CONF-9609350--1 For submission to: Applied Radiation and Isotopes Version 3/28/97 ## **Generator-produced Alpha-emitters** ## Saed Mirzadeh Nuclear Medicine Group Life Sciences Research Division Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831-6229 CIRMS Medical Subcommittee Workshop on Radionuclides Used in Bone Pain Palliation Therapy 1 6 1997 NIST, Gaithersburg, Washington September 27, 1996 This review briefly describes the nuclear characteristics and production parameters for 7.2-h 211 At, 60.6-min 212 Bi, 45.6-min 213 Bi, 11-d 233 Ra, and 20-h 255 Fm. These α -emitting radioisotopes are the subject of current interest for α -particle-mediated radioimmunotherapy. ### Introduction MASTER Alpha particles are of considerable interest for radioimmunotherapy applications. Due to their short range in tissue (a few cell diameters), and high linear-energy-transfer (LET), α - particles are especially suited for targeting micrometatases and single tumor cells such as leukemia and other blood-borne diseases (Bloomer *et al.*, 1984, Ruegg, *et al.*, 1990, Huneke, *et al.*, 1992, Junghans, *et al.*, 1993, Hartmann, *et al.*, 1994, Kennel and Mirzadeh, 1997, Scheinberg, 1997). The list of potential radionuclides for these applications includes only five α -emitting radioisotopes, namely 211 At ($t_{1/2} = 7.2$ h), 212 Bi ($t_{1/2} = 60.6$ m), 213 Bi ($t_{1/2} = 45.6$ m), 233 Ra ($t_{1/2} = 11$ d), and 255 Fm ($t_{1/2} = 20$ h). A list of the generator-produced α -emitters and the corresponding references are given in # DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Table 1. The nuclear decay characteristics of ²¹¹At, ²¹²Bi, ²¹³Bi, ²³³Ra and ²⁵⁵Fm are summarized in Table 2. The very short half lives of ²¹²Bi and ²¹³Bi limit the use of these radioisotopes to situations in which targeting is rapid, such as in leukemia (Scheinberg, D. A. *et al.*, 1997). Most recently, applications with vascular targeting antibodies for the treatment of lung cancer have also been reported (Kennel and Mirzadeh, 1997). 211 Rn(14.6 h) \rightarrow 211 At(7.2 h). Astatine-211 can be produced through the decay of 14.6 h ²¹¹Rn. The ²¹¹Rn, in turn, is produced through a number of nuclear reactions which are summarized in Table 3. The corresponding references are also given in this table. These reactions include spallation of Th with high energy protons having a cross-section of 0.7 mb at 28 GeV protons or by photo-spallation of Th with a cross-section of 0.13 mb at a photon energy of 300 MeV. The production of ²¹¹Rn by the ²⁰⁹Bi[⁶Li,4n]²¹¹Rn reaction, with a σ_{max} = 0.7 b at E_{Li} = 54 MeV and yield of ~2 µCi/nA at ½ saturation, has also been reported. By far, the predominant nuclear reaction for the production of ²¹¹At, however, is not through a generator system but by direct activation of ²⁰⁹Bi with 28 MeV q particles. The maximum of the excitation function for this reaction is ~1 b at $E_q = 29$ MeV. In order to minimize the production of radiocontaminant 210 Po, the α -particle should exit the Bi target at $E_{\alpha} = 20$ MeV, limiting the Bi thickness to only 100 $\mu g.cm^{-2}$. The typical yield is ~1.5 mCi/ μ A at half saturation (~3.5 hours of irradiation). Since there are only a few cyclotrons in the U.S. capable of accelerating α -particles to ~28 MeV, the required energy for the production of 211 At via the 209 Bi[a,2n] reaction, the availability of 211 At is also very limited. There are a number of procedures reported for extracting ²¹¹At from an irradiated Bi target, and a recent review of the subject is available (Ruth et al, 1988). The dry distillation method is the most convenient approach and it has been described in detail elsewhere (Lambrecht and Mirzadeh, 1985). 