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Experiences with the PGAPack Parallel Genetic Algorithm Library 

by 

David Levine, Philip Hallstrom, David Noelle, Brian Walenz 

Abstract 

PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, 
several thousand copies have been distributed worldwide to interested users. In this paper we 
discuss the key components of the PGAPack design philosophy and present a number of 
application examples that use PGAPack. 

1 Introduction 

PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several 
thousand copies have been distributed worldwide to  interested users. Key features in PGAPack 
are support for multiple data types; parallel portability across uniprocessors, multiprocessors, 
and workstation networks; Fortran and C interfaces; a simple interface for novice and application 
users; multiple levels of access for expert users; ob ject-oriented design; extensibility; and multiple 
GA operators and parameter choices. 

PGAPack supports parallel and sequential implementations of the single population model. The 
population may be updated by using either generational or steady-state replacement schemes, or 
any of their parameterized variants. The supported crossover operators are one-point, two-point, 
and uniform crossover. Proportional, stochastic universal, binary tournament, or probabilistic bi- 
nary tournament selection may be used. Different mutation operators are used with each different 
data type. A restart operator is available that reseeds a population by using random variants of 
the best string. 

Options allow the user to  specify the population size and stopping criteria and to whether 
duplicate strings should be allowed in the population and whether to  mutate or crossover strings 
or to mutate and crossover strings. In all cases, defaults are provided if the user does not explicitly 
specify a choice. PGAPack system calls provide, random number generation, output control, error 
reporting, and debugging capabilities. 

In simplest form, a parallel (or sequential) PGAPack program can be written by using only four 
PGAPack functions and a string evaluation function. Figure 1 shows such a minimal program 
and evaluation function for the Maxbit problem. P G A C r e a t e  initializes PGAPack and returns the 
address of the context variable (see Section 2). The parameters to P G A C r e a t e  are the program 
arguments, the data type (PGADATATYPEBINARY), the string length (loo),  and the direction of 
optimization ( P G A J A X I M I Z E ) .  P G A S e t U p  initializes all parameters and function pointers that have 
not been explicitly set (none in this example) to  default values. P G A R u n  executes the genetic 
algorithm. Its second argument is the name of a user-defined function (evaluate) that will be 
called whenever a string evaluation is required. P G A D e s t r o y  releases all memory allocated by 
P GAPack. 
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#include “pgapack. h“ 
double evaluate (PGAContext *ctx, int p, int pop); 
int main(int argc, char **argv) 
c 

PGAContext *ctx; 
ctx = PGACreate (&argc , argv, PGA-DATATYPE-BINARY , 100 , PGA-MAXIMIZE) ; 
P GAS et Up (ctx 1; 
PGARun (ctx, evaluate 1; 
PGADestroy (ctx 1; 
return ; 

3 

c 
double evaluate (PGAContext *ctx, int p, int pop) 

int i, nbits=O, stringlen; 
stringlen = PGAGetStringLength(ctx); 
f o r  (i=O; icstringlen; i++) 

if (PGAGetBinaryAllele(ctx, p, pop, i)) 
nbits++; 

return((doub1e) nbits); 
3 

Figure 1: PGAPack C Program for the Maxbit Example 

The evaluation function (evaluate) must be written by the user. PGAGetStringLength returns 
the string length. PGAGetBinaryAllele returns the value of the i t h  bit of string p in population 
pop. The values returned by this function, sometimes called “raw fitness,” are automatically 
mapped into nonnegative values according to  whether any of the raw fitness values are nega- 
tive, the direction of optimization, and the type of fitness function (identity, ranking, or linear 
normalization) used. 

PGAPack provides functions to  encode and decode real and integer values in a binary string. 
The string representation may be either binaxy or Gray coded. This capability allows the use of 
existing real- and integer-valued functions with no modification required to  the function source. 
For example, suppose the user has a real-valued function f of three real variables 2 1 ,  2 2 ,  and 2 3 ,  

each constrained on the interval [-lo, lo], and wishes to use 10 bits for each and a Gray code 
encoding. This may be done as show in Figure 2. Note that the function f need not be modified. 
The function grayfunc is used as a “wrapper” to  decode the real values from the Gray coded 
string, pass them as real values to f ,  and return the corresponding function value. 

