ENGINEERING CHANGE NOTICE

1. ECN NO 622102

2. ECN Category (mark one)
 - Supplemental
 - Direct Revision [X]
 - Change ECN
 - Temporary
 - Supersede
 - Standby
 - Cancel/Void

3. Originator's Name, Organization, MSIN, and Telephone No.
 GD Mickle/TWRS IH&S/R3-01/372-26B1

4. Date
 3/29/95

5. Project Title/No./Work Order No.
 Tank Farm Health and Safety Plan/N1321

 Tank Farms

7. Approval Designator
 S

8. Document Numbers Changed by this ECN (includes sheet no. and rev.)
 WHC-SD-WM-HSP-002, Rev. 1C

9. Related ECN No(s).

10. Related PO No.

11a. Modification Work
 [X] Yes (fill out Blk. 11b)
 No (NA Blks. 11b, 11c, 11d)

11b. Work Package No.
 N/A

11c. Modification Work Complete
 [X] Yes
 N/A
 Cog. Engineer Signature & Date
 Cog. Engineer Signature & Date

11d. Restored to Original Condition (Temp. or Standby ECN only)
 N/A
 Cog. Engineer Signature & Date
 Cog. Engineer Signature & Date

12. Description of Change
 Complete re-write of Tank Farm Health and Safety Plan, which includes Rev. 13 of the Safe Work Practice, Section 2.9.

13a. Justification (mark one)
 - Criteria Change
 - Design Improvement
 - Environmental
 - Facility Deactivation
 - As-Found
 - Facilitate Const
 - Const. Error/Omission
 - Design Error/Omission

13b. Justification Details
 This revision includes the latest health and safety requirements for Tank Farms, updated confined space tables, and a copy of the Comprehensive Baseline Hazard Findings for each facility. Also, this is a complete format and font change.

14. Distribution (include name, MSIN, and no. of copies)
 See Attached

A-7900-013-2 (11/94) GEFO95
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ENGINEERING CHANGE NOTICE

15. Design Verification Required

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

16. Cost Impact

<table>
<thead>
<tr>
<th>ENGINEERING</th>
<th>CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Savings</td>
<td>$</td>
</tr>
</tbody>
</table>

17. Schedule Impact (days)

<table>
<thead>
<tr>
<th>Improvement</th>
<th>Delay</th>
</tr>
</thead>
</table>

18. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.

- SDD/DD
- Functional Design Criteria
- Operating Specification
- Criticality Specification
- Conceptual Design Report
- Equipment Spec.
- Const. Spec.
- Procurement Spec.
- Vendor Information
- OM Manual
- FSAR/SAR
- Safety Equipment List
- Radiation Work Permit
- Environmental Impact Statement
- Environmental Report
- Environmental Permit
- Seismic/Stress Analysis
- Stress/Design Report
- Interface Control Drawing
- Calibration Procedure
- Installation Procedure
- Maintenance Procedure
- Engineering Procedure
- Operating Procedure
- Operational Safety Requirement
- IEFD Drawing
- Cell Arrangement Drawing
- Essential Material Specification
- Fac. Proc. Samp. Schedule
- Inspection Plan
- Inventory Adjustment Request

19. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.

| Document Number/Revision | Document Number/Revision | Document Number/Revision |

20. Approvals

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cog. Eng. GD Mickle/</td>
<td>2/23/95</td>
<td>ARCHITECT-ENGINEER</td>
<td></td>
</tr>
<tr>
<td>Cog. Mgr. SS Glover/</td>
<td>3/9/95</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td></td>
<td>QA</td>
<td></td>
</tr>
<tr>
<td>Safety m. O-Toya</td>
<td>2/20/95</td>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>Environ.</td>
<td></td>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Other TWRS Plant</td>
<td></td>
<td>Environ.</td>
<td></td>
</tr>
<tr>
<td>J. L. Lee</td>
<td>3/19/95</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF ENERGY

- Signature or a Control Number that tracks the Approval Signature

ADDITIONAL
RELEASE AUTHORIZATION

<table>
<thead>
<tr>
<th>Document Number:</th>
<th>WHC-SD-WM-HSP-002, REV.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title:</td>
<td>Tank Farm Health and Safety Plan</td>
</tr>
<tr>
<td>Release Date:</td>
<td>March 29, 1995</td>
</tr>
</tbody>
</table>

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

<table>
<thead>
<tr>
<th>WHC Information Release Administration Specialist:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
</tr>
<tr>
<td>March 29, 1995</td>
</tr>
</tbody>
</table>

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256
This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms.

This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, "Health and Safety Programs for Hazardous Waste Operations;" 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Change - Replace, Add, and Delete Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev. 2</td>
<td>Complete rewrite per ECN 622102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authorized for Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD Mickle</td>
</tr>
<tr>
<td>SS Glover</td>
</tr>
<tr>
<td>3/28/95</td>
</tr>
</tbody>
</table>
CONTENTS

1.0 INTRODUCTION ... 1-1
1.1 SCOPE ... 1-2
1.2 DESCRIPTION OF TANK FARM OPERATIONS 1-2
1.3 METHODS OF CONTROLLING WORK IN TANK FARMS 1-3
 1.3.1 Routine Tank Farms and Facilities Access
 Having No Written Procedures Required 1-3
 1.3.2 Corrective Maintenance Using the J-1/J-4 Forms 1-4
 1.3.3 Corrective Maintenance Using the J-2 Form 1-4
 1.3.4 Routine Activities Using the J-3 Form 1-5
 1.3.5 Activities Using Approved Operating Procedures 1-5
1.4 ROLES AND RESPONSIBILITIES 1-6
 1.4.1 Tank Farm Management 1-6
 1.4.2 Tank Farm Employees 1-6
 1.4.3 Tank Waste Remediation System Industrial
 Health and Safety Management 1-6
 1.4.4 Tank Waste Remediation System Industrial
 Health and Safety Personnel 1-7
 1.4.5 Site Safety and Health Supervisor 1-7
 1.4.6 Site Safety and Health Representative 1-7
 1.4.7 Tank Waste Remediation System Radiological Control . 1-7