224 Ra 212 Pb 212 Pb 212 Pb 212 Bi 212 Bi 212 Bi 212 Bi 212 Bi generator system, where 224 Ra is the daughter of 1.9-y 228 Th. Th-228 is the second member of the 232 Th decay chain and it is also the decay product of 232 U (Fig. 1a). Ra-228 (232 Th, purified, then allowed to decay to 228 Th. Each ton of 30-year old 232 Th yields 232 Th purified, then allowed to decay to 228 Th. Each ton of 30-year old 232 Th yields 228 Ra. Th-228, however, can be produced from successive neutron capture and 232 Th decay of 226 Ra (Fig.2). This irradiation has been demonstrated in the past to be feasible. However, additional process development is needed to determine production yields and cost. Figure 3 depicts the theoretical production yields of both 228 Th and 229 Th at the ORNL High Flux Isotope Reactor (HFIR) as a function of irradiation time at a neutron flux of $1x10^{15}$ n.s⁻¹.cm⁻². For one cycle irradiation (~24 days), the yield of ²²⁸Th is ~45 mg (37 Ci) per gram of ²²⁶Ra. The major drawback for the use of ²¹²Bi is the emission of relatively intense and very high energy γ -rays (2.6 MeV, 38%). In the current generator system, 224 Ra separated from 228 Th is adsorbed on an organic cation exchange resin (highly cross-linked MP-50, ~300 μ L in volume), and the 212 Pb and 212 Bi mixture is eluted with a few mL of 2 M HCl or 0.5 M HI with ~70% yield and parent breakthrough of $^{10^{-6}}$. It is also possible to elute 212 Bi (free from 212 Pb) selectively with 0.5 M HCl or 0.15 M HI. The 224 Ra/ 212 Pb/ 212 Bi generator has a shelf-life of about two weeks, and 10-mCi generators are routinely available from Argonne National Laboratory (ANL). Unfortunately, radiolytic effects limit the scale of the current organic resin-based ²²⁴Ra→²¹²Pb→²¹²Bi generator to levels insufficient for clinical use. Evaporation (emanation)-based generator systems were developed to overcome this problem (Hursh and Lovaas, 1967, Norman *et al.*, 1991, and Hassfjell and Hoff 1994). At a 1-mCi activity level, the fraction of ²¹²Pb recovered was decreased from 50% to 10% over a one-year period. No absolute values were given for the breakthrough of the Th, but it was stated that Th was not detected in the final solution (Hassfjell and Hoff 1994). $\frac{225}{\text{Ac}(10.0 \text{ d})}{}$ \rightarrow $\frac{213}{\text{Bi}(45.6 \text{ min})}.