DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

EXPLOSIVE PERFORMANCE

SANL 712-004

P. E. Kramer

January, February, March 1970
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
EXPLOSIVE PERFORMANCE

P. E. Kramer

January, February, March 1970
SANL 712-004

The determination of detonation velocity, shock sensitivity, impact sensitivity, etc.; and the acquisition of high precision one-dimensional hydrodynamic data for use in establishing detonation product equations of state, performance of explosives, etc.

ABSTRACT

A one-inch diameter cylinder test was fired with LX-07-2 Lot HOL 902-1.

A wedge test series on LX-07-1 was completed. Shock sensitivity appears to be less than for LX-10-0 but slightly higher than for LX-09-0.

One snowball test was conducted with LX-07-2. It was discovered that a change in the detonators employed had occurred.
DISCUSSION

A one-inch cylinder-detonation velocity test was fired with LX-07-2 Lot HOL 902-1 at a density of 1.859 gm/cc. Detonation velocity was 8652 m/sec with a 95 percent confidence interval of 4 m/sec. Streak record analysis yielded the following expansion information:

\[
\begin{array}{cccc}
T(\mu\text{sec}) & V(\text{mm/\mu}\text{sec}) \\
R - R_0 = 5\text{mm} & R - R_0 = 19\text{mm} & R - R_0 = 5\text{mm} & R - R_0 = 19\text{mm} \\
4.014 & 12.323 & 1.533 & 1.772 \\
\end{array}
\]

One snowball test was fired with LX-07-2 Lot 902-1. When transit times appeared to be faster than expected it was noted that detonator breakout time was $.25 \mu\text{sec}$ earlier than normal. It was finally determined that a supposedly insignificant detonator change had occurred. A supply of the older detonators was located and will be employed on future tests.

A three-shot wedge test series was conducted with LX-07-1 Lot 90B. Results are summarized in the Table.

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Booster (1")</th>
<th>Attenuator(s)</th>
<th>P_i (kbar)</th>
<th>P_t (kbar)</th>
<th>Distance to Detonation (mm)</th>
<th>Time to Detonation (\mu sec)</th>
<th>Excess Transit Time (\mu sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CB-3</td>
<td>Brass - 1"</td>
<td>242</td>
<td>86</td>
<td>2.2-2.3</td>
<td>.48</td>
<td>.22</td>
</tr>
<tr>
<td>2</td>
<td>Baratol</td>
<td>Brass - $\frac{1}{8}$"</td>
<td>184</td>
<td>63</td>
<td>4.1</td>
<td>.91</td>
<td>.44</td>
</tr>
<tr>
<td>3</td>
<td>Baratol</td>
<td>Plexiglas - $\frac{1}{2}$"</td>
<td>153</td>
<td>49</td>
<td>5.2</td>
<td>1.26</td>
<td>.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brass - $\frac{1}{2}$"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a given incident pressure, the pressure transmitted to LX-07-1 was lower than for either LX-10-0 or LX-09-0. This effect was not due to density since the density of LX-10-0 was no higher and that of LX-09-0 was much lower.

A log-log plot of transmitted pressure against distance to detonation does not display the linearity usually achieved in this type of series. Because of the off-white color of this material, it was feared that insufficient light would be reflected into the camera, so each wedge was partially covered with aluminum foil and a double slit arrangement was employed to allow viewing both the covered and the bare HE. Since information from foil or Mylar-covered HE is not considered to be extremely reliable, and since sufficient light was available from the bare material, all reported results were derived from the bare HE traces. Velocities obtained from covered and uncovered portions were in good agreement. However, it would be expected that the transition to detonation would appear on the foil at the same time or later than on the bare HE. In shots 1 and 3, the transition on the foil side was slightly later. In shot 2, however, the transition appeared on the foil side at 3.8 mm as opposed to 4.1 mm in the bare HE. It does not seem reasonable that this reflects reality, but rather that the existence of some problem is indicated. Any attempt to explain what happened would at present be pure conjecture, but it should be noted that the value of 3.8 mm indicated by the foil would be more consistent with the results of shots 1 and 3.
FUTURE WORK; COMMENTS; CONCLUSIONS

With return to the proper detonators, future snowball tests should be consistent with past results.

LX-07-1 is less shock sensitive than LX-10-0 but appears to be slightly more sensitive than LX-09-0 (in terms of transmitted pressure).