pp. 55-64,1979. 

Thynell, S.T. and Ozisik, M.N., Use of Eigenfunctions for Solving Radiation Transfer in 
Anisotropically Scattering, Plane-Parallel Media, J. Appl. Phys., 60, pp. 541-55 1, 1986. 

Abramowitz, M. and S tegun, I. A., Handbook of Mathematical Functions, Dover, New 
York, 1965. 

Rivlin, T.J., The Chebvshev Polvnomials, Wiley, New York, 1974 

Frmkel, JL, fl A Gd.wh Solution to a Regularized Cauchy Singular Integro-Differential 
Equation," Q m .  Appl. Math (to appear). 

Porter, D., and Stirling, D.S.G., Integral Equations, Cambridge University Press, 
Cambridge, 1990. 

Golberg, MA., ed., Solution Methodr for Integral Equations, Plenum Press, New York, 
1979. 

Golberg, M.A., ed., Numerical Solution of Integral Equations, Plenum Press, New York, 
1990, 

Delves, L.M. and J.L. Mohamed, Computational Methods for Integral Equations, 
Cambridge Univ. Press, Cambridge, 1988. 

Atkinson, K. E., A Survey of Numerical Methods for the Solution of Fredholm Integral 
Equations of the Second Kind, Society for Industrial and Applied Mathematics, 
Philadelphia, 1976. 

Riesz, F. and Sz.-Nagy, B., Functional Analysis, Frederick Ungar Publishing, New York, 
1955. 



LIST OF TABLES 

Table 1 Total radiation heat flux at the boundaries for different linearly anisotropic phase 
functions at different values of o with TD=~. 

Table 2 Effect of optical thickness on the radiative flux Q at the boundaries for 
a1=2.602844 and d . 8 .  

Table 3 Zeroth legendre moment of intensity at right boundary, Gf(1) 
at different optical depths for a1 4.643833 and a1=2.602844 and different values 
of 0. 

Table 4 Comparison of expansion coefficients obtained f'rom the collocation method for 
the case where Z~=l.0,0=0.8, and a14.643833 for several values of N. 

Table 5 Comparison of expansion coefficients obtained from the Ritz-Galerkin method for 
the case where Z~=l.0,0=0.8, and a14.643833 for several values of N. 



Table 1 Total radiation heat flux at the boundaries for different linearly anisotropic phase 
functions at different values of with ZD = 1. 

a1 Method 

0.96562 0.25344 0.89058 032758 0.76103 0.45553 
0.96493 0.25356 0.89017 0.32752 0.76083 0.45538 
0.96564 0.25344 0.88981 0.32757 0.76075 0.45557 
0.96564 0.25344 0.89060 0.32757 0.76105 0.45553 
0.965 13 0.25397 0.88976 0.32843 0.76057 0.45588 
0.96780 0.25435 0.8915 1 0.32884 0.76192 0.45604 
0.9648 0.2568 0.8889 0.3290 0.7587 0.4543 

0.99221 0.27368 0.96735 0.39386 0.90592 0.59525 
0.99 152 0.27379 0.96695 0.39379 0.90569 0.59508 
0.99223 0.27368 0.96738 0.39386 0.90594 0.59525 

0.90594 0.59525 
0.90406 0.60251 
0.90701 0.59596 

0.99697 0.27734 0.9825 1 0.40719 0.93806 0.62650 
0.99628 0.27746 0.9821 1 0.40712 0.93783 0.62632 
0.99698 0.27734 0.98254 0.40718 0.93808 0.62650 

0.93808 0.62650 
0.94178 0.63874 
0.93920 0.62726 
0.9336 0.623 1 



Table 2. 

0.1 2.0 

Effect of Optical Thickness on the radiative flux Q at the boundaries for 
a1=2.602844,0=0.8. 

10.0 

Q(-U Q(1) Q(-1> QW 

TC6 10.98085 10.94234 0.41647 
TG6 10.98087 10.94235 10.92975 10.41593 
G6 10.98085 10.94234 10.92938 0.41672 

f I I i 
0.92177 10.01741 
0.9 1599 10.01328 
0.9 1005 0.02230 

f 



Table 3 Zeroth Legendre moment of Intensity at right boundary, Gt (1). at different optical 

depths for al=0.643833 and a1=2.602844 and different values of a. 

a1 o method TD 

0.1 1.0 2.0 

0.643833 0.2 Tc6 0.7484 1 0.1802 1 0.05103 
TG6 0.75484 0.18318 0.05639 
(36 0.7484 1 0.18019 0.05098 

0.79045 0.25117 0.08885 
E 6  0.78898 025444 0.09360 
(36 0.79046 0.251 16 0.08878 

05 

0.8 Tc6 0.83696 037749 0.18748 
TG6 0.83796 0.38179 0.19273 

0.37752 0.1875 1 G6 0.83696 

2602844 0.2 Tc6 0.75602 0.19889 0.06146 
TG6 0.76016 0.20188 0.06678 

0.19888 0.06141 G6 0.75602 

0 5  Tc6 0.81013 031619 0.13775 
TG6 0.80822 0.31978 0.14294 
G6 0.81013 0.31618 0.13769 

0.8 Tc6 0.86948 0.523 1 1 0.34235 
TG6 0.87052 0.52869 0.35022 
(36 0.86948 0.523 16 0.34246 



Table 4 Comparison of expansion coefficients obtained from the collocation method for the 
case where ~~=1.0,0=0.8, and a1=0.643833 for several values of N. 

N 4  N=6 N=8 N=10 

i 
N C. 
1 

N b. 
1 

N C. 
1 

b N  1 
N C. 
1 

bN 1 N C. 
1 

0 0.23466 0.22866 0.75549 0.29 125 0.78028 0.29372 0.78024 0.29372 
1 0.33174 -0.04199 -0.38730 -0.07330 -0.42913 -0.07563 -0.42894 -0.07562 
2 -0.38668 -0.00305 0.01328 0.00849 0.04813 0.01020 0.04802 0.01020 
3 0.17056 0.00378 0.00649 0.00057 -0.02 147 -0.00072 -0.02124 -0.00072 
4 -0.04492 -0.00070 -0.01509 -0.00065 0.00524 0.00022 0.00509 0.00034 
5 0.00762 0.00043 -0.00534 -0.00004 -0.00499 -0.00004 
6 -0.00492 -0.000 13 0.001 89 0.00004 0.001 65 0.00003 
7 -0.00276 9.5 ~ 1 0 - 6  -0.00213 -9.2 x10-6 
8 0.00067 -0.00004 0.00086 0.00001 
9 -0.00138 5.7 ~ 1 0 - 6  
10 0.00034 -0.00002 



Table 5 Comparison of expansion coefficients obtained from the Ritz-Galerkin method for 
the case where ~~=1.0,0=0.8, and a1=0.643833 for several values of N. 

- - - N=4 N=6 - 

i bN 1 C. N 1 b p  N C. 
1 

N C. 
1 

N C. 
1 

0 0.77980 0,29368 0.2804)3 0.2937 1 0.78003 0.29391 0.78002 0.29333 

2 0.047 12 0.01010 0.04760 0.01OI 8 0.84760 0.01059 0.04758 0.00940 
1 -0.42621 -0.07560 -8.42785 -0.07562 -0.42896 -0.07562 -0.42834 -0.07005 

3 -0.018 16 -0.00070 -0.02007 -0.0007 1 -0.02127 -0.00072 -0.02060 0.005 12 
4 0.00406 0.00006 0.00463 O.O(Kf18 0.00463 0.00063 0.00460 -0.00067 
5 -0.00363 -0.00003 -0.00509 -0.00003 -0.00427 0.00649 
6 0.00109 -0.00001 0.00109 0.00055 0.00105 -0.00107 
7 -0.00281 -6.1~10-6 -0.00122 0.00812 
8 4 . 4 ~ 1 0 ~ ~  0.00102 -0.00014 -0.00203 
9 -0.00003 0.01536 
10 0.00025 -2.2~ 10-8 
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1. INTRODUCTION 

Kumar and Sloan [13 recently proposed an alternative 

integral formulation to the conventional Hammerstein form. This 

new formulation was offered in hopes of reducing the 

computational effort associated with implementing a collocation 

method. Thus, the intrinsic merit of this alternative 

formulation lies in its computational savings. Kumar and Sloan 

[ l ]  demonstrated (i) conditions guaranteeing convergence to the 

exact solution, and (ii) the rate of convergence. More recently, 

Kaneko et al. [23 addressed the issue of superconvergence of the 

method of Kumar and Sloan in the presence of a weakly-singular 

kernel. 

The purpose of this brief note is twofold; namely to 

illustrate that a posteriori error estimate may be established, 

and to illustrate that the method can be extended to higher- 

dimensional cases. Owing to the large variety of kernels and 

nonlinearities that occur in practice, an illustrative approach 

has been opted for from which some generalizations may be 

inferred. 

This note is divided into four sections. In Section 2 ,  we 

briefly review the method of Kumar and Sloan for contestual 

purposes. In Section 3 ,  we present two illustrative esamples in 

which error estimates are developed. In Section 4 ,  we present 

numerical findings for the two examples considered in Section 3 .  

In Section 5, we present an example to illustrate that 

the method of Kumar and Sloan may be applied to parabolic partial 

differential equations. 
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2. METHOD OF KUMAR AND SLOAN 113 

A Hammerstein integral equation may be expressed in the form 

where f, G, and S are known functions and 6'- is a real 

constant. Here O(n) is the unknown function requiring 

resolution. Often in practice, we transform nonlinear boundary 

value problems, via Green's functions, into the form displayed in 

(2.1). Thus, G(n,n,) would represent an appropriate Green's 

function [ 3 , 4 ]  while f ( n )  would be the conjunct. Iiurnar and 

Sloan [ l ]  noted that the direct implementation of a collocation 

method [5,6] would require that the definite integral displayed 

in (2.1) be evaluated at each iterate until convergence on the 

espansion coefficients would be obtained. 

Kumar and Sloan [l] proposed that an intermediate function 

be defined on the basis of the function S ( I l , O ( I l ) )  as shown in 

(2.1), namely, we let 

' P ( n )  = s ( n , O ( n ) ) ,  n E [-i,i], ( 2 . 2 )  

- thus (2.1) can be written as 

By substituting ( 2 . 3 )  into ( 2 . 2 )  we obtain the 

nonlinear integral equation for the intermediate variable 'P(n) 

as 

This integral form possesses some unique characteristics which 

have been the topic of study in [1,2,71. In this form, a 



collocation method would not require the re-evaluation of the 

definite integral shown in (2.4) at each iterate. It should be 

noted that the structure of the new integral equation has become 

more complicated in appearance than the original form. Once 

q(n) has been resolved satisfactory, O ( n )  is reconstructed 

through the integral transform shown in (2.3). Unlike previous 

studies, we will use a uniform approximation in developing the 

approximate solution. 

3 .  TWO EXAMPLES - ERROR ESTIMATES 

An illustrative approach is taken in order to demonstrate 

the development of  error estimates f o r  two typical 

nonlinearities (i.e., algebraic and exponential non1inearitiesl4 

3.1 Example 1: Algebraic Nonlinearity, S ( n , O ( n ) )  = O ' ( T 1 )  

Such a situation arises naturally in the modeling of a 

fourth-order isothermal, irreversible reaction in a planar 

geometry [8, p . 8 5 1  or in steady, one-dimensional heat transfer 

a fin placed in a vacuum environment. Let 

f ( n )  = G, ( n , - l )  - O-G, ( n , l ) ,  
- 3  

where the two-point symmetric Green's function is 

G ( v , ~ , )  = 
( 1  - n , ) ( l  t n )  

2 1 n I n, I 1. 