$ Among the potential candidates, $^{213}{\text{Bi}}$ is well suited to clinical applications as $^{213}{\text{Bi}}$ labeled monoclonal antibody (MAb) and has recently entered phase I of human trial against leukemia (Sheinberg, 1997). MAb targeting $^{213}{\text{Bi}}$ to lung vasculature has also been successful in the therapy of lung tumors in mice (Kennel and Mirzadeh, 1997). Bismuth-213 decays with a $t_{1/2}$ of 45.6 min and emits an 8.4 MeV α -particle 97.8% of the time. The decay of $^{213}{\text{Bi}}$ follows with the emission of rather low intensity γ -rays; 440 keV (26%) and 1566 keV (2%). Similar to the $^{224}{\text{Ra}} \rightarrow ^{212}{\text{Bi}}$ pathway, carrier-free $^{213}{\text{Bi}}$ is available from the $^{225}{\text{Ac}}/^{213}{\text{Bi}}$ generator system with $^{225}{\text{Ac}}$ ($t_{1/2}$ = 10 d) being the β -decay daughter of 14.8-d $^{225}{\text{Ra}}$. Ra-225 is the daughter of 7340-y $^{229}{\text{Th}}$ which, in turn, is the decay daughter of long-lived $^{233}{\text{U}}$, Fig. 1b. A unique aspect of $^{233}{\text{U}}$ is its availability at the National Repository of $^{233}{\text{U}}$ which is located at ORNL. U-233 was produced at ORNL in 1960's and 1970's as part of a molten salt breeder reactor program. Currently, the $^{233}{\text{U}}$ is in long-term storage with no immediate or anticipated need. It is estimated that from $^{233}{\text{U}}$ stockpile, ~12 g (~2.5 Ci) of $^{229}{\text{Th}}$ can be extracted. Th-228 can also be produced from neutron transmutation of a 226 Ra target (Fig. 2). The yield of 229 Th is on the order of 7 mg (~150 mCi) per g of 226 Ra for 24 days irradiation at a neutron flux of $1x10^{15}$ n.s⁻¹.cm⁻², with a thermal to epithermal ratio of 10 (Fig. 3). Note that under these conditions, the mass of the contaminant ²²⁸Th produced is ~4 times larger than that of ²²⁹Th (the activity ratio is 250). Nevertheless, high purity ²²⁵Ac can be obtained from the mixture by initially extracting Ra from Th and allowing the 3.7-d ²²⁴Ra to decay (10-15 days) then extracting ²²⁵Ac from the Ra mixture. Note that the ²²⁴Ra α -decays to ²²⁰Rn with no β -decay to ²²⁴Ac. It is also possible to produce ²²⁵Ac from proton and deuteron irradiation of ²²⁶Ra, [p,2n] and [d,n] reactions (see Fig. 2). The author is not aware of any reported excitation functions for these reactions. Although ²³³U is the only viable source for high purity ²²⁹Th, the anticipated difficulty with ²³³U safeguards led us to look at the possibility of extracting Th from pre-existing processing waste of ²³³U. After extensive purification, ~65 mCi of low specific activity (~0.4%) ²²⁹Th has been recovered and 20 mCi of ²²⁵Ac is available for sale through the ORNL Isotope Distribution Office on a bi-weekly schedule. The chemistry of the ²²⁵Ac/²¹³Bi generator is also similar to that described for the ²¹²Bi generator. However, the lower cross-linked resin was found to be more suitable for rapid elution of ²¹³Bi from the generator with ²²⁵Ac breakthrough of <1%. A summary of the ²¹³Bi yield and ²²⁵Ac and ²²⁵Ra breakthrough values are given in Table 4 (Boll and Mirzadeh, 1997). As indicated in the last column, the breakthrough of Ra in AG 50WX4 resin was substantially higher than Ac breakthrough. Thus it follows that in order to reduce the potential contamination of ²¹³Bi with Ra, the Ac generator-load solution should contain a low fraction of Ra. At the 2-3 mCi level, the radiolytic degradation of organic resin limits the useful shelf-life of a generator to about one week. sufficient time to re-enter the blood stream, results in a substantial dose to the non-targeted tissues. Note that 211 Pb is a highly potent α -emitter as well (see Fig. 1c). 