2.0 HAZARD EVALUATION .. 2-1
 2.1 TANK FARM TASK RELATED HAZARDS 2-1
 2.2 FIRE AND EXPLOSION 2-2
 2.2.1 Tank Vapor Space Hazards 2-2
 2.2.2 Hydrogen/Flammable Gas Tanks 2-3
 2.2.3 Ferrocyanide Tanks 2-3
 2.2.4 Organic Tanks 2-5
 2.2.5 Cutting, Welding, and Burning 2-5
 2.2.6 Flammable/Combustible Material 2-6
 2.3 CHEMICAL AGENTS 2-6
 2.4 PHYSICAL AGENTS 2-7
 2.4.1 Heat Stress .. 2-7
 2.4.2 Heat Stress Control Procedure 2-9
 2.4.3 Cold Exposure 2-15
 2.4.4 Worker Fatigue 2-15
 2.4.5 Noise Hazards 2-16
 2.4.6 Personal Protective Equipment (PPE) 2-17
 2.4.7 Illumination 2-17
 2.5 RADIOLOGICAL HAZARDS 2-17
 2.6 ERGONOMIC HAZARDS 2-18
CONTENTS (Continued)

2.7 BIOLOGICAL HAZARDS ... 2-19
2.8 WORK ENVIRONMENT ... 2-19
 2.8.1 Asbestos ... 2-19
 2.8.2 Elevated Work Areas 2-20
 2.8.3 Walking/Working Surfaces 2-20
 2.8.4 Working in Proximity to Moving Equipment/Vehicles 2-20
 2.8.5 Machine Guarding ... 2-21
 2.8.6 Electrical Hazards .. 2-21
 2.8.7 Natural Hazards ... 2-21
 2.8.8 Stored Energy Sources/Lock and Tag 2-22
 2.8.9 Roof Work ... 2-22
 2.8.10 Fall Hazards ... 2-22
 2.8.11 Excavation, Trenching, and Shoring 2-23
 2.8.12 Scaffolding ... 2-23
 2.8.13 Aerial Lifts ... 2-23
 2.8.14 Ladders .. 2-24
 2.8.15 Vehicle Traffic .. 2-24
 2.8.16 Heavy Equipment .. 2-24
 2.8.17 Rigging Operation ... 2-24
 2.8.18 Power Tools .. 2-24
 2.8.19 Pinch Points .. 2-25
 2.8.20 Falling Objects .. 2-25
 2.8.21 Sharp Objects ... 2-25
 2.8.22 Overhead Obstructions 2-25
 2.8.23 Sanitation .. 2-25
2.9 SAFE WORK PRACTICE (Rev. 13) 2-26

3.0 TRAINING ... 3-1
3.1 GENERAL OVERVIEW .. 3-1
3.2 REQUIREMENTS ... 3-1
3.3 TANK FARM WORKERS ... 3-3
 3.3.1 Upgrading of Worker Status 3-4
 3.3.2 Equivalent Training ... 3-4
 3.3.3 Refresher Training .. 3-4
3.4 ONSITE MANAGEMENT AND SUPERVISORS 3-4
3.5 HEALTH AND SAFETY STAFF 3-4
3.6 VISITORS .. 3-5
3.7 REGULATORS ... 3-5
3.8 RECORD OF TRAINING ... 3-5

iv
CONTENTS (Continued)

4.0 PERSONAL PROTECTIVE EQUIPMENT 4-1
 4.1 PERSONAL PROTECTIVE EQUIPMENT SELECTION GUIDELINES . 4-1
 4.2 LEVEL D PERSONAL PROTECTIVE EQUIPMENT 4-1
 4.3 LEVEL C PERSONAL PROTECTIVE EQUIPMENT 4-2
 4.4 LEVEL B PERSONAL PROTECTIVE EQUIPMENT 4-3
 4.5 LEVEL A PERSONAL PROTECTIVE EQUIPMENT 4-3

5.0 MEDICAL SURVEILLANCE 5-1
 5.1 MEDICAL EXAMINATIONS 5-1
 5.2 PRE-EMPLOYMENT SCREENING FOR HAZARDOUS WASTE WORKERS 5-1
 5.3 PERIODIC MEDICAL EXAMINATION 5-2
 5.4 FOLLOW-UP EXPOSURE PHYSICAL 5-3
 5.5 EMERGENCY MEDICAL SURVEILLANCE 5-3
 5.6 TERMINATION MEDICAL EXAMINATION 5-3
 5.7 RECORD KEEPING 5-4
 5.8 SCHEDULING MEDICAL EXAMINATIONS 5-4

6.0 MONITORING 6-1
 6.1 OVERVIEW 6-1
 6.2 CHEMICAL AGENTS 6-2
 6.3 PHYSICAL AGENTS 6-2
 6.4 MONITORING STRATEGY 6-2
 6.4.1 Routine Exposure Monitoring 6-3
 6.4.2 Work Package Activity Monitoring 6-3
 6.4.3 Personnel Monitoring 6-4
 6.4.4 Area Monitoring 6-4
 6.4.5 Source Monitoring 6-4
 6.4.6 Tank Headspace Monitoring 6-4
 6.5 SAMPLING AND MONITORING EQUIPMENT 6-5
 6.6 SAMPLING 6-5
 6.7 MONITORING DATA REVIEW AND ACTION 6-5
 6.6 SAMPLING 6-7
 6.7 MONITORING DATA REVIEW AND ACTION 6-7