2 Design and Implementation 

PGAPack supports four native data types: binary-valued, integer-valued, real-valued, and character- 
valued strings. A data-hiding capability provides the full functionality of the library to the user, 
in a transparent manner, irrespective of the data type used. The context variable is the data 
structure that provides the data hiding capability. The context variable is a pointer to  a C lan- 
guage structure, which is itself a collection of other structures. These (sub)structures contain all 
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#include "pgapack . h" 
double grayfunc (PGAContext *ctx, int p, int pop); 
double f (double xl, double x2, double x3); 

double grayfunc (PGAContext *ctx, int p, int pop) 

double XI, x2, x3, v; 
xi = PGAGetRealFromGrayCode (ctx, p, pop, 0, 9, -lo., 10.1; 
x2 = PGAGetRealFromGrayCode (ctx, p, pop, 10, 19, -lo., IO.); 
x3 = PGAGetRealFromGrayCode (ctx, p, pop, 20, 29, -lo., 10.1; 
v = f(xl,x2,x3); 
ret urn ( v ) ; 

3 

Figure 2: Using Legacy Code for Function Evaluation 

the information necessary to  run the genetic algorithm, including the data type to  use, parameter 
values, the functions to  call, operating system parameters, debugging flags, initialization choices, 
and internal scratch arrays. 

All the functionality of PGAPack is provided through function calls. Typically, users call 
high-level, data-type-neutral functions, which themselves call  data-type-specific functions that 
correspond to  the data type used. The data-type-specific functions use addresses and offsets of 
the population data structures. The user-level routines,- however, provide the abstraction of data 
type neutrality and an integer indexing scheme and can be called independent of the data type. 

PGAPack maintains two populations: an old one and a new one. Formally, string p in popula- 
tion pop  is referred to  by the 2-tuple (p,pop) and the value of gene i in that string by the 3-tuple 
(p ,pop, i). To aid the user abstractions, two symbolic constants, PGA-OLDPOP and PGAIEWPOP, 
always refer to  the last generation and new .generation, respectively. 

PGAPack provides multiple levels of control to  support the requirements of different users. 
The simplest level, shown in Figure 1, encapsulates the genetic algorithm "machinery" within the 
single function PGARun. The user need specify only three parameters: the data type, the string 
length, and the direction of optimization. All other parameters have default values. 

At the next level, the user calls data-type-neutral functions explicitly (e.g., PGASelect , 
PGACrossover, PGAMutation). This mode is useful when the user wishes more explicit con- 
trol over the steps of the genetic algorithm or wishes to  hybridize the genetic algorithm with a 
hill- climbing heuristic. 

At the third level, the user can customize the genetic algorithm by supplying function(s) to 
customize a particular operator(s) while still using one of the native data types. Finally, at the 
lowest level of usage, the user can define a new data type, write the data-type-specific low-level 
GA functions (e.g., crossover, mutation), and have these functions executed by the high-level 
data-type-neutral functions. 



Master Slaves 
Figure 3: PGAPack Master-Slave Model 

PGAPack is written in ANSI C. A set of interface functions allows user-level PGAPack func- 
tions to  be called from Fortran. Message-passing calls follow the MPI (see Section 3) standard. 
Nonoperative versions of the MPI functions are supplied if the user does not have an MPI imple- 
mentation for his machine. These allow the PGAPack library to  be built (for sequential use) in 
the absence of an MPI implementation. 

3 Parallel Computing 

The first release of PGAPack was targeted primarily at application developers and supports a par- 
allel (and sequential) implementation of the single population model. This initial choice was made 
because in most real applications, the dominant computational cost is executing function evalu- 
ations. Being able to  execute these in parallel should significantly reduce the elapsed computing 
time. 

The single population model may be parallelized by executing in parallel the loop iterations 
that create generation t + 1 from generation t .  Most steps in this loop-crossover, mutation, 
evaluation-can be executed in parallel. The execution efficiency, however, depends upon the 
computer architecture and parallel execution overhead, the number of new population members 
created each generation (the degree of parallelism), and the computational cost of the steps being 
executed in parallel (the granularity). 

The parallel implementation in PGAPack uses a master/slave algorithm in which one process, 
the master, executes all steps of the genetic algorithm except the function evaluations, which are 
executed by slave processes. A master/slave implementation is shown in Figure 3. 