255 Es(40 d) \rightarrow 255 Fm(20.1 h). Among the potential candidates, 255 Fm (the daughter of 40-d 255 Es, a transuranium radioisotope) has the most convenient half-life, but it is doubtful that useful quantities of this radioisotope will be made available within the foreseeable future. In summary, methods have been demonstrated for large scale production of α -emitters for medical applications with the exception of 255 Fm. Over the next few years, it is expected that clinical generators for in-house production of the short-lived 212 Bi and 213 Bi will be made available. Acknowledgements. Research was supported by ORNL Laboratory Directed Research and Development, under the auspices of the U.S. DOE contract DE-AC05-960R22464 with Lockheed Martin Energy Research Corporation. ### **DISCLAIMER** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. #### References. Atcher R. W., Hines, J. J. and Friedman, A. M., "A Remote System for the Separation of ²²⁸Th and ²²⁴Ra," *J. Radioanal. Nucl. Chem., Letter,* **117**, 155 (1987). Bloomer, W. D., W. H. McLaughlin, R. M. Lambrecht, R. W. Atcher, S. Mirzadeh, J. L. Madara, R. A. Milius, M. R. Zalutsky, S. J. Adelstein, and A. P. Wolf, (1984) "At-211 Radiocolloid Therapy: Further Observations and Comparisons with Radiocolloids of P-32, Dy-165, and Y-90", *International Journal of Radiation Oncology and Biological Physics*, **10**, 341. Boll, A. R. and Mirzadeh, S., (1997) "Optimizations of Radiolabeling of Immuno-proteins with ²¹³Bi." Proceedings of Symposium on Radiochemistry and Radioimmunotherapy, 212th ACS National Meeting, Orlando, Fl, Aug. 24-28, 1996, *Radiochimica Acta* (in press). Hartmann, F., Horak, E. M., Garmestani, K., Wu, C., Brechbiel, M. W., Kozak, R. W., Tso, J., Kosteiny, S. A., Gansow, O. A., Nelson, D. L. and Waldmann, T. A., (1994) "Radioimmuno-therapy of Nude Mice Bearing a Human Interleukin 2 Receptor *a*-expressing Lymphoma Utilizing the *a*-emitting Radionuclide-conjugated Monoclonal Antibody ²¹²Bi-anti-Tac", *Cancer Research*, **54**, 4362. Hassfjell, S. P. and Hoff, P. (1994), Apply. Radiat. Isot., 45, 1021. Huneke R. B., Pippin C. G., Squire R. A., Brechbiel, M. W., Gansow, O. A., Strand, M., (1992) "Effective Alpha-particle-mediated Radioimmunotherapy of Murine Leukemia", Cancer Res., **52**, 5818. Hursh, J. B. and Lovaas, A. I. (1967), J. Inorg. Nucl. Chem., 29, 599. Junghans, R. P., Dobbs, D., Raubitschek, A. A., Brechbiel, M. W., Mirzadeh, S., Gansow, O. A. and Waldmann, T. A., (1993) "Pharmacokinetics and Bioactivity of DOTA-Bismuth Conjugated Anti-Tac Antibody for Alpha Emitter Therapy", *Cancer Research*, **53**, 5683. Kennel, S. J. and Mirzadeh, S. (1997), "Vascular Targeting for Radioimmunotherapy with ²¹³Bi". Proceedings of Symposium on Radiochemistry and Radioimmunotherapy, 212th ACS National Meeting, Orlando, Fl, Aug. 24-28, 1996, *Radiochimica Acta* (in press). Lambrecht, R. M. (1983) "Radionuclide generator", Radiochim. Acta, 34, 9. Lambrecht, R. M. and Mirzadeh, S. (1985) "Cyclotron Isotopes and Radiopharmaceuticals, XXXV. Astatine-211," International Journal of Applied Radiation and Isotopes, <u>36</u>, 443. Mani, R. S. (1987) "Reactor Production of Radionuclides for Generators", Radiochim Acta, 41, 103. Meyer, G.