7.0 DECONTAMINATION PROCEDURES 7-1
 7.1 PREVENTING CONTAMINATION 7-2
 7.1.1 Minimizing Contamination 7-2
 7.1.2 Proper Dressing Procedures 7-2
 7.1.3 Personal Protective Equipment Checks 7-3
 7.1.4 Surveying of Instruments 7-3
CONTENTS (Continued)

7.1.5 Respiratory Protection 7-3
7.1.6 Down-Hole Drilling Equipment 7-3
7.1.7 Heavy Equipment 7-3

7.2 TYPES OF CONTAMINATION 7-4
7.2.1 Physical States of Contaminants 7-4
7.2.2 Liquids and Gases 7-4
7.2.3 Breakthrough Time 7-4

7.3 POLICIES FOR DECONTAMINATION PROCEDURES 7-5
7.3.1 General Guidance 7-5

7.4 POLICIES FOR SPECIFIC DECONTAMINATION PROCEDURES .. 7-5
7.4.1 Objectives ... 7-5
7.4.2 Decontamination Required 7-6
7.4.3 Health and Safety of Decontamination 7-6
7.4.4 Change Rooms 7-6
7.4.5 Showers ... 7-6

7.5 TESTING FOR DECONTAMINATION EFFECTIVENESS 7-6
7.5.1 Visual Observation 7-6
7.5.2 Wipe Testing/Direct Reading Sampling 7-7
7.5.3 Testing for Permeation 7-8

7.6 HEALTH AND SAFETY HAZARDS 7-8

7.7 DECONTAMINATION EQUIPMENT SELECTION 7-8

7.8 DISPOSAL METHODS 7-8

7.9 PERSONAL PROTECTION 7-9
7.9.1 General Safe Work Practices 7-9
7.9.2 Protection of Decontamination Personnel 7-9

7.10 EMERGENCY DECONTAMINATION 7-10

8.0 SITE CONTROL ... 8-1
8.1 RADIOLICAL CONTROL ZONES 8-1
8.2 CONTAMINATION/AIRBORNE RADIOACTIVITY 8-2
 CONTROL AREAS .. 8-2
8.3 HAZARDOUS WASTE OPERATIONS/CLEANUP WORK ZONES .. 8-2
 8.3.1 Exclusion Zone 8-2
 8.3.2 Contamination Reduction Zone 8-3
 8.3.3 Support Zone 8-3

8.4 DEFINITION OF ZONE SIGNS 8-3

8.5 ACCESS CONTROL 8-4
8.6 BUDDY SYSTEM .. 8-4
8.7 COMMUNICATIONS .. 8-5
CONTENTS (Continued)

9.0 EMERGENCY RESPONSE PLAN .. 9-1
 9.1 PRE-EMERGENCY PLANNING AND COORDINATION
 WITH OUTSIDE PARTIES .. 9-1
 9.2 PERSONNEL ROLES, LINES OF AUTHORITY,
 AND COMMUNICATION .. 9-1
 9.3 EMERGENCY RECOGNITION AND PREVENTION 9-2
 9.4 SAFE DISTANCES AND PLACES OF REFUGE 9-2
 9.5 SITE SECURITY AND CONTROL ... 9-3
 9.6 EVACUATION ROUTES AND PROCEDURAL GUIDELINES 9-3
 9.7 EMERGENCY MEDICAL TREATMENT AND FIRST AID 9-3
 9.8 EMERGENCY ALERTING AND RESPONSE 9-4
 9.9 CRITIQUE OF RESPONSE AND FOLLOW-UP 9-4
 9.10 PERSONAL PROTECTIVE EQUIPMENT (PPE) AND
 EMERGENCY EQUIPMENT ... 9-5

10.0 CONFINED SPACE ENTRY POLICIES, GUIDELINES,
 AND REQUIREMENTS .. 10-1

11.0 ENVIRONMENTAL PROTECTION AND RESPONSE 11-1
 11.1 SMALL CONTROLLED SPILLS ... 11-1
 11.2 LARGE CONTROLLED/UNCONTROLLED SPILLS 11-1

12.0 TANK FARM HAZARD COMMUNICATION ... 12-1
 12.1 HAZARDOUS CHEMICAL INVENTORY 12-1
 12.2 PHYSICAL AND BIOLOGICAL HAZARD INVENTORY 12-1
 12.3 CHEMICAL LABELING .. 12-1
 12.4 MATERIAL SAFETY DATA SHEETS 12-1
 12.5 HAZARDS TRAINING .. 12-2

13.0 REFERENCES .. 13-1

APPENDICES
 A HEALTH AND SAFETY PLAN FOR THE A TANK FARM A-1
 B HEALTH AND SAFETY PLAN FOR THE AN TANK FARM B-1
 C HEALTH AND SAFETY PLAN FOR THE AP TANK FARM C-1
 D HEALTH AND SAFETY PLAN FOR THE AW TANK FARM D-1
 E HEALTH AND SAFETY PLAN FOR THE AX TANK FARM E-1
 F HEALTH AND SAFETY PLAN FOR THE AY TANK FARM F-1
 G HEALTH AND SAFETY PLAN FOR THE AZ TANK FARM G-1
 H HEALTH AND SAFETY PLAN FOR THE B TANK FARM H-1
 I HEALTH AND SAFETY PLAN FOR THE BX TANK FARM I-1
 J HEALTH AND SAFETY PLAN FOR THE BY TANK FARM J-1
<table>
<thead>
<tr>
<th></th>
<th>HEALTH AND SAFETY PLAN FOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>THE C TANK FARM</td>
<td>K-1</td>
</tr>
<tr>
<td>L</td>
<td>THE S TANK FARM</td>
<td>L-1</td>
</tr>
<tr>
<td>M</td>
<td>THE SX TANK FARM</td>
<td>M-1</td>
</tr>
<tr>
<td>N</td>
<td>THE SY TANK FARM</td>
<td>N-1</td>
</tr>
<tr>
<td>O</td>
<td>THE T TANK FARM</td>
<td>O-1</td>
</tr>
<tr>
<td>P</td>
<td>THE TX TANK FARM</td>
<td>P-1</td>
</tr>
<tr>
<td>Q</td>
<td>THE TY TANK FARM</td>
<td>Q-1</td>
</tr>
<tr>
<td>R</td>
<td>THE U TANK FARM</td>
<td>R-1</td>
</tr>
<tr>
<td>S</td>
<td>THE 242-A EVAPORATOR</td>
<td>S-1</td>
</tr>
<tr>
<td>T</td>
<td>THE 242-S EVAPORATOR</td>
<td>T-1</td>
</tr>
<tr>
<td>U</td>
<td>THE 204-AR FACILITY</td>
<td>U-1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2-1 Tank Farm Special Hazard Watch List .. 2-4