We chose a master/slave algorithm for two reasons. First, since function evaluation time is 
the dominant cost in most GA runs, the performance benefits from parallel execution may be 
achieved by parallelizing only this step. Second, since we use a message-passing programming 
model to  implement the master/slave algorithm, there may be a significant parallel execution 
overhead; focusing only on parallelizing the function evaluations allows for modest data distribu- 
tion requirements (just the strings to  be evaluated) and minimal synchronization requirements. 

PGAPack is implemented by using the message-passing interface (MPI) standard [5]. MPI is 
a specification of a message-passing library for parallel computers and workstation networks; it 
defines a set of functions and their behavior. Implementations of MPI exist for both sequen- 
tial (uniprocessors) and parallel (multiprocessors, multicomputers, and workstation networks) 
computer hardware, thereby allowing PGAPack to  run on all these machines without any code 
changes. MPI offers a number of useful features that were used in PGAPack including collective 
communication operations, routines to  configure the logical topology of the processors, barriers, 
a unique message namespace for library messages, and the ability to  send and receive arbitrary 
structures. 

The parallel implementation will produce the same result as the sequential implementation, 
usually faster. The choice of sequential or parallel execution depends on the number of processes 
specified when the program is started. If one process is specified, a sequential implementation 
is used. If two processes are used, both the master process and the slave process will compute 
the function evaluations. If more than two processes are used, the master executes all GA steps 
except the function evaluations, and the slaves execute the function evaluations. 

There are two primary considerations in determining the performance advantage of using the 
master/slave model. First, the speedup will vary according to the amount of computation asso- 
ciated with a function evaluation and the computational overhead of distributing and collecting 
information to  and from the slave processes. Second, the number of function evaluations that 
can be executed in parallel will limit the speedup. This number depends on the population size 
and the number of new strings created each generation. In a generational replacement model, the 
entire population may be evaluated in parallel. In the more popular steady-state model, however, 
typically only one or two new strings are produced, and the degree of parallelism is minimal. By 
default, PGAPack replaces 10% of the population. In our experience this percentage usually pro- 
vides an acceptable degree of parallelism, while retaining the superior performance characteristics 
of the steady-state model. 

4 Application Experiences 

In this section we present examples of several projects that have used PGAPack. Our focus is on 
parallel execution and custom extensions to  PGAPack. 

4.1 Molecular Docking 

STALK [7] is a system for molecular docking that uses PGAPack. The goal in molecular docking 
is to predict the conformation (location and orientation) of a ligand (a small molecule) in a protein 
active site (the part of the protein that the ligand binds to). 
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Table 1: Solution Time vs. No. of Processors 

Compute 
Proc. 

1 
2 
3 
6 

13 
25 
50 

100 

Time 
(sec.) 

263581 
148666 
87208 
46950 
22150 
12831 
7193 
4181 

Speedup 
1.0 
1.8 
3.0 
5.6 

11.9 
20.5 
36.6 
63.0 

Molecular docking may be formulated as a nonlinear optimization problem, where the goal is to 
maximize the intermolecular interaction energy. Typically, the solution space has a large number 
of possible conformations and many local minima. The energy function is highly nonlinear and 
computationally expensive to  evaluate; being able to compute these in parallel is highly desirable 
for solving realistic problems. 

STALK uses a rigid backbone model. The protein is fixed in space, and the position of the 
ligand determined by the GA. The six degrees of freedom of the ligand are translation and rotation 
about the protein’s center of mass. 

Table 1 contains performance results for a test problem with approximately 300 ligand atoms 
and 1500 protein atoms. The Compute Proc. column is the number of IBM SP processors that 
execute function evaluations. The Time column is the average over six runs of the total time spent 
by the master process (executing the GA, packing and sending data to  the slave processes, and 
waiting for results). The Speedup column is the ratio of the time to  execute the one-processor case 
to the time to execute with that number of processors. The speedup achieved is fairly constant, 
although not ideal. Several solutions with better energy values than the x-ray crystallographic 
solution were found. 