-J. and Lambrecht, R. M. (1980) "Excitation Function for the ²⁰⁹Bi(⁷Li, 5n)²¹¹Rn Nuclear Reaction", *Int. J. Appl. Radiat. Isot.*, **31**, 351. Mirzadeh, S. and Lambrecht, R. M., (1987) "Method for Simultaneous Preparation of Rn-211, Xe-125, Xe-123, At-211 and I-125", U.S. Patent 4,664,869, May 12, 1987. Mirzadeh, S. and Lambrect, R. M. (1987) "Procedure for Producing At-211 for Radiopharmaceutical Use", U.S. Patent 4,681,727, Jul. 21, 1987. Mirzadeh, S., Schenter, R. E., Callahan, A. P. and Knapp, F. F., Jr. (1992) *Production Capabilities in U. S. Nuclear Reactors for Medical Radioisotopes*, ORNL/TM-12010. Mirzadeh, S., Kumar, K. and Gansow, O. A. (1993) "The Chemical Fate of ²¹²Bi-DOTA Formed by β-Decay of ²¹²Pb(DOTA)²⁻ Complex", *Radiochimica Acta*, **60**,1. Norman, J. H., Wrasidlo, W. A., and Mysels, K. J. (1991), U.S. Patent 5,038,046, 1991. Ruegg, C. L., W. T. Anderson-Berg, M. W. Brechbiel, S. Mirzadeh, O. A. Gansow and M. Strand, (1990) "Improved *in vivo* Stability and Tumor Targeting of Bismuth-Labeled Antibody", *Cancer Research* **50**, 4221. Ruth, T. J., Dombsky, M., D'Auria, J. M., and Ward, T. E., (1988), "Radiochemistry of Astatine", Nuclear Science Series, Radiochemistry of Elements, U.S. DOE, NAS-NS-3064. Scheinberg, D. A., (1997) "Alpha Particle Therapy for Cancer", Symposium on Radioisotopes in Medicine: New Promise for the Treatment of Cancer, Seattle, WA, Feb. 15, 1997. Sitnikov, V. T., Norseev, Yu, and Khalkin, V., (1996) "Generator of Actinium-225", *J. Radioanal. Nucl. Chem.*, Articles, **205**, 75. Visser, J, Brinkman, A. B., and Bakker, N. M., (1979) "Production of As and Rn Isotopes by Photospallation of ²³²Th and ²³⁸U", *Int. J. Appl. Radiat. Isot.*, **30**, 745. Zucchini, G. L. and Friedman, A. M. (1982) Int. J. Nucl. Med. Biol., 9, 83. # **Figure Captions** - Figure 1. (a) Decay chain of ²²⁸Th (Thorium Series), (b) Decay chain of ²²⁹Th (Neptunium Series), and (c) Decay chain of ²²⁷Th (Actinium Series). Minor branches are not shown. - Figure 2. Reactor production of ²²⁷Ac, ²²⁸Th and ²²⁹Th from ²²⁶Ra target. - Figure 3. Theoretical production yields of ²²⁷Ac, ²²⁸Th and ²²⁹Th from 1 g of ²²⁶Ra as a function of irradiation time at a neutron flux of 1x10¹⁵ n.s⁻¹.cm⁻², (th/epi=10). Table 1. Generator-Produced Alpha-emitters | Parent/daughter pair | Reference | | | |--|---|--|--| | 211 Rn(14.6 h) \rightarrow 211 At(7.2 h) | Mirzadeh and Lambrecht (1987),
Meyer and Lambrecht (1980),
Visser <i>et al.</i> (1979). | | | | 224 Ra(3.7 d) \rightarrow 212 Pb(10 h) \rightarrow 212 Bi(60 m) | Atcher et al. (1987),
Hassfjell and Hoff (1994)
Zucchini and Friedman (1982), | | | | 225 Ra(14.8) $\rightarrow ^{225}$ Ac(10.0 d) $\rightarrow ^{213}$ Bi(45.6 m) | Boll and Mirzadeh (1997),
Sitnikov <i>et al</i> . (1996) | | | | 227 Th(18.7 d) $\rightarrow ^{223}$ Ra(11.4 h) | Mani, 1987 | | | | 255 Es(40 d) \rightarrow 255 Fm(20.1 h) | Mirzadeh et al., 1992 | | | Table 2. Decay properties of radionuclides with potential use in alpha-particle-mediated radioimmunotherapy | Radio-
nuclide | Half-
life | Decay
mode (%) ^a | Decay
prodcut | Av. E_q or E_g^b (keV) | Ε _γ (Ι _γ)
(keV)(%) ^c | | |--|-----------------|--------------------------------|--|----------------------------|---|--| | ²¹¹ At | 7.2 h | EC (58.3) | 516-ms ²¹¹ Po | - | 76.9 (13) | | | ²¹¹ Po | 516 ms | α (41.7)