2-2 Modified American Conference of Governmental Industrial
 Hygienists Guidelines for Heat Stress Protection
 (for acclimatized workers) ... 2-12

2-3 Cooling Power of Wind on Exposed Flesh Expressed
 as Equivalent Temperature (Under Calm Conditions) 2-15

2-4 Exposure Limits for Continuous or Intermittent Noise 2-17

2-5 Minimum Illumination Intensities in Foot-Candles 2-18

3-1 Tank Farm Facilities Required Training and Entry
 Requirements for 200 East/200 West Tank Farms 3-2

6-1 Chemical Agents - Monitoring Tool ... 6-6

6-2 Physical Agents - Monitoring Tool ... 6-6

7-1 Location of Trailers and Change Rooms ... 7-7
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>ACM</td>
<td>Asbestos Containing Material</td>
</tr>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Achievable</td>
</tr>
<tr>
<td>BED</td>
<td>Building Emergency Director</td>
</tr>
<tr>
<td>CA</td>
<td>Contamination Area</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Conservation, and Liability Act of 1980</td>
</tr>
<tr>
<td>CRZ</td>
<td>Contamination Reduction Zone</td>
</tr>
<tr>
<td>DST</td>
<td>Double-Shell Storage Tank</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOE/RL</td>
<td>Department of Energy/Richland Operations</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EKG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EZ</td>
<td>Exclusion Zone</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>HASP</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>HAZMAT</td>
<td>Hazardous Materials</td>
</tr>
<tr>
<td>HEPA</td>
<td>High Efficiency Particulate Air</td>
</tr>
<tr>
<td>HEG</td>
<td>Homogeneous Exposure Group</td>
</tr>
<tr>
<td>HEHF</td>
<td>Hanford Environmental Health Foundation</td>
</tr>
<tr>
<td>HLAN</td>
<td>Hanford Local Area Network</td>
</tr>
<tr>
<td>HPT</td>
<td>Health Physics Technician</td>
</tr>
<tr>
<td>HSM</td>
<td>Heat Stress Monitor</td>
</tr>
<tr>
<td>HWOP</td>
<td>Hazardous Waste Operations Procedure</td>
</tr>
<tr>
<td>HOEAP</td>
<td>Hanford Occupational Exposure Assessment Plan</td>
</tr>
<tr>
<td>HWW</td>
<td>Hazardous Waste Worker</td>
</tr>
<tr>
<td>ICF KH</td>
<td>ICF Kaiser Hanford Company</td>
</tr>
<tr>
<td>IDLH</td>
<td>Immediately Dangerous to Life and Health</td>
</tr>
<tr>
<td>IH</td>
<td>Industrial Hygiene</td>
</tr>
<tr>
<td>IHFS</td>
<td>Industrial Hygiene Field Services</td>
</tr>
<tr>
<td>IHS</td>
<td>Industrial Hygiene Services</td>
</tr>
<tr>
<td>JCS</td>
<td>Job Control System</td>
</tr>
<tr>
<td>JHA</td>
<td>Job Hazard Analysis</td>
</tr>
<tr>
<td>LEL</td>
<td>Lower Explosive Limit</td>
</tr>
<tr>
<td>LFL</td>
<td>Lower Flammability Limit</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NPH</td>
<td>Normal Paraffin Hydrocarbon</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Safety and Health</td>
</tr>
</tbody>
</table>
ACRONYMS (continued)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEL</td>
<td>Occupational Exposure Limit</td>
</tr>
<tr>
<td>OHE</td>
<td>Occupational Health Examiner</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OSD</td>
<td>Operating Specification Documents</td>
</tr>
<tr>
<td>OVM</td>
<td>Organic Vapor Meter</td>
</tr>
<tr>
<td>PD</td>
<td>Position Descriptions</td>
</tr>
<tr>
<td>PEL</td>
<td>Permissible Exposure Limit</td>
</tr>
<tr>
<td>PFT</td>
<td>Pulmonary Function Test</td>
</tr>
<tr>
<td>PIC</td>
<td>person-in-charge</td>
</tr>
<tr>
<td>POD</td>
<td>Plan-of-the-Day</td>
</tr>
<tr>
<td>POW</td>
<td>Plan-of-the-Week</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>PWO</td>
<td>Physician’s Written Opinion</td>
</tr>
<tr>
<td>RBA/URMA</td>
<td>Radiological Buffer Area/Underground Radioactive Material Area</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act of 1976</td>
</tr>
<tr>
<td>RL</td>
<td>Richland Operations Office</td>
</tr>
<tr>
<td>RWP</td>
<td>Radiation Work Permit</td>
</tr>
<tr>
<td>SAR</td>
<td>Safety Analysis Report</td>
</tr>
<tr>
<td>SARR</td>
<td>Safety Analysis Report Revised</td>
</tr>
<tr>
<td>SCBA</td>
<td>Self-Contained Breathing Apparatus</td>
</tr>
<tr>
<td>SSHS</td>
<td>Site Safety and Health Supervisor</td>
</tr>
<tr>
<td>SSHR</td>
<td>Site Safety and Health Representative</td>
</tr>
<tr>
<td>SST</td>
<td>Single-Shell Storage Tank</td>
</tr>
<tr>
<td>SWP</td>
<td>Safe Work Practice</td>
</tr>
<tr>
<td>SZ</td>
<td>Support Zone</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>Tri-Party Agreement</td>
<td>Hanford Federal Facility Agreement and Consent Order of 1994</td>
</tr>
<tr>
<td>TWRHP</td>
<td>Tank Waste Remediation Health Physics</td>
</tr>
<tr>
<td>TWRS</td>
<td>Tank Waste Remediation System</td>
</tr>
<tr>
<td>TWRS-IH&S</td>
<td>Tank Waste Remediation System-Industrial Health and Safety</td>
</tr>
<tr>
<td>USCG</td>
<td>United State Coast Guard</td>
</tr>
<tr>
<td>WBGT</td>
<td>wet bulb globe temperature</td>
</tr>
<tr>
<td>WHC</td>
<td>Westinghouse Hanford Company</td>
</tr>
<tr>
<td>WRAM</td>
<td>Westinghouse Radiation Area Management</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
1.0 INTRODUCTION

This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm- and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms.

General information relevant for all tank farms and facilities is presented separately from site-specific information relevant for specific tank farms or facilities. This two-part separation of interrelated information is presented in the HASP as follows.

- The main body of the HASP is organized according to subject matter and presents general information relevant for the planning and conduct of work at all tank farms and associated facilities. This information establishes baseline health and safety requirements and provides general guidelines.

- The appendices of the HASP are organized so that each tank farm or facility is addressed in a separate appendix, each containing site-specific hazardous waste operations and hazard identification and control information. This information provides a stand-alone hazard communication tool during work planning and pre-job briefings.

There are 149 single-shell storage tanks (SST) and 28 double-shell storage tanks (DST) at the Hanford Site tank farms, with tank capacity ranging from 208,197.65 L (55,000 gal) to 378,541,186 L (1,000,000 gal). It is estimated that the SSTs contain 47,317,648 L (12,500,000 gal) of sludge, 87,821,555 L (23,200,000 gal) of saltcake, and 26,119,342 L (6,900,000 gal) of drainable liquid. The 28 DSTs contain 76,465,319 L (20,200,000 gal) of liquid and 10,220,612 L (2,700,000 gal) of sludge and saltcake.

The waste contained in the SSTs and DSTs consists of highly radioactive, heat-producing, and chemically toxic wastes that are the result of processing spent reactor fuel from the nuclear weapons program. The unique characteristics of the waste create the potential for the generation of flammable gases, explosive mixtures, and/or vapors that are deleterious to the safety and health of workers. As a result of the nature of the waste and activities at the tank farms, workers may be exposed to a number of occupational hazards (e.g., heat stress, work in confined spaces, toxic chemicals, and physical hazards), some of which are typical...
of any large industrial facility where a significant percentage of the work is performed outdoors. Other hazards are unique to the work environment of the tank farms.

1.1 SCOPE

This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, "Health and Safety Programs for Hazardous Waste Operations;" 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

Normal tank farm operations are required to comply with 29 CFR 1910.120, a Resource Conservation and Recovery Act (RCRA) facility. Operations involving cleanup under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA) past-practice sites listed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) are outside the normal tank farm operations. When operations at the tank farms, as directed by DOE, move into the investigation and cleanup of hazardous waste, then tank farms will be managed as a hazardous waste operation, and the Hazardous Waste Operating Procedure (HWOP) will apply. Currently, the HWOP is used only in nonroutine operations where a potential exists for employees to come into direct contact with the waste. Over and above the requirements of 29 CFR 1910.120 paragraph (p), WHC has directed that in certain areas/circumstances additional precautions will be taken and respiratory protection zones established.

1.2 DESCRIPTION OF TANK FARM OPERATIONS

The tank farms manage the transfer, storage, and treatment of radioactive liquid wastes from process facilities. The primary routine work done in the tank farms includes surveillance, equipment maintenance, and waste transfers. Other routine work includes in-tank sampling and pumping of wastes to/from/within SSTs and DSTs. The liquid wastes are stored in underground tanks in the 200 East and West Area Tank Farms.
Field work is performed using a zone concept comprised of Operations, Maintenance, Health Physics, Engineering, Quality, ALARA, and Safety personnel. These zones are responsible for work package planning and preparation, completion of corrective maintenance, surveillance, and calibration field activities, and support to project and construction activities.

Tank Farm Operations is chartered to manage, operate, and maintain the tank farms in a safe, healthful, and efficient manner. All activities will be conducted within the bounds of this HASP, current safety analysis reports (SARs), and in compliance with all applicable federal, state, and local regulations.

1.3 METHODS OF CONTROLLING WORK IN TANK FARMS

Work activities in the tank farms fall into the following broad categories:

- Routine tank farms and facilities access activities having no written procedures required
- Corrective maintenance using the Job Control System (JCS) forms J-1/J-4
- Corrective maintenance using the JCS form J-2 and approved procedures
- Approved routine activities and some corrective maintenance activities using the JCS form J-3
- Activities performed in accordance with approved plant operating procedures.

The following sections describe these activities in more detail and how they relate to this plan. For detailed information on JCS implementation in tank farms, refer to WHC-IP-0842, Section 9.5, "Job Control System" (WHC 1992).

1.3.1 Routine Tank Farms and Facilities Access
Having No Written Procedures Required

Typical activities that fall into this category include:

- Operator surveillance of tank farm equipment/instrumentation
- Health Physics Technician (HPT) radiation monitoring surveillance
- Work package preparer or engineering information gathering
- Industrial hygiene monitoring
• Industrial safety or quality assurance surveillance.

These type of activities do not require a detailed written procedure to perform. The specific controls necessary to protect the worker are described in this plan and implemented by Operations.

1.3.2 Corrective Maintenance Using the J-1/J-4 Forms

The most formal method of performing maintenance work uses the J-1 form. The J-4 form is approved before performance of the work. The hazards evaluation necessary to protect the worker is covered by the use of the Job Hazard Analysis (JHA) process described in Section 2.0 of this HASP.

Jobs for which performance of work is hazardous, very complicated, or has a higher potential of adversely affecting the environment or equipment operability may require more details in planning. Jobs in these categories may also require more approvals, stricter control of release to work and more control/overview during work. These complex or high risk jobs are sent to the work package preparers on the JCS J-1/J-4 form. The requirements associated with approvals are described in WHC-CM-3-5, Section 12.7.

1.3.3 Corrective Maintenance Using the J-2 Form

Work instructions previously planned and approved for later or repeated use (pre-approved procedures) are sent to supervisor support on the J-2 form. This supervisor support process joins the appropriate pre-approved procedure and other required permits or documents to the J-2 form. Although planning within this process is much less rigorous than the J-1/J-4 planning process, it maintains a high level of control, including provisions for lockout/tagout, formal work release, when needed.

Only one approval signature is necessary on the J-2 form for the work package in which prior approval of the pre-approved procedure has been obtained. When a permit or other document is required, and obtaining it is a step specified in the pre-approved procedure or on the J-2 form, the additional approval signatures needed may be obtained after the work package is approved on the J-2 form. These additional approval signatures are placed on the permit or other document in the spaces provided. This allows time-sensitive permits or other documents to be obtained after a J-2 work package has been approved and sent to scheduling or to the maintenance manager.

The J-2 category of work package typically includes preplanned preventive and predictive maintenance, calibrations, and other periodic work that is recalled. However, pre-approved procedures should also be prepared for corrective maintenance work packages that may recur in the future. The planning and approval process for the first work package to use such a
procedure is the same as the J-1/J-4 process. The value added by this method is realized when the planning and approval processes is almost eliminated the second and subsequent times the same or similar jobs are performed.

Establishing a format for work instructions that can be used by the planner and/or cognizant engineer to develop pre-approved procedures allows them to prepare work instructions that can be used repeatedly, but approved only once. The format used must include provisions for the approval signatures and document controls; e.g., document control numbers and revision/date information. These pre-approved procedures (or work instructions) may then be retained on file and used with J-2 forms for future jobs. This eliminates the creation of a work instruction and processing it through approvals for the second and subsequent times these jobs are worked in the future.

1.3.4 Routine Activities Using the J-3 Form

The J-3 form is used to perform routine tasks (such as relamping incandescent and fluorescent lights, adding lubricating oils to rotating equipment, and changing out gas bottles). The controls necessary to protect the worker are described in this HASP.

The supervisory support process also includes the use of the J-3 form. Operations screening sends non-hazardous jobs to maintenance management on this J-3 form. These jobs are comprised of tasks that do not require detailed work instruction or require approvals as described in WHC-CM-3-5, Section 12.7. Work that requires lock and tag or work permits that have all the required approval signatures on the permit can be worked using the J-3 work request form. Most work in tank farms can be accomplished using the J-3 work request. The J-3 work request process is further described in Waste Tank Maintenance and Production Control Desk Instruction (DI.003) Use of J-3 Pre-Approved Support Requests.

1.3.5 Activities Using Approved Operating Procedures

Typical activities in this category include:

- Startup, operation, and shutdown of tank farms equipment using approved procedures
- Transfer of waste into or between tank farms.

The specific controls necessary to protect the worker are described in the specific procedure and this HASP.
1.4 ROLES AND RESPONSIBILITIES

Organization roles, responsibilities, and interfaces are described in charters. Specific individual responsibilities are described in the position descriptions (PD). An overview of these responsibilities is described below.

1.4.1 Tank Farm Management

Tank farm management is responsible for ensuring all work is properly prioritized and planned, and then executed in a safe manner. In addition, management shall ensure that the tank farm staff possesses skills and resources necessary to safely conduct their assigned tasks.

1.4.2 Tank Farm Employees

Tank farm employees are responsible for ensuring all work is conducted in a safe and healthy manner and that safety and health concerns are reported and understood. Employees shall report unsafe conditions or practices to their direct supervisor or the job supervisor/person-in-charge (PIC) during work performance. Employees should take personal action to correct or mitigate the unsafe condition at the time it is discovered. Employees are responsible for following all written procedures, controls specified in permits (e.g., Confined Space Entry Permit and Radiation Work Permit), and additional safety instructions contained in work control documents or conveyed by the job supervisor/PIC.

1.4.3 Tank Waste Remediation System Industrial Health and Safety Management

The manager is responsible for ensuring close coordination between the tank farm and the organization for the purpose of maintaining a safe and healthful workplace. Other responsibilities include developing and implementing this HASP and auditing field activities, as appropriate, to verify compliance; ensuring the effective integration and involvement of safety and health professionals in daily tank farm activities to ensure hazards are identified and controlled; supporting the line organization in dealing with hazards and establishing safety and health requirements. The manager of Tank Waste Remediation System Industrial Health and Safety (TWRS-IH&S) will function as the Tank Farm Site Safety and Health supervisor (SSHS).
1.4.4 Tank Waste Remediation System Industrial
Health and Safety Personnel

Personnel in the TWRS-IH&S organization are responsible for assisting tank farm
management in defining and resolving safety and health issues; aiding in the communication
of hazards to tank farm employees; implementing safety and health requirements; providing
evaluations of hazards; and verifying compliance with this HASP. TWRS-IH&S personnel
will function as the Site Safety and Health Representatives (SSHR).

1.4.5 Site Safety and Health Supervisor

The SSHS is responsible for designating personnel as SSHRs, ensuring that names of SSHRs
are posted at tank farm access points, ensuring the HASP is implemented through the
designated SSHRs, and verifying SSHR compliance with the requirements contained in the
HASP.

1.4.6 Site Safety and Health Representative

The SSHR is responsible for ensuring all designated health and safety procedures and
requirements are properly implemented in the field and providing technical assistance for all
matters specifically related to worker health and safety. The SSHR will invoke stop-work
authority for activities that could potentially jeopardize worker health and safety.

Additionally, the SSHR is responsible for evaluating the adequacy of prescribed health and
safety procedures and the levels of protection provided for the actual conditions in the field.
Where an obvious discrepancy exists between the hazards present and the level of personal
protective equipment (PPE) specified, the SSHR will take immediate corrective action. If the
level of PPE is inadequate for the actual site conditions, the SSHR will immediately notify
the job supervisor/PIC, and ensure the job is discontinued until corrective actions are
implemented.

1.4.7 Tank Waste Remediation System Radiological Control

The Tank Waste Remediation System Radiological Control organization is responsible for
monitoring for radiological hazards, providing radiological survey maps to support work
planning and performance, verifying compliance with established radiological procedures and
invoking stop-work authority for radiological hazards that could potentially jeopardize worker
health and safety.
This page intentionally left blank.
2.0 HAZARD EVALUATION

The tank farms pose potential physical, chemical, environmental, and radiological hazards. The radiological hazards associated with the tank farms have been documented extensively; however, this is not true for the analysis of other hazards.

Personnel may be exposed to a variety of chemical, physical, biological, and ergonomic agents while working at the tank farms. Worker exposure to hazards may result from contact with materials, use of equipment, or working conditions. These hazards must be identified, and personnel must be properly protected. The ongoing efforts identified above are aimed at reducing the risks of injury, property damage, or exposure to chemical or radioactive materials. Multiple hazards must be considered, such as vapor exposures; flammability; heat and cold stress; electrical hazards; excessive noise levels; encounters with snakes, spiders, and insects; poor lifting techniques; and slips, trips, and falls.

Tank farm personnel and the Tank Waste Remediation System-Industrial Health and Safety staff work together to identify hazards at the worksite. As hazards are identified and evaluated, controls are employed to eliminate or mitigate the potential risks. The measures employed are documented, and the documentation is then disseminated. This information on hazards is used for work location posting and for discussion at pre-job safety briefings and safety meetings.

This section of the Health and Safety Plan (HASP) provides information on safety and health hazards that may be present at tank farms. For information on specific hazards identified in each of the tank farms and major facilities, refer to Comprehensive Baseline Hazard Assessment description sheets. These sheets are located with the site specific appendices. Each year a Comprehensive Baseline Hazard Assessment is performed and the completed form is attached to the specific farm and facility appendix.

2.1 TANK FARM TASK RELATED HAZARDS

TWRS-IH&S conducted a preliminary evaluation of health and safety hazards present in tank farms. This qualitative assessment, known as the Tank Farm Baseline Hazard Assessment, identified and ranked various health and safety hazards in the tank farms. Although the depth of the assessment was limited by its qualitative nature, it served to identify major hazards and pinpoint areas needing future work. Three of the major hazards identified in this evaluation included (1) tank farm vapor exposure, (2) heat stress, and (3) confined spaces. Programs have been implemented to reduce these three major hazards to workers.

Subsequent to the Tank Farm Baseline Hazard Assessment, TWRS-IH&S implemented a program to better define hazards. This program, known as the Hanford Occupational Exposure Assessment Program (HOEAP), provides a comprehensive and integrated approach to characterize chemical, physical, biological, and ergonomic agents used to perform specific
tasks in the work place. During FY 1995, HOEAPs will be performed on selected tasks at tank farms to verify the HOEAP process while obtaining data on the hazards present. This information will be used to refine the HOEAP process and pinpoint tasks for future HOEAPs.

The highest likelihood of accident in the tank farms is linked to procedural errors. Tank operating procedures are complex and very effective when followed. However, major problems can occur if operational errors are made (turning wrong valves, mixing incompatible materials, etc). Tank farm operations cannot be made fail-safe. Safety must continue to rely on a rigorous conduct of operations. This requires a heavy commitment to training and administrative enforcement of proper conduct.

Some potential exposure risk exists with all tank farms hazardous waste tanks. While the exact composition of the contents of each tank is not currently known, the tanks do contain a combination of organic and inorganic chemicals and radionuclides.

WHC has a general knowledge of tank contents based on the method of transfer into specific tanks. Acids, inorganics, and solvents were neutralized and put into the tanks from the 1940s to the present. However, uncertainties about the contents result from the chemicals that are being generated through chemical and radiological reactions.

Initial characterization is currently underway for some of the waste tanks. These efforts will require several years to complete because of the large number of tanks involved and the complexity of the waste mixture. Data from initial characterization efforts are being routed to Industrial Hygiene for evaluation of hazards to employees working around waste tanks. The data, along with information from personal sampling and vapor release (source) monitoring, are being used to establish control measures for tank farm work.

Control measures currently implemented at the tank farms include the use of personal protective equipment, administrative controls in the form of barricaded areas, and monitoring requirements for ammonia and organic vapors. These measures should ensure that vapor exposure levels to employees working around the tanks are well within safe limits. Recent personal sampling results verify that employee exposures are below established standards for personnel exposure.

2.2 FIRE AND EXPLOSION

Potential fire and explosion hazards exist at the tank farms. Fire hazards may be present during activities such as mixing incompatible chemicals or introducing an ignition source into an explosive or flammable environment. The fire and explosion hazards found in the tank farms are discussed in the following paragraphs.

