LIMITED WEIGHTS NEURAL NETWORKS: VERY TIGHT
ENTROPY BASED BOUNDS

Valeriu Beiu
Sorin Draghici

SOCO '97 Second International ICSC Symposium on Soft
Computing, Fuzzy Logic, Artificial Neural Networks, Genetic
Algorithms
September 17-19, 1997
Nimes, France

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommend-
ation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Title of the conference: SOCO'97

Title of the proposed paper:

Limited Weights Neural Networks: Very Tight Entropy Based Bounds

Authors name:

Valeriu Beiu1 and Sorin Draghici2

Affiliations and addresses:

1 Los Alamos National Laboratory, Division NIS-1, MS D466
Los Alamos, New Mexico 87545, USA

2 Vision and Neural Networks Laboratory
Department of Computer Science, Wayne State University
431 State Hall, Detroit, Michigan 48202, USA

Corresponding author:

Valeriu Beiu

Phone: +1-505-667 2430
Fax: +1-505-665 7395
E-mail: beiu@lanl.gov

Topics:

- neural networks
- limited (integer) weights
- entropy bounds (number of bits)
- complexity of neural networks
- classification problems

This paper is a perfect fit for the following workshop/tutorial mentioned on the home page of SOCO'97 at "http://www.compusmart.ab.ca/icsc/soco97.htm#Workshop/Tutorials"

Workshop/Tutorial:

Information Theory and Artificial Neural Networks
1. Statement of the problem

Being given a set of m examples (i.e., data-set) from \mathbb{R}^n belonging to k different classes, the problem is to compute the required number-of-bits (i.e., entropy) for correctly classifying the data-set. Very tight upper and lower bounds for a dichotomy (i.e., $k = 2$) will be presented, but they are valid for the general case.

2. Results achieved

The paper presents an upper bound (tighter than the ones previously known [4, 8]) of:

$$\#\text{bits} < mn \left[\log \left(\frac{D}{d} \right) + 0.5111 \right] / 2$$

if $|\text{weights}| < \sqrt{2 \left[\log \left(\frac{D}{d} \right) + 0.5111 \right]}$.

A tight lower bound will also be detailed starting from the bound presented in [10]. In this case $|\text{weights}| < p$ (i.e., integer weights in the range $[-p, +p]$). We improve on the bound detailed there, and show that:

$$\#\text{bits} > \frac{mn}{2} \left[\log \left(\frac{D}{d} \right) - 1.5359 + \frac{\log n}{n} \right]$$

which clearly gives us:

$$\frac{mn}{2} \left[\log \left(\frac{D}{d} \right) - 1.5359 \right] < \#\text{bits} < \frac{mn}{2} \left[\log \left(\frac{D}{d} \right) + 0.5111 \right].$$

3. Significance

- The bounds are proven in a constructive way.
- Although they do not lead to complexity reductions, they should be judged in the context of lowering certain constants for very difficult (i.e., NP-complete or NP-hard) problems [9].
- An interesting aspect is that a constructive algorithm based on the upper bound has already been designed and used to generate both classical Boolean circuits and threshold gate circuits, or a mixture of them [2, 3, 6].
- Work is in progress for designing a constructive algorithm based on the lower bound.

4. Comparison with previous work

A recent result has shown that [4] $\#\text{bits} < mn \left[\log \left(\frac{D}{d} \right) + 2.0471 \right]$ with weights bounded as $|\text{weights}| < \sqrt{2 \left[\log \left(\frac{D}{d} \right) + 2.0471 \right]}$. This upper bound has been very recently [8] improved to:

$$\#\text{bits} < mn \left[\log \left(\frac{D}{d} \right) + 1.8396 \right] / 2$$

with weights bounded as $|\text{weights}| < \sqrt{2 \left[\log \left(\frac{D}{d} \right) + 1.8396 \right]}$.

A lower bound (but not an absolute one) has been recently [10] detailed for the case when the weights are integers in the range $[-p, +p]$:

$$\#\text{bits} > mn \left[\log \left(2pD \right) \right] / 2$$

This bound is consistent with the upper bounds presented in [4,8] as in this case it was proven [10] that $d = 1/2p$, which gives:

$$\frac{mn}{2} \left[\log \left(\frac{D}{d} \right) \right] < \#\text{bits} < \frac{mn}{2} \left[\log \left(\frac{D}{d} \right) + 1.8396 \right].$$
Appendix: selected references