A novel feature of STALK is the use of virtual-reality (VR) technology to  provide an interactive 
computational steering capability. In the CAVE [4], a room-sized VR environment that commu- 
nicates with the IBM SP through an SGI Onyx workstation front-end, the best conformation in 
the population and associated energy are displayed. Using a pointing device in the CAVE, the 
user may translate and/or rotate the ligand. The updated ligand coordinates are sent to the 
IBM SP running the GA which uses the GA’s evaluation function to  calculate and return the 
corresponding intermolecular energy. The user then has the option of using the “hand-docked” 
solution to replace the worst conformation in the population, to reseed the entire population using 
random perturbations of the hand-docked solution, or to  make no changes at  all. 

4.2 Quantum Chemistry Parameter Optimization 

In [3] PGAPack was used to study chemical reactions in the condensed phase. The goal was to 
develop a quantum mechanical (QM) simulation code that could determine accurate values for 
certain molecular properties (e.g., the heat of formation, dipole moments, atomic bond lengths, 
dihedral angles). 



To calibrate the parameters of the QM simulation code, a GA was used to  find values for these 
parameters that resulted in calculated molecular properties that were in close agreement with the 
experimentally determined results. Formally, if Yp(ezp)  is the value for property p known from 
the experimentally determined results and Yp(caZc) the value for property p to be calculated, then 
the evaluation function is to minimize the sum of weighted errors given by 

M P  

where wp is a weighting factor. 

As a test case, the energetics of a proton transfer reaction in gas-phase and aqueous solution 
were studied. The basis set of molecules consisted of methanol, imidazole, methoxide, and imi- 
dazolium. A real-valued GA was run for 15,000 steady-state iterations. Parallelism was applied 
within each individual function evaluation by determining Yp( c d c )  for each molecule indepen- 
dently. Message passing was used to distribute and collect the function evaluation components. 
Using the parameter values determined by the GA, we were able to  calculate more accurate values 
for the molecular properties of the proton transfer reaction with the QM simulation code than 
had been previously determined by other methods. 

4.3 Timber Harvest Scheduling 

The goal in adjacency constrained timber harvest scheduling (ACTHS) is to  find near optimal 
tree harvesting schedules, subject to constraints on the clear-cut opening size and the level of 
timber harvests from schedule period to period. ACTHS is a difficult combinatorial optimization 
problem; a problem with N stands and M planning periods has M N  integer solutions (including 
infeasible solutions). A typical operational scheduling problem has 10-20 periods and 500-1000 
stands. 

In [8] the authors compare a traditional GA that represents solutions directly on the chro- 
mosomes with an order-based GA that represents permutations of the stand identification num- 
bers on the chromosomes and uses each permutation as an order list for scheduling stands, with 
Monte Carlo integer programming (MCIP). PGAPack was used to implement both the traditional 
and order-based GAS. For the order-based GA, custom PGAPack operators were developed for 
order-based crossover, position-based crossover, partially matched crossover, order-based muta- 
tion, position-based mutation, and scramble mutation. 

Test data ranged from 42 to  849 stands and 10 to 15 time periods. The results showed the 
order-based GA was superior to  the other methods, averaging 2.2% better than the traditional 
GA, and 3.5% better than the MCIP. This project was so successful that the order-based GA is 
now the in-house production planning system for ACTHS at Rayonier Corp. 

4.4 Vehicle Clustering 

In [9] the authors describe the application of PGAPack to  the Multiple-Depot Vehicle Routing 
Problem (MDVRP). The MDVRP is an extension of the vehicle routing problem, with the cus- 
tomers being served from multiple depots instead of a single, central depot. The MDVRP is 
solved by using a genetic clustering method that clusters customers using route primitives. 
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The genetic clustering is done using PGAPack. Once the clusters for the customers are obtained, 
the clusters are improved by using a branch-exchange procedure. The final solution obtained 
by the branch exchange procedure serves as the fitness value for the string. Because of the 
computationally expensive nature of the branch exchange procedure, a hash function was written 
for PGAPack that prevents previously evaluated strings from being evaluated again. The addition 
of the hash function reduced the processing time approximately 30%. 

4.5 Evolutionary Robotics 

The work in [a] describes the use of genetic algorithms to design neural network controllers for a 
simulated, box-pushing robot. The world of the robot is a small grid with blocks randomly placed 
on it. The goal is to  have the robot push blocks into the corners, placing blocks near the corner 
blocks when the corners are filled. 