α | 30.7-y ²⁰⁷ Bi
stable ²⁰⁷ Pb | 2447
7443 | 79.3 (22) | | | ²¹² Bi | 60.6 m | ß (64.1) | 298-ns ²¹² Po | 492 | 727 (6.3) | | | 212_ | | a (35.9) | 3.05-m ^{∠06} T1 | 2174 | - | | | ²¹² Po
²⁰⁸ TI | 298 ns | a | stable ²⁰⁸ Pb
stable ²⁰⁸ Pb | 8784 | 583 (86) | | | [] | 3.05 m | ß | stablePb | 560 | 2615 (100) | | | ²¹³ Bi | 45.6 m | ß (97.8) | 4.2-µs ²¹³ Po | 444 | 440 (26) | | | | | a (2.16) | 2.2-m ²⁰³ 11 | 5869 | - | | | ²¹³ Po | 4.2 <i>µ</i> s | a | 3.3-h ²⁰⁹ Pb | 8375 | - | | | ²⁰⁹ TI | 2.2 m | ß | 3.3-h ²⁰⁹ Pb | 659 | 117 (81)
467 (81)
566(98) | | | ²⁰⁹ Pb | 3.3 h | ß | stable ²⁰⁹ Pb | 198 | - | | | ²²³ Ra | 11.4 d | a | 4-s ²¹⁹ Rn | 5697 | 269 (14) | | | ²¹⁹ Rn | 3.96 s | ā | 1.8-ms ²¹⁵ Po | 6812 | 271 (10)
402 (6.6) | | | ²¹⁵ Po | 1.78 ms | . a | 36-m ²¹¹ Pb | 7386 | - | | | ²¹¹ Pb | 36.1 m | ß | 36-m ²¹¹ Pb
2.1-m ²¹¹ Bi | 447 | 405 (3.5)
832 (3.1) | | | ²¹¹ Bi | 2.14 m | ß (0.27) | 516-ms ²¹¹ Po | 0.5 | • | | | 211_ | | a (99.7) | 4.8-m ²⁰⁷ TI | 6550 | 351 (13) | | | ²¹¹ Po
²⁰⁷ TI | 516 ms
4.8 m | a
B | stable ²⁰⁷ Pb
stable ²⁰⁷ Pb | 7443
493 | -
- | | | ²⁵⁵ Fm | 20.1 h | α | 898-d ²⁵¹ Cf | 7091 | 81.5 (0.01) | | ^a When not indicated, branching is 100%. ^b<E $_{\rm g}>$ = (Av. E $_{\rm g}$.I $_{\rm g}$)/ Σ I $_{\rm g}$, <E $_{\rm g}>$ = (E $_{\rm g}$.I $_{\rm g}$)/ Σ I $_{\rm g}$. ^cNumber of emission per 100 decay. Table 3. Nuclear Reaction for Production of ²¹¹At | Nuclear
Reaction | Incident particle energy | References | |---|--|--| | ²⁰⁹ Bi[<i>a</i> ,2n] ²¹¹ At | $20 \le E_{\alpha} \le 28$ $\sigma_{\text{max}} = 1 \text{ b @ } E_{\alpha} = 29 \text{ MeV}$ Yield = ~1.5 mCi/ μ A @ ½ sat. | Lambrecht and Mirzadeh (1985)
Mirzadeh and Lambrecht (1987) | | ²⁰⁹ Bi[⁶ Li,4n] ²¹¹ Rn→ ²¹¹ At | 38 MeV \leq E _{Li} \leq 60 MeV σ_{max} = 0.7 b @ E _{Li} = 54 MeV Yield = ~2 μ Ci/nA @ ½ sat. | Meyer and Lambrecht (1980) | | ²³² Th[p,spall] ²¹¹ Rn→ ²¹¹ At | $E_p \ge 200 \text{ MeV}$
$\sigma = 0.7 \text{ mb } \textcircled{2} E_p = 28 \text{ GeV}$ | Mirzadeh and Lambrecht (1987) | | ²³² Th[y,spall] ²¹¹ Rn→ ²¹¹ At | σ = 0.13 mb @ E _γ = 300 MeV | Visser <i>et al.</i> (1979) | Table 4. ²²⁵Ac/²¹³Bi Generator -- ²¹³Bi Yield, ²²⁵Ac and ²²⁵Ra Breakthrough | | | 213- | | Breakthrough | | | | | |---------|------|----------------------------|-----|----------------------|----------------------|----------------------|----------------------|-------| | Elution | | ²¹³ Bi
Yield | | ²²⁵ Ac | | ²²⁵ Ra | | . 5 4 | | No. | Days | (µCi) | (%) | (µCi) | (%) | (μCi) | (%) | Ra/Ac | | 1 | 3 | 650 | 96 | 4.3x10 ⁻³ | 6.4x10 ⁻⁴ | 2.8x10 ⁻³ | 2.9x10 ⁻¹ | 453 | | 6 | 4 | 615 | 98 | 6.7x10 ⁻³ | 1.1x10 ⁻³ | 1.2x10 ⁻³ | 1.3x10 ⁻¹ | 118 | | 15 | 10 | 400 | 97 | 2.9x10 ⁻² | 7.5x10 ⁻³ | 1.5x10 ⁻³ | 2.3x10 ⁻¹ | 31 | | 19 | 12 | 351 | 97 | 2.9x10 ⁻¹ | 8.6x10 ⁻² | 1.4x10 ⁻³ | 2.4x10 ⁻¹ | 2.8 | | 23 | 13 | 325 | 96 | 6.0x10 ⁻² | 1.9x10 ⁻² | 1.3x10 ⁻³ | 2.3x10 ⁻¹ | 12 | | 28 | 18 | 218 | 91 | 1.3x10 ⁻² | 5.6x10 ⁻³ | 1.3x10 ⁻³ | 2.7x10 ⁻¹ | 52 | Column: Load: ~2x15 mm, ~ 200 mg of AG50W-X4 resin 830 μ Ci 225 Ac and 1.1 μ Ci 225 Ra in 100 μ L of 0.03 $\underline{\rm M}$ HNO₃ 200 μ L of 0.15 $\underline{\rm M}$ HI, Flow rate: ~0.5 mL/min Eluent: