Synthetic infrared spectra for correlation spectroscopy

PDF Version Also Available for Download.

Description

As a first step toward the development of a new remote sensing technique that the authors call holographic correlation spectroscopy, they demonstrate that diffractive optics can be used to synthesize the infrared spectra of real compounds. In particular, they have designed, fabricated, and characterized a diffractive element that successfully reproduces the major features f the spectrum of gaseous HF in the region between 3,600 cm{sup {minus}1} and 4,300 cm{sup {minus}1}. The reflection-mode diffractive optic consists of 4,096 lines, each 4.5 {micro}m wide, at 16 discrete depths relative to the substrate (from 0 to 1.2 {micro}m), and was fabricated on a ... continued below

Physical Description

8 p.

Creation Information

Sinclair, M.B.; Butler, M.A.; Ricco, A.J.; Kravitz, S.H.; Zubrzycki, W.J. & Warren, M.E. December 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

As a first step toward the development of a new remote sensing technique that the authors call holographic correlation spectroscopy, they demonstrate that diffractive optics can be used to synthesize the infrared spectra of real compounds. In particular, they have designed, fabricated, and characterized a diffractive element that successfully reproduces the major features f the spectrum of gaseous HF in the region between 3,600 cm{sup {minus}1} and 4,300 cm{sup {minus}1}. The reflection-mode diffractive optic consists of 4,096 lines, each 4.5 {micro}m wide, at 16 discrete depths relative to the substrate (from 0 to 1.2 {micro}m), and was fabricated on a silicon wafer using anisotropic reactive ion-beam etching in a four-mask-level process. The authors envision the use of diffractive elements of this type to replace the cumbersome reference cells of conventional correlation spectroscopy and thereby enable a new class of compact and versatile correlation spectrometers.

Physical Description

8 p.

Notes

OSTI as DE98001374

Source

  • Annual meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA (United States), 27 Jul - 1 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98001374
  • Report No.: SAND--97-2904C
  • Report No.: CONF-970706--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 554786
  • Archival Resource Key: ark:/67531/metadc697780

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 14, 2016, 1:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sinclair, M.B.; Butler, M.A.; Ricco, A.J.; Kravitz, S.H.; Zubrzycki, W.J. & Warren, M.E. Synthetic infrared spectra for correlation spectroscopy, article, December 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc697780/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.