The evaluation function for this problem is very expensive. Each robot must be evaluated in 
more than one initial configuration, and each configuration requires several hundred time steps. A 
parallel version of PGAPack was installed on an SGI workstation network and used to corroborate 
previous results. 

In addition, a version of niching based on the work in [6] was added to PGAPack to  support 
multi-objective optimization. A custom function was written that performed selection by choosing 
two strings randomly from the population and returning the one which dominates a random sample 
of the population. If neither string dominates, the string with the fewest neighbors is returned. 

4.6 Finite Element Mesh Optimization 

In finite-element analysis, structures are modeled as meshes of elements and nodes that match the 
geometry, rigidity, and loading of each structure. While a very fine uniform mesh will give accurate 
results, it usually leads to unacceptably high computational loads. Therefore, a nonuniform mesh 
with higher resolution is used in parts of the structure where the stress gradients are high, and 
with lower resolution where the stress gradients are low is desired. 

In the work in [l], a GA is used to  search for an optimal mesh. Initially, a uniform mesh 
is imposed on a loaded structure with a small number of degrees of freedom that are not com- 
putationally burdensome. An energy-based error norm is calculated and used as an objective 
function to be minimized. In the main loop, randomly perturbed node positions are generated, 
the finite-element mesh is regenerated by using the new node positions, and the objective func- 
tion is recalculated. The mesh regeneration is stopped when the objective function has reached a 
stationary (assumed to be minimum) value. 

This approach has been implemented on simple beams and plates by using PGAPack on a 
cluster of eight Sun workstations. The results appear promising for the simple cases tried. A 
real-coded GA is used that has a specialized function to regenerate elements around the per- 
turbed positions of the nodes. This function eliminates all meshes that result in malformed (eg. ,  
high aspect ratio, concave or physically impossible) elements before mutation and crossover are 
attempted. 



5 Conclusions and Future Work 

The number of users and the applications they have implemented underscores the fact that 
PGAPack has met with widespread acceptance. We attribute this success to  four key factors. 
First is ease of use. Many users use PGAPack as a black-box; parameter and operator choices 
have robust default values, and their details are encapsulated in a few simple function calls. The 
object-oriented interface, coupled with the user-level abstractions, allows the user to  concentrate 
on functionality and not data structure details. 

The second important attribute is portability. PGAPack has been successfully installed on most 
workstations, workstation clusters, and parallel computers. The ANSI C language PGAPack is 
written in is standardized and fully portable. A small set of link options provides a compatible 
Fortran interface. From a parallel computing perspective, the message-passing programming 
model maps easily onto both shared- and distributed-memory hardware. Additionally, MPI is 
now a fully accepted message-passing standard, with versions available for all current workstations 
and parallel computers. 

The third reason for PGAPack’s success is the task parallel master/slave model. All real appli- 
cations we have worked on, and most others we are aware of, are dominated by the computational 
cost of the function evaluations. The performance improvement from executing these evalua- 
tions simultaneously can provide significantly improved turnaround. In some cases the improved 
performance is critical to being able even to  apply GAS. 

Finally, the fourth reason for PGAPack’s success is extensibility. Although PGAPack supports 
multiple data types and their common operators, problem-specific functionality is sometimes 
needed. PGAPack provides a simple means to replace any operator with a user function. Also, 
users may define a new data type by writing the low-level data-structure-specific functions, but 
still take advantage of the high-level data-structure-neutral functions in PGAPack. Finally, by 
passing the context variable as a parameter to a user function, the user has complete access to 
solution and paranmeter values, and may develop any custom functionality desired. 

Prototype implementations of several new features have been developed for future incorporation 
into PGAPack. These include an island model GA, a genetic programming implementation, and 
a meta-GA for optimizing parameter choices. In addition, we plan to incorporate the additional 
functionality that has been developed and contributed by our users. 

PGAPack is freely available and may be obtained by anonymous ftp from info .mcs . an1 . govin 
file pub/pgapack/pgapack.tar.Z, or via the World Wide Web at the following URL: 
http://www.mcs.anl.gov/home/levine/PGAPACK/index.html. 

http://www.mcs.anl.gov/home/levine/PGAPACK/index.html
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