The X-band klystron program at SLAC

PDF Version Also Available for Download.

Description

The X-band rf source development at SLAC can be considered a qualified success. A total of twelve klystrons were built. Six of them are still in use. The latest tube, XL4, produced 75 MW at an efficiency of 47.5 percent. However, victory cannot be declared as yet, since an NLC prototype has not been fully designed and the decision between permanent magnet focusing and a super-conducting solenoid has not been formally made. Daryl Sprehn`s paper will present the status of the PPM klystron development. The authors believe that a PPM X-band source will work, at 50 as well as at ... continued below

Physical Description

11 p.

Creation Information

Caryotakis, G. April 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The X-band rf source development at SLAC can be considered a qualified success. A total of twelve klystrons were built. Six of them are still in use. The latest tube, XL4, produced 75 MW at an efficiency of 47.5 percent. However, victory cannot be declared as yet, since an NLC prototype has not been fully designed and the decision between permanent magnet focusing and a super-conducting solenoid has not been formally made. Daryl Sprehn`s paper will present the status of the PPM klystron development. The authors believe that a PPM X-band source will work, at 50 as well as at 75 megawatts. But they are prepared to adapt the XL4 design to a super-conducting solenoid, should the PPM klystron develop unexpected problems. The SLAC program is now in its seventh year. It may well be the longest and most expensive microwave tube development on record, in a government laboratory or in industry. Direct and related costs for the total effort are probably of the order of $10 million. In these circumstances it is perhaps not surprising that it has been possible to produce a klystron with the performance of XL4. At the same time, it must be said that the necessary leap in technology from the SLAC 60-megawatt S-band production klystrons to a klystron of comparable performance at four times the frequency could not be realized without some very careful experimentation and, most importantly, without the infrastructure for tube fabrication and testing available at SLAC. The design of an 11.4 GHz 50--100 MW klystron, with microsecond pulses and a pulse repetition frequency of 180 Hz presents a number of technical challenges which are listed here.

Physical Description

11 p.

Notes

INIS; OSTI as DE97009069

Source

  • International workshop on pulsed RF sources for linear colliders, Shonan Village (Japan), 8-12 Apr 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009069
  • Report No.: SLAC-PUB--7146
  • Report No.: CONF-9604147--
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 642727
  • Archival Resource Key: ark:/67531/metadc697657

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 1, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 9, 2016, 12:24 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Caryotakis, G. The X-band klystron program at SLAC, article, April 1, 1996; California. (digital.library.unt.edu/ark:/67531/metadc697657/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.