This situation arises from the differential equation 

subject to 

- S'Q'(n) = 0 ,  n E  

in 

' 1 )  

(3.3a) 

(3.3b) 
(3.3c) 
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Following the method of Kumar and Sloan 111, we define 

- q(n) = o'(n), (3.4) 

and upon substituting this into Eq, (2.1), we arrive at 

o(n) = f(n) - 0'11 q0--1 G(n,n,)*(n,)dno, n E [-1,1l. ( 3 . 5 )  

The esplicit form of ( 2 . 4 )  now becomes 
1 

*(n) = [f('l) - tj21qo.-l G(n,n,)'k(ri,)dn.,]', 11 E [-1,11. (3.6) 

Let the unknown function, 'P(n) be represented by the expansion 
.3) 

*(n) = E C;T,(~), n E [-1,1]. ( 3 . 7 )  
r - 0  

In general, we seek an approximate solution to * ( n )  by 

truncating the infinite series shown in (3.7) at a certain 

order N, namely 
?I 

3 - 0  
' P N ( n )  = 1 cfiT,(n), n E [-1,1], (3.8) 

where c: is an approsimation to c: for each fixed m. Thus, the 

approximate solution is based on solving 

R J ~ )  + t~,(n) = [f(n) - 0'1: n0--1 ~(n,n,)~~~~(n,)dn,~', n E [-1,11, (3.9a) 

where RN(n) is the local residual function. Upon substituting 

(3.8) into (3.9a), we arrive at 

where 
1 

c,(n) = iqo--I G(n,n,)T,(n,)dn,, m = 0 , 1 , .  . . , X .  (3.9c) 

This type of manipulation allows for the direct 

integration (analytical or numerical) of C,(n), m=O,l, ..., N 
independent of the unknown expansion coefficients (in fact, this 

is a single time evaluation f o r  each m). 

Unless the true solution is a linear combination of the 

N N basis functions {Tn(n )}n-o ,  we cannot choose { c ~ } ~ - ~  to make R,(n) 

vanish for all n E [-1,1]. However, suitable expansion 

4 



series representation shown in ( 3 . 8 ) .  The local residual 

function, R,(TI) is determined from (3.9b). Finally, the 

approximation to e(n), that is O,(n), is obtainable from the 

transform shown in (3.5), namely 

O,(n) = f(n) - 6 ' c 1  '1=---1 G(njnD)'J',(nD)dn0, n E [-1,11. (3.12) 

Let the local error in the intermediate function be defined 

as 
E,(n) = IP(n) - ' € f N ( n ) ,  r; E [ - l , l J ,  (3.13) 

and its size may be measured by means of some functional norm. 

Unfortunately, the e r ro r  is as inaccessible as the esact 

solution. Iiumar and Sloan 113 did not present or discuss a 

posteriori error estimates. This type of estimate is highly 

desirable from the practical point of view. In light of its 

importance to the evaluation of the numerical solution, r ce  begin 

by addressing this crucial issue here. 

Development of an integral equation for the error in the 

approximate solution has been illustrated in Delves and Xohamed 

[SI, and used by Frankel [91, and LaClair and Frankel [ l o ]  in 
recent studies involv-ing radiative transport. 

It should be noted that our main concern is the original 

function O(n) since it would typically carry the physics of 

interest. One can arrive at a direct error estimate for 

O(n) - O,(n) through some basic manipulations. To begin, we 

subtract ( 3 . 1 2 )  from (3.5) to get 

6 , ( n )  O ( n )  - O , ( n )  = - G ( n ,  no ) E ,  ( no )dno 2 

where 6 , ( n )  is the local error introduced by O , ( n ) .  

K denote the integral operator defined by 

Let 

(3.14) 
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( 3 . 1 5 )  

t h e r e f o r e  (3.14) c a n  be e x p r e s s e d  as 

6, = - B'KE,. ( 3 . 1 6 )  

I n t r o d u c i n g  ( 3 . 1 3 )  and ( 3 . 1 4 1  i n t o  (3.4) p r o d u c e s  

'k, -+ E ,  = [O ,  + S,]'. ( 3 . 1 7 )  

Note t h a t  by r e q u i r i n g  O,(n) t o  be d e f i n e d  by t h e  i n t e g r a l  

t r a n s f o r m  shown i n  ( 3 . 1 2 ) ,  t h e n  0; = 9, u n l e s s  C , ( n )  = 0 f o r  a l l  

rl E [ - 1 , 1 l .  C l e a r l y ,  t h e  e r r o r  5 ,  a s s o c i a t e d  w i t h  0, is  

r e l a t e d  t o  E, t h r o u g h  t h e  i n t e g r a l  t r a n s f o r m  shown i n  ( 3 . 1 4 ) .  

I n  o r d e r  t o  o b t a i n  an  i n t e g r a l  e q u a t i o n  f o r  t h e  unknown 

e r r o r  b , , ,  w e  l e t  TI - >  n, i n  ( 3 . 1 7 ) ,  m u l t i p l y  (3 .1 ' 7 )  by 

-6 'G( '? l ,? l , ) ,  and i n t e g r a t e  o v e r  t h e  domain o f  i n t e r e s t ,  t o  a r r i v e  

a t  ( i n  o p e r a t o r  fo rm)  

- t3'K*, + 6 ,  = - B"[O, f 6:;Ii. ( 3 . 1 8 )  

A s  N becomes s u f f i c i e n t l y  l a r g e ,  one  hopes  t h a t  6:: becomes 

c o r r e s p o n d i n g l y  s m a l l .  Expanding ( 3 . 1 8 )  p r o d u c e s  

b,  = (3'KqN - 13"[ 0; + 4@:6,] - 6'K[ 60t6: + 40,s; + 6,:] . (3.19) 

Assuming 
IO: + 4Qi6,1 > >  16OiSt + 4@,6: + b:! ,  ( 3 . 2 0 )  

f o r  s u f f i c i e n t l y  large N ,  w e  a r r i v e  a t  t h e  l i n e a r i z e d  e r r o r  

i n t e g r a l  e q u a t i o n  ( h e r e  w e  d e n o t e  t h e  l i n e a r i z e d  e r r o r  as 6 ; )  

6; + 4BZK[0~6~]  = - B'KR,, ( 3 . 2 1 )  

where  w e  have  made u s e  o f  ( 3 . 1 2 )  and  ( 3 . 9 a ) ,  i . e . ,  

R, + q, = 8;. ( 3 . 2 2 )  

Us ing  t h e  maximum p r i n c i p l e  1 3 ,  p .  641 ,  w e  c a n  r e a d i l y  e s t a b l i s h  

101 S 1. We c a n  now e s t a b l i s h  some e r r o r  bounds (assuming 6; 6,) 

a f t e r  which  t h e  a s s e r t i o n  shown i n  ( 3 . 2 0 )  c a n  be  c a l l e d  upon f o r  
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verification. 

necessary. 

A correction procedure could be initiated if 

Let the infinity norm of the function g(t) be denoted as 

Ilgll, and defined by [ 5 ,  p. 22, 6 2 1  

( 3 . 2 3 )  - 
IlgL = SUPq,[-, , I ] k ( t )I, 

for any function bounded in rl E [-1,11. li‘sing this definition 

of the norm, we can establish the following error bound from 

(3.211, namely 

( 3 . 2 4 )  

when 1 - SB’IIK@~fl, > 0. With symbolic computation, the norms 

displayed in (3.24) can be evaluated. This is reminiscent of the 

error estimates seen in [51. 

3.2 Example 2: Exponential Nonlinearity, S ( r l , O ( n ) )  = esp[@(Tl)] 

Kumar and Sloan [l] considered an esample that contained an 

exponential nonlinearity and known solution. The approach 

displayed here will use the same basis functions and collocation 

points as implemented in the previous example. 

From 111, we let 6’ = 1 / 3 ,  f(n) = 0 in (2.3), thus arriving 

at 

n E [-i,11, (3.25) 

where G ( n , n e )  is given in ( 3 . 2 ) .  This example corresponds to 

the example considered in [ l ] .  The analytic solution to (3.25) 

is 

where 

(3.26a) 

(3.26b) 
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Using a similar procedure as outline in Example 1, the upper 

bound can be established as 

(3.27) 

when 4 - I I K e e N l l ~  > 0. 
development of error estimates depends on several factors, 

including: (1) available information; ( 2 )  accuracy requirements; 

and ( 3 )  time and effort to be expelled on obtaining the error 

estimates. For the simple problems displayed here, a posteriori 

error estimates [5,17] were sought. In general, a priori error 

estimates based on projection methods appear to be well suited 

for Hammerstein integral equations [1,2,7,18] 

Rall [ 1 6 ,  . 2421 indicated that the 

4 .  NUMERICAL RESULTS 

In this section, we present some illustrative numerical 

results indicating the merit of the error estimates. Chebyshev 

polynomials of the first kind [123 

the basis functions while the N + 1 distinct collocation points 
are given by [ S I  

{Tz(n)}:-o were chosen as 

(4.1) 7ik 

thus ensuring R N ( - l )  = R , ( l )  = 0. Note that IT,(n)l 5 1, 

m = 0,1,... and 9 E [-1,1]. The merit in choosing these 

polynomials is well known [5 ,11 -131 .  

n, =  COS(^), k = 0,1,. . . ,N, 

It should be remarked that implementation of symbolic 

computation substantially enhanced the analysis process proposed 

9 



here, especially with regard to the determination of the norms 

displayed in ( 3 . 2 4 )  and ( 3 . 2 7 ) .  The symbolic software package 

Mathematica’” [ 1 4 ] ,  Version 2.1, implemented on a NeXT 

Turbostation with 1 6  MBytes of memory, was used for developing 

the solutions and graphics displayed in this paper. 

A Newton-Raphson [ 1 5 ]  procedure was developed for solving 

the system of nonlinear algebraic equations for the unknown 

espansion coefficients. Though Kumar and Sloan [ l ]  used a 

Brent’s method, we noted that convergence could easily be met 

within four to five iterations where the convergence 

tolerance on each coefficient was defined as 

toi = I(~;)?+’ - (c;)p~ < 10-15, k = O J , .  . . ,?IT. 

Here, p represents the pt” iterate. Using Mathematicar’, 

an interactive iteration sequence was developed in order to 

monitor the convergence rate in real time. 

The actual CPU time required to determine the approximate 

solution was less than 3 seconds using a program written in the 

symbolic language !dathematicaTY. The computations 

involving the error estimates and graphics typically took 3 

minutes on the NeXT. This is, in part, due to the numerous 

analytic manipulations required in determining the infinity norms 

of the linearized error indicated in E q s .  ( 3 . 2 4 )  and ( 3 . 2 7 ) .  

Owing to the availability of an analytic solution to Example 

2 ,  we first present some results intended to indicate the merit 

of the proposed approach. Table 1 indicates typical findings for 

10 



N = 3-6 for the chosen Chebyshev basis and closed-rule 

collocation points. F o r  this example, an accurate depiction 

appears evident. 

Table 2 presents a comparison between a finite element 

(piecewise linear elements) solution and the orthogonal 

collocation solution for Esample 1. Excellent agreement is 

evident. A l s o ,  the error bound displayed in (3.24) appears 

quite adequate in the context of (3.20). A posteriori error 

estimates can be costly in terms o f  espended CPU time and the 

amount of required computer code. In most contemporary studies 

involving Hammerstein integral equations [1,2,181, a priori error 

estimates are being developed with the aid of interpolatory 

projections and approximation theory. 

Finally, Figure 1 presents two sets of plots where N = 3 , s  

and 6 = 1, 0, = 0 . 2  illustrating the behaviour of several 

functions involved in the analysis of Example 1. Theoretically, 

through successive approximations, Eq. (3.21) has unique solution 

which uniformly converges to the solution [19]. This can be 

concluded with the aid of Fig. 1 for both cases N=3,5 usin2 the 

IIK@:ll, plots. Practically speaking, the development of the 

resolvent kernel may be computationallg prohibitive. 



5 .  FURTHER CONSIDERATIONS 

As a f i n a l  o b s e r v a t i o n ,  it appears t h a t  t h e  method p r o p o s e d  

by Kumar and  S l o a n  may be a p p l i e d  t o  s u b s t a n t i a l  p r o b l e m s  o f  

m a t h e m a t i c a l  p h y s i c s ,  As a n  i l l u s t r a t i o n ,  c o n s i d e r  t h e  t i m e  
v a r y i n g  a n a l o g  t o  ( 3 . 3 a ) ,  namely 

L[Ql = at + B 2 0 ' ,  71 E ( - l 7 1 ) ,  t > 0 ,  

s u b j e c t  t o  t h e  t i m e  i n v a r i a n t  boundary  c o n d i t i o n s  shown i n  

(3.3b,c) a n d  s u b j e c t  t o  @ ( n , O )  = r ( n ) ,  n E [-1,1]. Here EJ = 
O ( n , t )  a n d  t h e  l i n e a r  d i f f e r e n t i a l  o p e r a t o r  L i s  g i v e n  by 

I n v e r t i n g  t h e  spatial o p e r a t o r  p r o d u c e s  

m , t )  = - I:.-: G ( n , n , ) C ; j t  " + 6%']dn,, t f ( n ) ,  n E [ - l , l ] ,  t > 0,(5.2) 

where  f ( n )  i s  g i v e n  i n  ( 3 . 1 )  and  t h e  G r e e n ' s  f u n c t i o n  is  g i v e n  
i n  ( 3 . 2 ) .  N e x t ,  w e  a s s i g n  t h e  i n t e r m e d i a t e  f u n c t i o n  as 

- + 8=@' ' p ( n , t )  - a t  7 

t h u s  ( 5 . 2 )  c a n  b e  w r i t t e n  as  

( 5 . 3 )  

( 5 . 1 )  

S u b s t i t u t i n g  ( 5 . 4 )  i n t o  ( 5 . 3 )  p r o d u c e s  t h e  new f o r m u l a t i o n  

Next, we c a n  expand  t h e  unknown f u n c t i o n ,  s(n,t)  as 

( 5 . 6 )  

a n d  f o l l o w  t h e  p r o c e d u r e  p r e v i o u s l y  o u t l i n e d  where w e  a p p r o s i m a t e  

' P ( n , t )  by ' P N ( V , t )  ( o t h e r  c h o i c e s  f o r  t h e  assumed s o l u t i o n  

fo rm also e x i s t  [ 8 1 ) .  F o r m a l l y  p r o c e e d i n g  p r o d u c e s  

12 
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where C , ( n )  is given in- (3.9~) and subject to the transformed 

initial condition 

( 5 . 7 b )  

By requiring (5.7a) to be enforced for all instances in time, and 

upon implementing the previously described collocation method, we 

arrive at the following system of nonlinear initial value 

problems 

( 5 . 8 )  
H 

m - 0  
+ tF[ - E cE(t)cn(nk) t f(nk)]', k = o , ~ , .  . . ,N, t > 0 ,  

subJect to (5.7b) evaluated at n = n k ,  k = 0 , 1 , .  . . ,?;. 

Carefully note the origin of this expression f o r  the initial 

condition for c:(O), m = O,l, . . . ,  N and the fact that a 
matrix inversion of a linear system is necessary for obtaining 

numerical values for each m. Equation (5.8) subject to the 

appropriate initial conditions can be resolved numerically as 

described in the fine book by Finlayson C8, pp. 184-2141 ,  

Again, we note t h a t  the spatial integrations are carried out only 

once and are contained in the function C n ( n )  as shown in 

(3.9~). This formulation favors the use of well-established 

initial value algorithms to be used for finding the time varying 

coefficients, cfi(t), m = O,l, ..., N. 
An alternative implementation using the method of Kumar and 

Sloan for practical computation involving nonlinear, weakly- 

singular, integro-partial differential equations has been recently 

demonstrated [20,21] in the study of radiative and conductive 

transport in semitransparent materials. 
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6. CONCLUSIONS 

The intent of this note was to illustrate that both a 

uniform approximation and a posteriori error estimates may be 

obtained f o r  the method of Kumar and Sloan. Also, there appears 

to be additional merit to the method with regard to parabolic 

(and elliptic) partial differential equations. 
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N Actual E r r o r  Estimated 
110-0,11, Upper Bound (3.27) 

3 1.02x10-‘ 1.18x10-’ 
4 1. 12x10-6 1.14~10-~ 
5 4.92x10-’ 10.8x10-’ 
6 4.50~10-~ 9.86xlO-’ 

Table 1 .  Comparison.between the actual error and the upper bound 

estimate shown in (3.27). Results are rounded to three 

significant figures. Note that the ratio (N Z 5 )  

between the error bound and the true error appears to 

be approaching a constant. 

Finite Element Method of Kumar 
Solution and Sloan 111 

N = 20 N = 50 N = 100 N = 3  N = 5  N = 7  n 

-1 
-0.8 
-0.6 
-0.4 
-0.2 
0 
0.2 
0.4 
0.6 
0.8 
1 

1 
0.8742 
0.7724 
0.6852 
0.6070 
0.5344 
0.4651 
0.3978 
0.3314 
0.2656 
0.2 

1 
0.8743 
0.7725 
0.6854 
0.6072 
0.5346 
0.4652 
0.3979 
0.3315 
0,2656 
0.2 

1 
0.8743 
0.7726 
0.6854 
0.6072 
0.5346 
0.4653 
0.3979 
0.3315 
0.2657 
0.2 

1 
0.8743 
0.7746 
0.6905 
0.6149 
0.5433 
0.4732 
0.4038 
0.3350 
0.2671 
0.2 

1 
0.8744 
0.7728 
0.6855 
0.6070 
0.5343 
0.4650 
0.3978 
0.3316 
0.2657 
0.2 

1 
0.8743 
0.7726 
0.6854 
0.6072 
0.5346 
0.4653 
0.3979 
0.3315 
0.2657 
0.2 

IlS$ll, (upper bound) 0.01267 9.571~10-~ 7.397~10-~ 

Table 2. Comparison between a finite element solution 

and the present formulation for 0, (n)  from (3.12) 

when 6 = 1 and (3, = 0.2. 



List of Figures 

Figure 1. Behaviour of various functions (as indicated) when 6 = 

1, 0, = 0.2 (left column N = 3, right column N = 5). 
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A n  Orthogonal-Collocation Integral Formulation for Transient 
Radiative Transport 
J.I. Frankel 
Mechanical and Aerospace Engineering Department, University of Ten- 
nessee, Knomille, Tennessee, 37996-221 0 

ABSTRACT 
A new formulation is offered for transient radiative transport which pro- 
motes the use of orthogonal collocation. An intermediate variable is in- 
troduced which permits the efficient and rapid development of accurate 
numerical results. Chebyshev polynomials of the first kind are used as 
the basis functions for the spatial variable while the temporal variable is 
resolved by an initial value method. Some a posteriori error estimates 
are presented illustrating the effectiveness of the approach. This new for- 
mulation has potential impact to the boundary element community with 
regard to nonlinear problems. 

INTRODUCTION 
The accurate numerical simulation of nonlinear, weakly-singular integro- 
partial differential equations of mathematical physics often represents a 
fonnidible challenge to researchers. Both algebraic nonlinearities in the 
temperature variable and the appearance of kernels containing logarith- 
mic singularities arise in applications involving transient heat transfer 
[l] in a participating medium and multidimensional heat transfer in a 
participating medium. 

Recently, Kumar and Sloan [2] proposed a new formulation of one- 
dimensional Hammerstein integral equations which permits efficient com- 
putation by a collocation method. Frankel [3] illustrated that the ap- 
proach of Kumar and Sloan can be extended to multidimensional and 
transient studies. 
ALTERNATIVE INTEGRO-DIFFERENTIAL FORMULATION 
In the present context, we consider [l] 



where 

with X = 1/2 and a > 0. 

Here, B(7, t )  is the unknown dependent variable requiring resolution 
and 7, t are the spatial and temporal independent variables, respectively. 
The nth exponential integral function [4] is denoted by E,,(r) where E l ( a )  
contains a logarithmic singularity as z + 0. 

Let 
cp(rlJ) = e4(7?,t), 

thus Equation (la) can be written as 

1 

7)€[-1,1], t > 0. 

Next, we integrate Equation (3) with respect to t, to get 

where 

and 

Clearly, 



and 
0) = 0, 7]E[-17 11- (5b) 

Substituting Equation (4a) into Equation (5a), we obtain the new 
nonlinear, weakly-singular integro-partial differential equation 

7E[-171] ,  t > 07 
subject to the initial condition displayed in Equation (5b). Note that 
the algebraic nonlinearity has been peeled away from within the integral 
operator shown in Equation (1) to a new position outside the integral 
operator. This new form permits the implementation of a collocation 
method in a highly efficient manner in the new variable, \E(q, t).  Once we 
resolve Q(q, t ) ,  we can reconstruct O(q, t )  through the integral transform 
shown in Equation (4a). 

SOLUTION BY ORTHOGONAL COLLOCATION 

Let the unknown function Q(q,t) be represented by the series expansion 

where the basis functions {Tm(q)}z=o are chosen as the Chebyshev poly- 
nomials of the first kind [4]. The unknown time varying expansion coef- 
ficients requiring resolution are denoted as { ~ ~ ( t ) } ~ = ~ .  In practice, we 
must truncate this series representation at a finite number of terms, say 
N. Thus, we express an approximation to Q(q,t) as Q ~ ( q , t ) ,  namely 

where c(t) is an approximation to ck(t). 
Upon substituting Equation (8) into Equation (6 ) ,  we arrive at 



where 

which is analytically expressible [5]. The residual function R ~ ( q , t )  is 
introduced in order to maintain the equal sign displayed in Equation (sa). 
Correspondingly, we find, from Equation (5b), the initial conditions for 
c E ( t ) ,  m = O , l ,  ..., N ,  at t = 0, namely 

N 

~fU'(q) + C c z ( O ) T m ( q )  = 0, ~[-1,11. (94  
m=O 

Unless the exact solution to Q(q,t), at any instant in time, t 2 0, is a 
linear combination of { T m ( q ) } g = o ,  we cannot obtain { ~ ~ ( t ) } ~ = ~  which 
makes both R N ( ~ ,  t )  for t > 0 and Rkc(q) at t = 0 vanish for all q~[- l , l ] .  
However, we can obtain suitable time varying expansion coefficients by 
making the residuals indicated in Equation (9a) and Equation (9c) small 
in some sense. Using the definition of the inner product of two functions 
shown in Frankel [5], we define the weighted residual method through 

( R N ( q ~ t ) , f l k ( ' ? ) ) ~ ,  = 0, t > 0, (104 

(Rh'(r]), f l k ( 7 ] ) ) w k  = 0, t = 0. . ( lob)  
and 

For the collocation method, we have f l k ( q )  = 1,wk = 6(q - qk), k = 
0, 1, ..., N .  Here the Dirac delta function is denoted by 6 while the N + 1 
collocation points are indicated by q k ,  k = 0,1, ..., N and are defined by 
the closed rule [5] 

?rk 
q k  = C O S ( F ) ,  k = O , 1 ,  ..., N .  (11) 

By choosing this set of N+l collocation points, we ensure that both 
R ~ ( f 1 , t )  = 0 for t > 0 and Rf;rc(fl) = 0 at t = 0. 

Applying Equation (loa) on Equation (sa), and Equation (lob) on 
Equation (9c) formally produces 



k = 0, 1, ..., N ,  t > 0, 

and 

N 

cg(O)Tm(qk) = 0, k = 071, ..., N ,  t = 0, (12b) 
m=O 

respectively. Since {Tm(q)}g=o forms a set of linearly independent ba- 
sis functions, we see that Equation (12b) reduces to cZ(0)  = 0, rn = 
0, 1, ..., N ,  which now represent the initial conditions necessary for resolv- 
ing c,N(t),  m = 0,1, ..., N .  

Clearly, once c g ( t ) ,  m = 0,1, ..., N ,  t 2 0 are resolved, @ ~ ( q ,  t )  is 
reconstructed through Equation (8). Finally, the approximate solution 
to O(q,t), namely O ~ ( q , t )  is arrived at through Equation (4a) i.e., 

STEADY-STATE ANALYSIS 

At steady-state conditions, Equation (1) reduces to the linear (in i4(77)) 
Fredholm integral equation of the second kind 

where 8(q) = limt,, 8(q, t) .  
As before, we can develop a series representation for i4(q), namely 

m=O 

while the Nth order approximation is given by 

m=O 

where Tm(q) was previously defined. Following a similar procedure as 
described previously, we can obtain the expansion coefficients {b2}g=o 
by solving a closed system of linear algebraic equations using conventional 
means. 



TRANSIENT ANALYSIS 

From viewing the findings at steady-state conditions, we choose to express 
the approximate solution for O$(q,ti) at discrete time t; as 

Evaluating Equation (16a) at 7 = 7k7 k = 0, 1, ..., N and substitut- 
ing Equation (13) into the left-hand side of Equation (lsa), we obtain 
{dz(ti)}:=o through matrix inversion at the indicated discrete time, 
t = ti. These discrete times t; correspond to the times used in obtain- 
ing the numerical results mandated by a initial value method for finding 
{ ~ ~ ( t ) } ~ = ~  as indicated by Equation (12). Doing so produces the linear 
system of equations for { d z ( t i ) ) z = o  

N 
0 $ ( 7 k ,  ti) = d: ( t i )T , (qk ) ,  k = 0, 1, .,., N .  (16b) 

By comparing Equation (15b) to Equation (16b), it is clear that in the 
limit as t + 00 (assuming no numerical errors in time) 

m=O 

N lim d,(t) = b:, m = 0,1, ..., N .  
t+oo 

RESULTS AND CONCLUSIONS 

Let us define the dimensionless dependent variables [l] 

which will be used for transient and steady-state analyses purposes, re- 
spectively. At this juncture, we can readily establish a posteriori error 
bounds for f&(q). Let the local error of i&(q) be denoted by 

?N(T'> = f4(7) - f$(T), 74-17 11, (18) 
and its size may be measured by means of some functional norm. In 
general, the error is typically as inaccessible as the exact solution. How- 
ever, the residual &(q) is a computable measure of how close &(7) is 
to j4 (q) .  Following Frankel [5], we arrive at 

when 1 - IXcyIII&, > 0. Here, I I K . ~ ~ ~  is the infinity norm of the integral 
operator [5] indicated in Equation (14). 



A program was developed using MathematicaTM, Version 2.2 on a 
NeXT Turbostation having 16 MBytes of memory. Table 1 presents a 
comparision of steady-state results using f$(q) as defined by Equation 
(17b) between two previous investigations and the current study when 
Q = 0.5 (L = 1) for various N .  From viewing the upper- and lower-error 
estimates, the results shown when N=12 appear to be accurate to f0.001. 

Table 2 presents f$(q, t ) ,  where O&(q, t )  is arrived at through Equa- 
tion (lsa), when a = 0.5 (L = l) and N=12. In this case, the functions 
{ ~ ~ ( t ) } f i = ~  defined by the differential equations in Equation (12) are 
resolved numerically using a conventional fully explicit, fifth-order, six- 
stage Runge-Kutta then the function Q ~ ( q , t )  is reconstructed through 
Equation (8). The time step used in presenting this table is At = 0.2, 
which represents a relatively large time step. It was found that the num- 
bers presented here when compared to smaller time steps (At = 0.1, 
0.05) converged to six places of accuracy with exception 0f.a few (rare) 
occasions. In contrast, Prasad and Hering [l] often required time steps 
of up to 20 times smaller then used in the present study. 

The alternative formulation described in this communication illus- 
trates that an effective and accurate orthogonal collocation method can 
be conceived and applied to transient radiative transport. 

Heaslet- Prasad- Present Investigation, Equation (14). 
Warming Hering 

77 N = 6  N = 8  N = 10 N = 12 

-1 0.756 0.760 0.758186 0.758159 0.758152 0.758149 
-0.8 0.698 0.692 0.693707 0.694002 0.694616 0.694771 
-0.6 0.646 0.642 0.642139 0.643344 0.642915 0.642706 
-0.4 0.590 0.594 0.594817 0.594241 0.593962 0.594316 
-0.2 0.551 0.545 0.547736 0.54636 0.547025 0.546715 
0 0.500 0.499 0.5 0.5 0.5 0.5 
0.2 0.449 0.452 0.452264 0.45364 0.452975 0.453285 
0.4 0.410 0.405 0.405183 0.405759 0.406038 0.405684 
0.6 0.354 0.355 0.357861 0.356656 0.357085 0.357294 
0.8 0.302 0.305 0.306293 0.305998 0.305384 0.305229 
1 0.244 0.240 0.241814 0.241841 0.241848 0.241851 

Error Bounds for the present study, Equation (19): 
Upper-Error Estimate: 0.004533 0.002587 0.001667 0.001161 
Lower-Error Estimate: 0.0008849 0.0005050 0.0003255 0.0002267 

Table 1. Steady-state solution f&(q) when a! = 0.5 and compared with 
previous investigations [l]. The error estimates make use of Equation 
(19). 



77 t = 0.2 t = l  t = 5  t = 15 

-1 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0 .4  
0 .6  
0 .8  
1 

0.0622082 0.423464 
0.0425642 0.297264 
0.0326082 0.226019 
0.0261886 0.178075 
0.021283 0.141842 
0.0176481 0.115012 
0.014785 0.0942173 
0.0124121 0.0774039 
0.010571 0.0643619 
0.00896476 0.0531695 
0.00765155 0.0435793 

0.749361 
0.682926 
0.628382 
0.577727 
0.528047 
0.479479 
0.43123 
0.382579 
0 -333788 
0.282468 
0 -222282 

0.758148 
0.694769 
0.642704 
0.594314 
0.546712 
0.499997 
0.453282 
0.40568 
0.35729 
0.305225 
0.241848 

Table 2. Transient distribution for f&(q, t )  at equally spaced locations 
when N = 12 and Q = 0.5. 
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Summary 

A new mathematical formulation is proposed for transient conductive and radiative 
transport in a participating gray, isotropically scattering plane-parallel medium. The 
methodology can be easily extended to include numerous additional effects. A systematic 
and unified treatment is presented using cumulative variables which allows for high-order 
integration using standard initial-value methods in the temporal variable while allowing 
for an effective orthogonal collocation method to be implemented in the spatial variable. 
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of the fist kind axe used as the basis functions. This paper illustrates the methodology 
and presents some comparisons with previously reported works. 
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1. Introduction 

Computational investigations studying transient combined radiative and conductive 
transport in participating media have recaptured the interest and attention of researchers 
over the past ten years. This rejuvenation is in part due to new and exciting engineering 
applications requiring detailed knowledge of temperature and flux distributions inside a 
medium, The computational prowess of today’s machines allow researchers to perform 
detailed analyses and obtain clear graphical outputs from which interpretation is quickly 
realized. Today, scientific endeavors requiring dynamical considerations include the study 
of: heat transfer in ceramic diesel liners [l], transient responses to volumetrically scatter- 
ing heat shields [2,3], transient studies of high-temperature windows [4], deicing of solids 
through radiant heating [5 ] ,  transient combustion of fuel droplets [6], dynamic investi- 
gations involving packed-beds, transient responses in active thermal insulation systems 
[7] and porous thermal insulations [8] as well as numerous other physical applications. 
Additionally, thermo-mechanical aspects involving semitransparent materials have been 
investigated for practical assessment in numerous applications [9]. 

From a review of the literature, the typical setting for most computational investi- 
gations begins with the conventional differential form of the heat equation and either the 
integral or integro-differential form of the linearized Boltzmann transport equation [lo-181. 
Approximate formulations of the transport equation have also appeared in several studies. 
Finite difference and finite element methods have been successfully implemented in solving 
the heat equation while numerous approaches have been applied to the two forms of the 
radiative equation of transfer. An additional entry to the numerical scene over the past 
ten years involves the application of Green’s functions [19,20]. Boundary integral meth- 
ods have also made an impact in the investigation of nonlinear heat transfer studies [21]. 
It is interesting to note that numerous numerical methods have been proposed for solv- 
ing the transient radiative/conductive heat transfer problem but few investigations have 
considered alternative formulations which may lead to simplified and unified numerical 
treatments. 

This paper offers a new and unified formulation for mixed-mode, transient radiative 
and conductive transport in a participating medium where a common computational thread 
is interwoven into the formulation of the entire system of equations. Generalizations can 
easily be inferred by the reader through the systematic formulation and discussion offered 
here. This paper is presented in six major sections which cover the development of the 
concept to the presentation of some initial findings. Section 2 presents the mathematical 
formulation of a classical situation. Section 3 presents the new formulation based on the 
introduction of cumulative variables [22,23]. Section 4 proposes a simple numerical method 
for solving the system of coupled, transient, integral and differential equations. Section 
5 offers some preliminary calculations and comparisons with previously reported works. 
Finally, Section 6 offers some conclusions and recommendations for future considerations. 
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2. Mathematical Formulation 

In the present context, consider the transient heat equation in the presence of both 
conductive and volumetric radiative effects in a plane-parallel, isotropically scattering, gray 
medium [I11 

subject to the auxiliary conditions 

and . 

6(77,0> = &, 774-1, 11. (14 
The isothermal boundary conditions are presented in Eqs. (lb, c) while the initial condition 
is given in Eq. (Id). Here, Q is the dimensionless half-width of the slab, N,, is the 
conventional conduction-radiation parameter, and w is the single-scattering albedo. The 
spatial domain is presented in the region qe[-l, 11 in anticipation of the choice of orthogonal 
functions to be introduced in the next section. 

The integral form of the radiative equation of transfer in the presence of black surfaces 
can be written as [ll] 

Here, &(z)  represents the nth exponential integral function [24] where El(z) contains a 
well-known logarithmic (weak) singularity as z + 0. 

Before proceeding further, two dimensionless flux relations are presented. The dimen- 
sionless net radiative heat flux can be expressed as 

3 



while the dimensionless net heat flux can be written as 

The cumulative variable approach [23] begins by a partial decomposition of the dif- 
ferential operators displayed in Eq. (1). That is, the approach begins by integrating the 
temporal variable < in both the heat equation displayed in Eq. (1) to get 

and in the integral form of the radiative equation of transfer, as displayed in Eq. (2), to 
arrive at 

with 

m, 0 = $E2(Q(l+ 77)) + 632(a!l - 77))1, 

and where the three new cumulative variables {Qk(~,t)}:=~ are defmed as 

( 5 4  

This formulation is clearly in contrast with other past investigations [l-181 and even 
those using a Green’s function or boundary element approach [21] since only the tempo- 
ral portion of the linear operator is inverted in the present context. This reformulation 
blends the concept offered by F’rankel and Choudhury [22] when investigating the integro- 
differential problem of Volterra [26], and the notion offered by Kumar and Sloan [25] when 
investigating Hammerstein integral equations. Next, Eqs. (6a - c)  are differentiated with 
respect to the temporal variable, t to get 

4 



respectively. Upon substituting Eq. (5a) into Eqs. (7a, b) ,  we obtain 

Equations (5b, 8a, 8b) represent the new system of equations from which a unified numerical 
method can be implemented. It is easy to see through viewing Eqs. (sa-c) that the initial 
conditions for the cumulative variables { \Ek(q, <)}z!, are 

(9) \ k k ( q , O )  = 0, k = 1,2,3, q~E-1, I]. 

The known temperature boundary conditions can be recast into the cumulative variable 
formulation through Eqs. (7a, b) ,  

and 

(loa) . 

The mathematical formulation in the cumulative variables is now well-posed and ready for 
further analysis. 

Some important observations can be made contrasting the conventional formulation 
as indicated by Eqs. (1,2) with the new cumulative variable formulation as presented in 
Eqs. (5b, 8a, 8b). The most apparent differences between the conventional formulation and 
the present notion lies in the observation that; i) the present system of equations is unified 
in structure and can be resolved using a single and consistent numerical method, ii) the 
nonlinearities are rearranged into positions conducive to orthogonal collocation, and iii) 
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three dependent variables are present in the new formulation rather than the usual two 
dependent variables associated with the conventional formulation. 

3. Computational Methodology 

In this section, an orthogonal collocation method is presented for finding an approxi- 
mate solution to Q k ( q ,  t ) ,  IC = 1,2,3 as shown in Eqs. (5b, 8a, 8b) and subject to the initial 
conditions shown in (9) and boundary conditions displayed in Eqs. ( loa  - d). The physical 
variables can be reconstructed once the cumulative variables are resolved satisfactorily. 

Let the unknown functions fDk(q,  t) ,  k = 1,2,3 be formally represented by the series 
expansions 

00 

m=O 

where the basis functions {Tm(q)}z=o are chosen as the Chebyshev polynomials of the 
first kind [13,17] and are expressible as 

Tm(q) = cos[m(cos-l~)], m = 0,1, ..., N .  

Other forms for the expansions of {fD(q,()}i=l are also possible. These forms may in- 
clude terms which account for the boundary conditions. Chebyshev polynomials have 
numerous exploitable features [27,28] and have successfully been used in studies involv- 
ing fluid mechanics [29], solid mechanics [30], conduction [31] and radiative transport 
[23,32]. The unknown time-varying expansion coefficients requiring resolution are denoted 
as {am(t) ,  bm((), c ~ ( ( ) } ~ = ~ .  In practice, we must truncate this series representation at a 
finite number of terms, say at  order N. Thus, we denote the Nth-order approximation to w?, t )  as q 3 7 ,  t), = L 2 , 3  namely 

N 

m=O 
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where a: ( S )  ) b i  (<)) C: ( e )  represent approximations to am (t)) bm( <) cm (e)) respectively for 
each fixed m in the finite set. 

Upon substituting the series representations shown in Eqs. (13a-c) for { QF(q, E)}:=,  
into Eqs. (sa,  8b) 5b) ,  we arrive at 

and 

and 

N 
a W  +- C,N(E)AX?), 7 1 E [ - - 1 , 1 1 ,  t 1 0, 

m=O 2 

respectively and where AZ(v ) ,  m = 0,  1,  ..., N is defined as 

which can be analytically integrated to yield 

m . r  

[ f l  . 

Here, we denote the kth derivative of the mth Chebyshev polynomial of the first kind 
as T ! ' ( q ) ,  and where [ y ]  is interpreted as the integer result of (m/2). Here, RF(q)c), 
k = 1,2,3 represent the local and instantaneous residual functions as required in order to 
maintain the equality displayed in Eqs. (14a - c).  
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Using the finite series representations for Qf(q , t ) ,  k = 1,2, in conjunction with the 
specified boundary conditions shown by Eqs. ( loa  - d ) ,  we obtain 

and 

while the appropriate initial conditions shown in Eq. (9) for k = 1,2 become 

and 

Unless the exact solution to Q k ( q , t ) ,  IC = 1,2,3 at any instant in time, t 2 0, is 
a linear combination of {Tm(q)}g=o, we cannot obtain { a g ( t ) ,  b g ( t ) ,  cfci(t)}Z=, which 
makes RF(q, t )  vanish for k = I, 2,3, t 2 0 and q~[ - l ,  11. However, we can obtain suitable 
time varying expansion coefficients by making the residuals indicated in Eqs. (14a - c) and 
(15a - j) small in some sense. Let us define the inner product of two real-valued functions 
sl(t) and i 2 ( t )  

and the corresponding norm as 

S=-1 

where wk(s) is a non-negative, real and integrable weight function. 

For the collocation method, the orthogonality relation becomes 
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( R k N ( o , w j ( ? 7 ) ) w j  = 0, k = 1,293, e 2 0, ( 1 7 4  

where Rj(q) = 1,wj = S(7 - qj ) ,  j = 0, 1, ..., N .  Here the Dirac delta function is denoted 
by 6 while the N + 1 collocation points are indicated by qj ,  j = 0, 1, ..., N and are defined 
by the closed rule [28] 

(17b) qj = COS(,), xi j = O , l ,  ..., N .  

By choosing this set of N + 1 collocation points, we ensure that RP(*l , t )  = 0, 
k = 1,2,3 for < > 0 in Eqs. (14a - c). Note that from Eq. (17b), one interprets that qo = 1 
and q~ = -1. Error and convergence analyses [33] have been performed illustrating the 
merit of this choice of basis functions and collocation points in the study of the radiative 
equation of transfer in an isotropically scattering medium. 

Applying the orthogonality condition displayed by Eq. (17a) to Eq. (14a) for j = 
1, ..., N - 1 produces 

along with imposing the boundary constraints 

Upon similar application of Eq. (17a) on Eq. (14b), we arrive at 

along with imposing the boundary constraints 
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while Eq. (14c) reduces to 

Under the orthogonality relation defined by Eq. (174, the initial conditions displayed 
in Eqs. (15e, f) reduce to 

afii(0) = bZ(0 )  = 0, m = 0,1, ..., N ,  q~[-- l ,  11. 

Equation (18g) can be alternately expressed as 

which naturally leads to the matrix form AZ(5) = ?(e) where the vector Z(<) contains the 
unknown time varying coefficients; i.e., E(C) = [ C O N ( ( ) ,  $(c), ..., c;(t)IT. Clearly, we can 
express E ( t )  as 

-1- = A  f(t), t 2 0 ,  
when IAI # 0 and where the coefficient matrix A is given by 

while T(S) = [f$(t), fp(<), ..., The components of the coefficient matrix are thus 

(yw 
ajm = Tm(7j) - -A:(qj), j = O,1, ..., N ,  m = O,1, ..., N, 2 

while the unknown time varying components of 7(e) are given as 
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This is quite useful since we can analytically eliminate Z(t) = [coN(t), c r ( t )  ...) c$(()IT 
from (18a, d )  which alleviates the need to determine these coefficients explicitly. Thus, we 
are left with two matrix differential equations requiring resolution for the time varying 
expansion coefficients u z ( t ) ,  b z ( t ) ,  m = 0,  1, ..., N instead of two matrix differential equa- 
tions and an algebraic system. 

Likewise, Eqs. (18a - f) can be expressed, using compact matrix notation, as 

and 

where the common and known ( N  + l ) x (N  + 1)  coefficient matrix B is 

where each entry is given by 

while 
hy(t)  = j = O , l ,  ..., N. (22f 1 

The vectors defined as E(S)  and E(() are expressible as E ( t )  = [#(t), uf”(t), ..., a$(()]* 
and &(E)  = [ b f ( t ) ,  b r ( t ) ,  ..., b$(t)lT. Inverting the known coefficient matrix B in Eqs. 
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(21a,b) produces the system of nonlinear initial d u e  problems requiring numerical a p  
proximation. Once the time varying coefficients { U E ( S ) } ~ = ~  and {bz(<)}E=o for 0 are 
determined then the approximation of the necessary field variables  ON(^, <) and QL(q, t) 
can be obtained. 

Construction of the Physical Variables 
Three physical variables can now be recovered without major effort. Indeed, the 

majority of the computational effort lies in calculating the unknown expansion coeffi- 
cients, and {bz( ( )}&o.  The physical variables are constructed during a 
post-pfocessing procedure and require minimal computational effort. It is advantageous to  
reconstruct the approximate solution for the dimensionless temperature variable Oh~(q, t) 
using Eq. (7a), namely 

The inversion formula shown by Eq. (5a) also will produce results identical to Eq. (23) 
at the interior collocation points. However, at the endpoints Eq. (5a)  will not reproduce 
the imposed boundary conditions. This makes sense since the boundary conditions are 
manually imposed (overlayed) into Eq. (214 b). The right-hand side of Eq. (21a), which 
has been precalculated, can be used in determining d a z ( f ) / d t ,  m = O , l ,  ..., N at the 
discrete times corresponding with the numerical integrator. Inverting the coefficient matrix 
B shown in Eq. (21a) allows us to obtain numerical values for d a g ( t ) / d t ,  m = 0, 1, ..., N. 
Note that B-l has already been used and prevously stored. 

As indicated in Eq.(3), both 04(q , [ )  and G(q,J) are required in establishing the 
local radiative heat flux Qr(7, t). Following a similar procedure as outlined previously for 
determining O(7, r ) ,  one expresses the approximation of 04(77, t) as 

An alternative approach is now offered for determining G(q, r ) .  This is broached since the 
approximation displayed by Eq. (13c) would require us to differentiate Q f ( q ,  t) with re- 
spect to <. This is clearly undesirable since an additional approximation would be incurred 
in obtaining d c ( , $ ) / d f ,  m = 0, 1, ..., N. Let the approximation for G(7, t) be written as 
G N ( ~ ,  <) and expressed by 

N 

-0 

Substituting Eqs. (24,25) into Eq. (2), produces 
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Clearly, 7z(t) = d c E ( c ) / d J ,  m = 0,  1, ..., N and can be explicitly calculated using previ- 
ously determined results. Applying the orthogonality relation shown in Eq. (17a) on Eq. 
(26a)  produces 

which can be written in the compact matrix form as 

where T(<) denotes the solution vector defined as T ( t )  = [72(t),7y(S), ...,7$(J)IT. The 
constant coefficient matrix A is identical to that previously expressed by Eq. (20b). At 
this point, the vector F(t) = [poN(<),pr( t ) ,  ...,&(t)IT is completely known at a finite set 
of discrete times. Each component in the vector T ( J )  is given by 

j = O , l ,  ..., N .  

Clearly, T ( t )  is easily recoverable through matrix inversion at the discrete times cor- 
responding the numerical integrator, namely 

5(0 = A--lP(S). ( 2 6 4  
Using these variables, the local radiative heat flux, as shown by Eq. (3), can be written 

as 

where the functions Wcm(q) , Wgm(q) for m = 0, 1, ..., N are defined as 
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and 

which analytically integrate to 

and 

At this point, all the ingredients are available to obtain numerical results for the 
temperature distribution and radiative, conductive, and total heat flux distributions. 

5. Preliminary Results 
Preliminary findings are presented illustrating some computational features produced 

by this formulation. A program was written implementing the expressions and algorithm 
discussed in Section 4 using the symbolic software package MathematicaTM 1341 as im- 
plemented on a NeXT computer (NeXTstation Turbo). The computations required in the 
matrix manipulations were performed symbolically and left in analytic form. A fully ex- 
plicit fifth-order, six-stage Runge-Kutta [35] was written in the MathematicaTM language. 
This initial value method merely serves to produce preliminary results. This method will 
be replaced by an implicit method in order to remove the stability constraints associated 
with an explicit method. 

Some unique features of the new formulation are presented in order to elaborate on the 
computational attributes of the scheme. Figure 1 illustrates the nature of the timevarying 
expansion coefficients ag( t ) ,  m = 0, 1,2,3,4,5 when N = 8, N ,  = 0.1, CY = 0.5, w = 0.5, 
B i  = 02 = 0. Accurate representations of these coefficients are critical in reconstructing 
the cumulative variable QF(q, [ ) .  The well-behaved nature of these functions under the 
imposed constraints is clearly illuminated by this figure. This type of behavior lends itself 
to a good approximation. As -+ 00, it appears that these coefficients grow no worse than 
linearly with respect to time. This observation has theoretical basis [23]. It should be 
noted that the fully explicit numerical integrator's stability constraint becomes evident as 
N increases thus requiring smaller time steps to be used in order for the numerical method 
to remain stable. This minor inconvenience can be easily rectified by changing the initial 
value numerical method [35]. 
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The development of rigorous error estimates for this formulation is presently under 
consideration. As a prel iminq indicator, comparison with other published works is of- 
fered. F’rankel has developed rigorous error estimates [23,33] and convergence rates [33] 
using this set of basis functions when investigating an integral form of the transport equa- 
tion for steady-state radiative transport in a plane-parallel geometry. In transient studies, 
it is possible to develop estimates based on truncation errors associated with Runge-Kutta 
methods [35] in the temporal variable. Unfortunately, in complicated physical problems it 
is often difficult to obtain realistic error estimates. Thus, without rigorous error estimates, 
only qualitative assessments are available. 

As an indicator of numerical accuracy, Tables 1 and 2 are presented comparing several 
reported works to the present analysis. The set of system parameters chosen corresponds 
to an example with a wealth of tabular results [lS]. Comparison of the present method to 
other investigations are quite favorable, as shown in Tables 1 and 2, for the case where N = 
8, N,, = 0.1, QI = 0.5, w = 0.5, 8; = 82 = 0 and = 0.05. Table 1 presents temperature 
values at three interior locations. Agreement is apparent when compared with the reported 
results of Sutton, Barker and Sutton, and Tsai and Lin, as taken from Ref. [16]. Note that 
the underlined entries in these tables indicate locations which coincide with the collocation 
points. Correspondingly good results for the net radiative heat flux are displayed in Table 2. 
The present conclusion is that the proposed methodology produces comparable numerical 
results to that reported by other studies. Other cases have been considered and compared 
to tabulated results when available in order to validate the proposed methodology. Finally, 
letting N = 6 in the present formulation produces graphically identical results to N = 8. 

The second example considers the situation where N, = 0.01, w = 0.2, ar = 0.5, 
Bi = 82 = 0.25, which was previously reported by Sutton [15]. Figure 2 displays the 
time-varying expansion coefficients u g ( [ ) ,  m = 0,1,2,3 when N = 8. Similar qualitative 
features to that of the previous case are indicated in this figure. Figure 3 presents the con- 
structed temperature distribution B N ( ~ ,  () at four distinct times ( = 0.005,0.01,0.025,0.05. 
Meanwhile, Figure 4 shows the corresponding radiative heat flux distribution Q&(q,<) at 
the identical times. This figure produces identical graphical results to that illustrated by 
Sutton [15]. 

Some additional remarks are offered concerning the development of the spatial tem- 
perature and flm distributions. The numerical solution at the collocation points { ~ k } f = ~  
will typically be more accurate than at other spatial locations [23,33] owing in part to the 
oscillatory behavior of the residual function which is well documented [23,33]. Numerical 
values for the temperatures and radiative heat fluxes at noncollocation positions were ob- 
tained through Eqs. (23) and (27a), respectively. An alternative procedure which has yet 
to be explored involves the use of a least-squares method for developing an appropriate 
polynomial approximation based on minimizing the deviations from the proposed curve fit 
to the predefined values of the function at the discrete collocation points. An orthogonal 
basis would be proposed since this choice could alleviate the well-known potential for ill- 
conditioning associated with the coefficient matrix in the linear system [36, p. 6411. This 
method would certainly produce fast numerical results when desiring numerical values for 
the radiative heat flux. Also, careful monitoring of the condition number and the deter- 
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mination of the optimal order of the curve fit based on the variance could be incorporated 
into a simulation package. 

6. Conclusions 

The objective of this paper was to present a unified formulation which renders a 
systematic and unified numerical treatment to  transient combined conductive/radiative 
transport in a participating medium. The numerical procedure postulated and then demon- 
strated uses a common computational theme for solving the heat equation and equation of 
radiative transport. This first communication is meant to present the concept and to illu- 
minate some initial findings. Generalization of the present concept to include anisotropic 
scattering [37], variable thermal properties and nongray optical properties will be addressed 
in an upcoming investigation. Finally, the choice of a uniform approximation using Cheby- 
shev polynomials could be modified to reflect a different set of orthogonal basis functions 
or even a set of piecewise continuous basis functions. As an aside, the cumulative vari- 
able formulation used in concert with the proposed computational methodology has been 
successfully demonstrated with regard to a one-dimensional Burger’s equation. Thus, this 
approach possesses broad appeal to  a wide range of engineering problems. 
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Nomenclature 

A = Coefficient matrix, Eq. (20b) 

A$(q) = F’unction defined in Eq. (14d) 

~ ( c )  = Vector containing u f t i ( ~ ) ,  m = 0,1, ..., N 
ajm = Matrix entries for A, Eq. (20c) 

a,(c) = Exact expansion coefficients, Eq. (lla) 

a$(<)= Approximate expansion coefficients, Eq. (134 

B= Coefficient matrix, Eq. (22a) 

b ( J )  = Vector containing bfti([), m = 0,1, ..., N 
bjm = Matrix entries for B, Eq. (22b) 

bm(J)  = Exact expansion coefficients, Eq. ( l l b )  

bfti(c)= Approximate expansion coefficients, Eq. (13b) 

Z(c) = Vector containing c(E), m = 0,1, ..., N 
cm(t )  = Exact expansion coefficients, Eq. (llc) 

e(()= Approximate expansion coefficients, Eq. (13c) 

cp = Specific heat 

E~(z)= nth exponentid integral function 

f(c) = Vector containing f?(<), j = 0,1, ..., N 

fy(c) = Entries for vector ?(e), Eq. (204 

G( v, e )  = G* (a( 1 + q), J ) ,  Dimensionless Chebyshev incident radiation function 

G*(T, e)= -%-, Dimensionless incident radiation function, Ref. [ll] 

G(T, e )  = Incident radiation function defined in Ref. [ll] 

?j(c) = Vector containing gy(c), j = O , l ,  ..., N 

gy(c) = Entries for vector ?j(c), Eq. (22c - e) 

h(c) = Vector containing hy(J) ,  j = O , l ,  ..., N 

hy(c) = Entries for vector E(<),  Eq. (22f) 

h(q,J) = Function defined by Eq. (5c) 

k = Thermal conductivity 

I = Dimensional length of plate 

N = Nth- order approximation 

- 

- 

- 
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N,, = h*, Conduction-radiation number, Ref. [Ill 

n = Index of refraction 

p(() = Vector containing #(() , j = O,l, ..., N 

#(() = Entries for vector p((), Eq. (26d) 

Q (7, e)  = &~, Dimensionless radiative heat flux, Ref. [I11 9 

Qr(q, e )  = T(cr(1 + q), (), Dimensionless radiative heat flux in Chebyshev domain 

QfN(q,() = Nth-order approximation to Q'(q, () 
q: = Dimensional radiative heat flux 

RF(q,() = Local residual function, k = 1,2,3,4 

s = Dummy variable 

T ! ( q )  = mth Chebyshev polynomial of the first kind 

T,. = Reference temperature 

t = Time 
Wcm(q) = Function defined by Eq. (27b) 
Wz,(q) = Function defined by Eq. (27c) 

y = Dimensional spatial coordinate 

, a = Dimensionless half depth, ?f 
p = Extinction coefficient, Ref. [Ill 

S = Dirac delta function 

?(() = Vector containing f ( c ) ,  j = 0,1, ..., N 

7?(() = Approximate Expansion coefficients, Eq. (25) 

7 = 2 - 1, Dimensionless (Chebyshev domain) spatial variable 

qj = jth collocation point defined by Eq. (17b) 

7, = Dummy variable 

8 ( ~ ,  () = S(a(l+ q), e),  Dimensionless temperature in Chebyshev domain 

O ( 7 ,  c )  = $, Dimensionless temperature, Ref. [ll] 

8 ~ ( q ,  5) = Nth order approximation to B(q,  e)  
8i = Initial temperature at < = 0 

82 = Imposed boundary condition*at q = 1 

p = density 

- 
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o = Stefan-Boltzmann constant 

r = py, Optical variable, Ref. [ll] 

'7-0 = p l ,  Optical depth, Ref [ll] 

w = Single-scattering albedo 

( = (")p2t, Dimensionless time, Ref [ll] 

to = Dummy variable 

\Ek(q, [) = Cumulative variables, k = 1 ,2 ,3  

PCP 
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Figure 1: Time-varying expansion coefficients .:(e), m = 0,1,2,3,4,5 when N = 8, 
NC, = 0.1, w = 0-5, Q = 0.5, and Bi = 02 = 0. 

Figure 2: Time-varying expansion coefficients u:(t), m = 0,1,2,3 when N = 8, NcT' = 
0.01, w = 0.2, ~r = 0.5 and Bi = 82 = 0-25. 

Figure 3: Temperature distributions at the four indicated times t corresponding to the 
physical parameters indicated in Figure 2. 

Figure 4: Radiative heat flux distributions at the four indicated times ,$ corresponding to 
the physical parameters indicated in Figure 2. 

23 



List of Tables 

Table 1; Comparison of temperature results at three spatial locations when < = 0.05 and 
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Table 1. 

Dimensionless Temperatures 

Investigators [I 61 71 = -0.5 7]=0 71 = 0.5 

Lii and Ozisik 0.4617 0.1474 0.0277 

Sutton 0.4888 0.1778 0.0591 

Barker and Sutton 0.4893 0.1 775 0.0588 

Tsai and Lin 0.4889 0.1 773 0.0588 

Present Study: 8 N ( q ,  0.05) 

N = 4  0.4996 0.1797 0.0504 

N = 6  0.4888 Qblzzz 0.0584 

N = 8  0.4893 0.1773 0.0587 



Table 2. 

Dimensionless Radiative Heat Fluxes 

Investigators [I 61 7 = -1 q = o  q = 1  

Lii and Ozisik 

Sutton 

Barker and Sutton 

Tsai and Lin 

1.6436 

1.9304 

1.9300 

1.9328 

1.2529 

1.3305 

1.331 4 

1.3292 

0.9746 

0.8332 

0.8335 

0.8321 

Present Study Q ~ ( T ,  o.05)/Nc, 

N = 4  1.9355 

N=6  

N = 8  

1.9348 

1.9.342 

1.3025 

1.3284 

1.3289 

0.8339 

0.8317 

0.831 9 
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TO CAUCHY SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS 
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Abstract 

An analytic methodology is presented for solving linear 

Cauchy singular integro-differential equations. A representative 

equation is studied detailing the approach. Peters’ notion, 

conceived when studying Cauchy singular integral equations of the 

airfoil type, is generalized to include Cauchy singular integro- 

differential equations. The final outcome from the analytic 

preconditioning suggests the use of Chebychev polynomials as the 

basis functions for developing an approximate analytic solution. 

The proposed analytic procedure is augmented with symbolic 

computation for performing algebraic manipulations. Results 

indicate that the approach has merit and deserves additional 

consideration. 
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Nomenclature 

a 

‘8 

= constant 

= mth expansion coefficent corresponding to the 

mth Chebychev polynomial of the first k’ind 

= prescribed functions, Eq. (l.la) 

= prescribed function, Eq. (l.la) 

= constants defined by Eq. (3.24~) 

= constants defined by Eq. (3.24d) 

= prescribed function, Eq. (l.la) 

= prescribed function, Eq. (l.la) 

= coefficients, Eq. (3.12~) 

= zeroth and first moments of f(n), Eq. (2.2b,c) 

= zeroth and first moments of f(x), Eq. (3.7b,c) 

= constants defined by Eq. (3.24e) 

= unknown function, x E [-1,1] 

= derivative of f(x), x E [-1,1] 

i 

l.lb = prescribed boundary condition, Eq. 1 

f I = prescribed boundary condition, Eq. (l.lb) 

g(x) = prescribed function, Eq, (2.1~) 

G(x) = prescribed function, Eq. (l.la) 

h(n) = function given in Eq. (2.5b) 
H(n;f) = function given in Eq. (2.8b) 

Ko(x,t) = kernel function, Eq. (l.la) 

K,(x,t) = kernel function, Eq. (l.la) 

N., = normalization integral, Eq. (3.24b) 

r = independent variable, r E [-1,1] 



t = independent -variable, t E [-1,1 J 

T , ( x )  = mth Chebychev polynomial of the first kind 

U,(x) = m Chebychev polynomial of the second kind 

X = independent variable, x E [ - l , l ]  

Y = independent variable, y € [-1,1] 

Z = independent variable, z 6 [-1,1] 

th  

Greek 

V 

P k  

0 

= constant, a/2 

= coefficients in Eq. (3.12b) 

= Kronecker delta function 

= coefficients in Eq. (3.13) 

= independent variable, n E [0,1] 

= dummy variable, '1, E [0, 1 I 

= dummy variable, V E [0,1] 

= constants defined in Eq. (3.23b) 

= dummy variable, 0 E [O,l] 

= constants defined in Eq. (3.15e) 

E = dummy variable, E E [O,l] 

\I' = intermediate function, Eq. (2.7) 
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Cauchy singular integral equations appear in inviscid 

airfoil theory (Bland 1970), radiative transport theory (Sparrow 

and Cess 1978), and elasticity (Erdogan 1969), three areas which 

cover a broad spectrum of scientific endeavor. Cauchy singular 

integro-differential equations make their appearance in molecular 

conduction and infrared radiative transport (Cess and Tiwari 

1969), and elastic contact (Sankar et al. 1982) studies to name 

only a few. The development of accurate approximate analytic 

solutions to the Cauchy singular integral and integro- 

differential equations of mathematical physics is a formidable 

challenge requiring additional study. 

Such equations may at times be expressed as (Sankar et al. 

1982) 

x E (-1,1), 
subject to (Sankar et al. 1982) 

f(-1) = f, and f(1) = f,. 

(l.la) 

(1.lb) 

Here the functions A(x), A,(x), B(x), B,(x), and G(x) are 

prescribed functions which are continuous and differentiable in 

the interval x E (-1,l). The kernels K,(x,t) and K,(x,t) 

are assumed to be at worst weakly singular. Also, we denote 

integration in the Cauchy principal value sense with the symbol 

4 .  We suppose that if f(x), x E (-1,l) is continuous and that 

its derivative f’(x) exists and is continuous in the interval 



1 
x E (-1,l) then f(y) (x - y)-’dy exists in the principal 
value sense,. 

Numerous approaches for solving linear integro-differential 

equations containing Cauchy kernels have been described in the 

literature (e.g. Ioakimidis and Theocaris 1979). Some methods 

are based on purely numeric approaches while others make use of 

approximate analytic solutions. The appearance of symbolic 

manipulation on the computational scene, such as available in 

software packages like MathematicaTW, Derive, and Maples, 

supports the development of approximate analytic solutions. 

Symbolic manipulation allows for copious amounts of algebra to 

performed in an automated fashion. Another application worthy 

of symbolic manipulation involves the determination of the 

unknown expansion coefficients as they arise when changing f rom 

one basis to another basis. The introduction and acceptance of 

symbolic algebraic manipulation may change the approach taken by 

analysts since tedious manipulations can now be performed by 

software. 

This paper is divided into three sections. In 92 ,  we 

generalize Peters’ (1963, 1968) concept to include Cauchy 

singular integro-differential equations. In Q3, we develop an 

approximate analytic solution based on a Chebychev series 

expansion for the unknown function. Finally, in 9 4 ,  we 

present some results and draw some conclusions on the importance 

of the proposed approach. 
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2 FORMUJtATION 

In this section, we consider a specialized form of Eq. (1.la). 

The reduced integro-differential equation under consideration 

becomes (Sankar et al. 1982) 

I 
t - -1 xtf(t)dt = g ( x ) ,  x E (-l,l), (2.la) 

subject to the auxiliary conditions specified in Sankar et al. 

(1982), namely 

f(-1) = 0 and f(1) = 2, 
where 

(2.lb) 

g(x) = t 2008.4~ t 3003~’ + x3 t (2x t 4x2 + x 3 ) 1 0 g e l ,  (2.1~) 

and a = 1000. The rationale for studying this equation is 

twofold; namely, 1) a simple closed form solution exists, i.e., 

f(x) = x2 t x3, and 2) this equation has been previously 

considered by Sankar et al. (1982) where some numerical results 

have been presented. Sankar et al. (1982) developed an 

approximate analytic solution to the above equation for benchmark 

purposes. This type of equation appears in elastic contact, 

and combined molecular conduction and infrared radiation studies. 

The solution approach proposed here begins by using a notion 

offered by Peters (1963, 1968). His notion of manipulation was 

developed while studying equations of the classical airfoil 

type. Frankel (1992) recently extended Peters concept to a 

simple integro-differential equation which arises in combined 

molecular conduction and infrared radiation in a plane-parallel 

3 



region. (The case where A(x) = B,(x) = K,(x,t) = K,(x,t) = 0 in 

Eq. (l.la) was considered by Frankel (1992).) Since no exact 

solution existed, a purely numeric solution was developed f o r  

comparison purposes. The developed approximate analytic 

solution appeared to yield benchmark results. Thus, the present 

work is intended to illustrate that the approach can be extended 

to a more general class of equation then originally considered 

Frankel ( 1992 ) . 
Before proceding, it is convenient to mappthe physical 

domain from x E E-1,1] to n E [O,ll. Doing so transforms 

Eq. (2.la) to 

+ 2(2n - 1)(2C, - C,) = g(2n - I), n E ( o , i ) ,  (2.2a) 
where 

c, I;-o Ff(E)dE, (2.2c) 

where a = a/2 and subject to the auxiliary conditions 

f ( 0 )  = 0 and f(1) = 2. (2.2d) 

To illustrate the method of Peters, we multiple Eq. (2.2a) 

by n, then add and subtract the integral quantity 

to the left-hand side of Eq. (2.2a), make use of the auxiliary 

conditions shown in Eq. (2.2d), and then divide the resultant by 

f i  to arrive at 

4 



Next, we integrate Eq. (2.4) from no = 0 to no = n (after 
renaming 71 by no in Eq. (2.4)). 
of manipulations, we find 

After a straightforward set 

where 

or 

2 1 dn, = h(n), n E ( o , i ) ,  
f' 0,) 

dF 1 Jn,H(n,) i- 

c - 0  4- L o - t  m 
where we have made use of (Peters 1963) 

Next, we define the intermediate function, I k ( n )  as 

Thus, Eq. (2.5~) becomes 

where 
11 2n, - Q 

H(n;f) = - Ll,-o f(no)[ 2,1TI, I dn, - a4Tf(n) t h(n). 

(2.5a) 

(2.5b) 

(2.5~) 

(2.8a) 

(2.8b) 

If one treats the right-hand side of Eq. (2.8a) as an effective 

nonhomogeneity, then one can interpret Eq. (2.8a) as 

an Abel integral equation for the unknown function Ik(n). One 
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can easily find the solution to “(n) by classical means 

(Tricomi 1985). We operate on E q .  (2.8a) with (after renaming n 

by v )  

to get 

Interchanging orders of integration in Eq. (2.9), leads to 

Integrating the right-hand side of Eq. (2.10) by parts and 

incorporating the condition that H(O;f(O)) = 0 produces 

ji-o U(E)dE = $ j z -o  g(v;f)dv, tl E (0,l). (2.11) 

Next, we differentiate Eq. (2.11) with respect to n to produce 

Using our original definition of the intermediate function, 

q ( n ) ,  as shown in Eq. (2.7), we can express Eq. (2.12a) as 

which may be interpreted as an Abel integral equation for the 

unknown function 

with (after renaming by € 1  

@ [ f ( V )  t U] . Next, we operate on Eq. (2.13) 

to get 



n E (0911, (2.14) 

or after a lengthy but straightforward set of manipulations, we 

arrive at 

n E (0,l). (2.15) 

Carefully differentiating Eq. (2.15) with respect to n leads to 

and upon substituting the definition of H’(n;f), from Eq. 

(2.12b), into Eq. (2.16) we get 

(2.17) 

- 2(2~ - 1)(2C, - C,) + g ( 2 V  - l)]d~, rt (O,I), 
( 1 + C,) 

V 

subject to the auxiliary conditions displayed in Eq. (2.2d). It 

is clear from viewing Eq. (2.17) that a function which can be 

interpreted as a Chebychev weight has been generated by these 

manipulations. 

In the next section, we develop an approximate analytic 

solution based on a series representation for the unknown 

function f(n) in terms of a Chebychev series. Though 

operationally complex, the unknown coefficients in the 

expansion are obtained by a simple Fourier approach which makes 

use of the known orthogonality relation associated with 

7 



the Chebychev polynomials of the first kind. In practice, 

it may be more prudent to introduce a collocation approach (Baker 

1978, Delves and Mohamed 1988). 
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In this section, we develop an approximate analytic solution 

to Eq. (2.17) subject to the auxiliary conditions previously 

defined. Before proceding further, it is now convenient to map 

the physical domain from Tl E [0,1] back to x E [-l,lJ, thereby 

arriving at 

I 
l + t  + g(t) + & f(r)dr - t!r--l rf(r)drl, x E (-1,l). ( 3 . 1 )  

Equation (3.1) is subject to auxiliary conditions (Sankar et al. 

1982) 

where 2cr = a and g(x) is displayed in Eq. (2.1~). 
f(-1) = 0 and f(1) = 2, 

It is now clear that the analytic preconditioning lead us 

to a form which suggests the use of a Chebychev series 

representation for f(x), Let T,(x) = cos[m(cos-'x)], 

x E [-1,13, m = O,l, ..., denote the Chebychev polynomials of the 
first kind while U,(x) = sin[(m + l)(cos~'x)l/sin(cos~'x), 
rn = 0,1,..., denote Chebychev polynomials of the second kind. 
It is well known that {T,(x)}, m = 0,1,..., form an orthogonal 

sequence of functions with respect to the weight function 

l/m while {U,(x)} ,  m = 0,1,..., form an orthogonal 

( 3 . 2 )  

sequence of functions with respect to the weight function d(1 - x'). 
For this particular case, we choose our series representation 

for the unknown function f(x) as 

where T,(x) represents the mth Chebychev polynomial of 



the first kind. The unknown expansion coefficients a, for m = 

0,1, ..., are to be obtained by some means, typically by either 

a collocation procedure or with the assistance of some known 

integral relations such as orthogonality. Directly applying the 

boundary condition at x = 1 as shown in Eq. (3.2) provides a 

constraint on the unknown constants in our approximate analytic 

solution. Thus, from evaluating Eq. (3.3) at x = 1 and making 

use of Eq. (3.2), we find 

Z an = 1. 
8 - 0  

Appending this constraint to Eq. (3.2) produces 
0 

f(x) = a,CT,(x) + 11, 
.-0 

( 3 . 4 )  

(3.5) 

which now automatically satisfies the known boundary condition 

at x = 1 upon imposing the constraint relation shown in E q .  ( 3 . 4 ) .  

From Andrews (1992), we also know 

where U,_,(x) represents the (m - l)th Chebychev polynomial of 
the second kind. Upon substituting E q s .  (3.5) and (3.6) into 

Eq. (3.1), we find 

(3.7a) 

where 

10 
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(3.7c) 

and where T,(x) = 1 = U,(x). 

Before proceding further, we state several well-known 

integral relations associated with Chebychev polynomials. These 

relations are useful in the subsequent analysis. 

ORTHOGONALITY PROPERTY (Andrews 1992): 

m f n, 

m = n = O ,  

m = n > O  

CLOSED FORM INTEGRAL EXPRESSIONS (Kaya and Erdogan 1987): 

I U,(t).ll - t2 
dt = - ~T,,,(X), 

L - I  t - x  m = O,l, ... 

(3.8a) 

(3.8b) 

m = 1,3, ... 
( 3 . 8 ~ )  

m = 0,2,... 

m = 0. 

Equally important in our analysis is the use of several known 

algebraic relations associated with Chebychev polynomials. 

Again, as a convenience to the reader, we state them: 

ALGEBRAIC RELATIONS (Abramowitz and Stegun 1972): 

T,(X)T,,(X) = +[~,,,(x) t T~,-,,,(~)I, m=0,1,.. . n=0,1,.. . (3.9a) 

T,(x) = U,(x) - XU,-~(X), m=1,2 ,... (3.9c) 

xu,(x) = +[~,,,(x) + U,,-~(~)I, m=1,2,. . . (3.9b) 
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Another interesting observation can be made concerning the 

logarithmic term displayed in g(x), namely 

+t--I - t - x = 10g-1. (3.10) 

This relation will also be quite useful. 

Let us rewrite Eq. (3.7a) in the compact form 

p3 OD - [ E  a,CT,(x) + T,(x)l, + 

with 

ma,U,-,(x)I = I(x) + J(x), (3.11a) 
8-0 I- I 

I(x) = II(X) i- I*(x), (3. llb) 

J(x) = J,(x) + Jz(x), (3.11~) 

where 

(3.11d) 

(3.11e) 

and 

We can now find analytic expressions for J(x) and I(x). 

First, we further decompose Il(x) into two components, namely 

I , ( x )  = I&) + Ilb(X)Y (3.12a) 

where 

(3.12b) 

and 

12 



where we have made explicit use of the functional form f o r  g ( x )  

as defined in Eq. (2.112). Here 6, = 14/3, 0, = 2 0 0 8 . 4 ,  6, = 3003, 

and 8, = 1 while c, = 2, c2 = 4, and c3 = 1. 

Initial attention is directed toward evaluating I l a ( x )  

in an exact manner, From viewing Eq.(3.8b), we expand 

the partial sum shown in Eq. (3.12b) in terms of an equivalent 

partial sum of Chebychev polynomials of the second kind, namely 

3 3 

k-0 k-0 
E O,tk = 2 YkU,(t). (3.13a) 

Symbolic software makes the task of determining the unknown 

coefficients Yk, k=0,1,2,3 a straightforward procedure. Doing 

so produces the following explicit analytic expressions 

02 Y,  = - 4 '  
03 Y3 = - 8' (3.13b) 

Substituting Eq. (3.13a) into Eq. (3.12b) and making use of Eq. 

(3.8b), we find 

(3.14) 

Second, to obtain an explicit analytic evaluation for IIc(x), 

as shown in Eq. (3.12c), we make use of Eq. (3.10) to get 

Upon carefully using the Hardy-Poincar6-Bertrand formula 

(Tricomi 1985, Muskhelishvili 1992), Eq. (3.15a) becomes 



where 

(3.15b) 

(3.15~) 

Again expanding the partial sum shown in Eq. (3.15~) in terms of  

a finite sum of  Chebychev polynomials of the second kind, namely 

2 Cktk = 5 OkUk(t)’ 
k- I k - 0  

where we obtain 

CZ 
0, = - 4 ’  

c2 w, = - 4 ’  

c2 c3 
0, = - 2 + 4’ 

c3 0, = - 8 ’  

(3.15d) 

( 3.15e) 

and making use of a partial fraction maneuver in Eq. (3.15~) and 

upon substituting Eq, (3.15d) into Eq. (3.15~)’ we arrive at 

Substituting Eq. (3.15f) into Eq. (3.15b) for zb(x,z), and 

performing the integration analytically, we arrive at 

(3.15f) 

(3.16) 

where f o r  simplicity we have made use of the actual numeric values 

for the constants of wk, k = 0,1,2,3. 

Next, our attention is directed toward evaluating 12(x) as 

defined in Eq. (3.11e). Let us define 

12(x) = + IZb(x)9 (3.17a) 

such that 

(3.17b) 

and 
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w 

1 2 b M  = - =2 4- c ,  f t - - I  t m * .  (3.17~) 

After performing some elementary manipulations and noting that 

1 = T,(t), t = T,(t), and making use of E q .  (3.8d), we find 

Next, once noting that t = U,(t)/2 and making use of E q .  

(3.8b), we find 

or finally after reconstruction, we obtain 12(x) as 

(3.18a) 

(3.18b) 

(3.19) 

Next, we evaluate the integrals defined as J,(x) and 

J2(x), as shown in E q s .  (3.11f) and (3,11g), respectively. 

The functional form shown in the integrand displayed in Eq. 

(3.11f) permits some interpretation leading us to express the 

Chebychev function of the first kind as a Chebychev function of 

the second kind. 

viewing E q .  (3.8b). Noting that T,(t) = U,(t) and using E q .  

(3.9~) in conjunction with 

This conversion should be made in light of 

E q .  (3.9b), we can express J,(x) as 

(3.20a) 

Using E q .  (3.8b), we f i n d  

(3.20b) 

The evaluation of J,(x) is rather straightforward and thus 
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we merely present the final result, namely 

(3.21) 

Upon reconstructing the right-hand side of Eq. (3.11a) using 

Eqs. (3.12a), (3.14), (3.16), (3.19), (3.20b), and (3.21), and 

recasting the polynomic expressions 

(3.22a) 

(3.22b) 
3 

x3 t 4xz t 2x = p,T,(x), 
k-0 

into equivalent Chebychev forms of the first kind, where h, = 4/3, 
h, = 31/12, h, = 2, and h3 = 1/4 while p, = 2, p, = 11/4, p, = 2, 

and p, = 1/4, we find 

where 

(3.23a) 

(3.23b) 

Po = - (2 + C,) t 2h,, PI = (1 t a,) t 2h1, 
N 

P, = 2h,. Cl P, = 2 + 2h,, 

At this point, the use of a collocation method for 

determining the unknown expansion coefficients, h ,  m = O,l,.. . 
appears to be the judicious choice. A s  an alternative approach 

which requires additional analytic consideration, we proceed to 

find the unknown expansion coefficients using a Fourier series 

approach based on the orthogonality relation displayed in Eq. 

(3.8a). We operate on Eq. (3.23a) with 
1 

L - 1  T,(x)dx, k=0,1,. . . 
and upon making use of the orthogonality property shown in Eq. 
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(3.8a), we arrive at 

where the normalization integral (see Eq. (3.8a)) is given as 

and where the constants ABk, Bk, and c,k are defined as 

m,k mixed odd/even 
- 1  = I,,-, T,(x)T,(x)dx = (3.24~) LA+-- 1 - (m t k) 1 - I m -  k12 ' 

both m,k even or odd 

k odd ( k  = 1,3,5,....) 
(3.24d) { O.2 k even (k = 0,2,4,...) 

I - 
Bk = jX--, Tk(X)dX = 

1 - k Z '  

Here we introduce b,,  (i.e., the Kronecker delta) for 

notational convenience. We note that the index k begins at 

unity in Eq. (3.24a) since we impose the constraint 

condition 
% a, = 1, 

1-0 

in lieu of the k = 0 case. 

17 
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All the ingredients for determining the unknown expansion 

coefficients are now available. From the practical point of 

view, the infinite number of expansion coefficients to be 

simultaneously obtained requires us to truncate at a finite 

number of terms, say N. Thus, we actually find an 

approximate solution based on a finite series expansion of 

Chebychev polynomials, namely (see Eq. (3.5)) 

(3.25) 

We refer to f N ( x )  as the approximate analytic solution 

to f(x) in terms of a finite Chebychev series. The system of 

N t 1 unknown linear algebraic coefficients can now be resolved 

using matrix algebra. 

4. RESUJITS AND CONCJIUSIONS 

Due to the inherent coupling among the expansion 

coefficients, a simple Gauss-Seidel (Atkinson 1992) iterative 

scheme was developed for determining the expansion coefficients, 

a,, m = O,l,...,N as required when viewing Eq. (3.24a) and Eq. 

(3.24f). When choosing an iterative scheme, one requires 

convergence to be established with respect to some error 

criteria. Here, an absolute error criteria has been chosen as 

defined by: 

ERROR = la:*' - a:l < tolerance, m = 0,1 9 . .  ,N, (3.26) 

where 'r' represents the rth iterate. The tolerance was 

set at All calculation were performed on an Ardent 

Titan I1 Graphics Supercomputer in double precision using a 

single processor. Table 1 presents numeric results for the 



expansion coefficients based on naive choices of N. It is 

apparent from viewing Table 1 that the present approximate 

analytic solution produces highly accurate results. Recalling 

that the exact solution is x3 t x2 (or in terms of Chebychev 

polynomials of the first kind, we would find a, = - 1 / 2 ,  a, = 

3 / 4 ,  a, = 1 / 2 ,  a3 = 1 / 4 ,  and ak = 0, k > 3 ) ,  one concludes 

that with a proper choice of N, benchmark accuracy can be 

achieved for the problem under consideration by the present scheme. 

The unknown function f(x) can be reconstructed from Eq. 

(3.25) once the expansion coefficients have been resolved. The 

approximate analytic solution displayed in Eq. (3.25) also 

permits a massively parallel computation for f(x) for preassigned 

values of x. 

In closing, the extension of Peters’ method to linear, Cauchy 

singular integro-differential equations appears viable and 

fruitful. The analytic preconditioning offered by Peters’ method 

suggests a natural set of basis functions to be used in the 

approximation process. In light of the numerous analytic 

manipulations required in the present study, it appears that the 

inclusion of symbolic computation reduces that portion of the 

effort. Also ,  future studies should consider the use of a 

collocation method for determining the unknown Chebychev 

expansion coefficients since this approach should greatly reduce 

the operation count. 
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am am 

m (N = 1) (N = 3) (N = 6) 

0 0 .2483339  -0.5000000 - 0 . 5 0 0 0 0 0 0  

1 

2 

0.7516661 0 . 7 5 0 0 0 0 0  

0 .5000000  

0 .2500000  

0 . 7 5 0 0 0 0 0  

0 . 5 0 0 0 0 0 0  

Table 1. Illustrative table showing numeric values of 

the expansion coefficients as a function of the 

parameter N. CPU times were always less than 0.07 

seconds using a standard Gauss-Seidel method, 

For N > 2, numerically "exact" results for f ( x )  

occur. 
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