2.2.1 Tank Vapor Space Hazards
As noted in Section 2.1, characterization of tank headspace vapors is an effort currently in process. Until characterization is completed, the assumption is maintained that all nonventilated tanks have the potential for producing a flammable gas mixture in the tank headspace. During work involving breaking containment on these tanks, monitoring is performed to verify headspace levels are less than 20 percent of the lower flammable limit (LFL). Based on historical records and core sampling of tank contents, some tanks are judged to pose a higher risk because of the potential for gas formation or chemical reaction.

Operating specifications are technical limits on a process that prevent injury to personnel or prevent damage to the facility or environment. One of these specifications affects four categories of tanks: (1) hydrogen/flammable gas, (2) ferrocyanide, (3) organic, and (4) high-heat tanks (WHC 1995). The first three categories pose unique hazards to personnel. The hazards discussed below and the Safe Work Practice (Section 2.9) has provisions to protect workers from these potential hazards.

2.2.2 Hydrogen/Flammable Gas Tanks

Although all tanks generate hydrogen gas, 25 tanks currently present a hydrogen gas buildup hazard (see Table 2-1). These tanks have the potential to retain and then periodically release hydrogen suddenly. The amount of flammable gas in these tanks can potentially exceed the lower explosive limit (LEL) during an episodic release (Wilson and Reep 1991). Hydrogen gas is highly flammable and explosive, with a LEL of 4 percent and an upper explosive limit of 75 percent. This gas is colorless, odorless, and tasteless. A significant radiological release could result if hydrogen gas and an oxidizer were ignited and the tank boundary was breached.

Any work in or on these tanks will follow the operating specifications in Operating Specifications for Watchlist Tanks, OSD-T-151-00030, Section 30.2.A, "Hydrogen/Flammable Gas Tank" (WHC 1995). If available, data from Standard Hydrogen Monitoring System (SHMS), should be evaluated prior to intrusive work or breach of containment. The controls specified in this document preclude the introduction of an ignition source into a tank or in an area that could potentially exceed the LEL of a flammable gas.

2.2.3 Ferrocyanide Tanks

Currently, 18 tanks present of ferrocyanide (FeCN) hazards inside the tanks. Ferrocyanide was added to these tanks to act as a precipitate carrier for ^{137}Cs. The hazards in these tanks result primarily from the radionuclides and heavy metals that could be released if an exothermic reaction of ferrocyanide occurred and the tank boundary was breached. Ferrocyanide is a stable ion that forms a nontoxic salt. Many cyanide compounds are described as having a bitter almond odor.
Table 2-1. Tank Farm Special Hazard Watch List.

<table>
<thead>
<tr>
<th>Hydrogen/flammable gas</th>
<th>Ferrocyanide</th>
<th>Organic</th>
<th>High Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AX-101</td>
<td>241-BY-104</td>
<td>241-AX-102</td>
<td></td>
</tr>
<tr>
<td>241-AX-103</td>
<td>241-BY-105</td>
<td>241-B-103</td>
<td></td>
</tr>
<tr>
<td>241-S-102</td>
<td>241-BY-106</td>
<td>241-C-102</td>
<td></td>
</tr>
<tr>
<td>241-S-111</td>
<td>241-BY-107</td>
<td>241-C-103b</td>
<td></td>
</tr>
<tr>
<td>241-S-112</td>
<td>241-BY-108</td>
<td>241-S-102*</td>
<td></td>
</tr>
<tr>
<td>241-SX-101</td>
<td>241-BY-110</td>
<td>241-S-111a</td>
<td></td>
</tr>
<tr>
<td>241-SX-102</td>
<td>241-BY-111</td>
<td>241-SX-103</td>
<td></td>
</tr>
<tr>
<td>241-SX-103</td>
<td>241-BY-112</td>
<td>241-SX-106*</td>
<td></td>
</tr>
<tr>
<td>241-SX-104</td>
<td>241-C-108</td>
<td>241-T-111</td>
<td></td>
</tr>
<tr>
<td>241-SX-105</td>
<td>241-C-109</td>
<td>241-TX-105</td>
<td></td>
</tr>
<tr>
<td>241-SX-106</td>
<td>241-C-111</td>
<td>241-TX-118*</td>
<td></td>
</tr>
<tr>
<td>241-SX-109</td>
<td>241-C-112</td>
<td>241-TY-104*</td>
<td></td>
</tr>
<tr>
<td>241-T-110</td>
<td>241-T-107</td>
<td>241-U-103*</td>
<td></td>
</tr>
<tr>
<td>241-U-103</td>
<td>241-TX-118*</td>
<td>241-U-105*</td>
<td></td>
</tr>
<tr>
<td>241-U-105</td>
<td>241-TY-101</td>
<td>241-U-106</td>
<td></td>
</tr>
<tr>
<td>241-U-107</td>
<td>241-TY-103</td>
<td>241-U-107</td>
<td></td>
</tr>
<tr>
<td>241-U-108</td>
<td>241-TY-104*</td>
<td>241-U-111</td>
<td></td>
</tr>
<tr>
<td>241-U-109</td>
<td>241-U-203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN-103</td>
<td></td>
<td>241-U-204</td>
<td></td>
</tr>
<tr>
<td>241-AN-104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN-105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-SY-101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-SY-103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW-101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
*Tank found in more than one watchlist.
*Tank 241-C-103 has a separable organic layer on the waste surface.
Ferrocyanide tanks are identified as tanks that contain greater than or equal to 1,000 gram-mole (180 lb/82 kg) of ferrocyanide. Ferrocyanide, in the presence of a near-stoichiometric amount of an oxidizing agent, can be explosive if exposed to high temperatures (above 190 °C [374 °F]) or sparks (Farley 1992).

Any work in or on these tanks will follow the operating specification in OSD-T-151-00030, Section 30.2.B, "Ferrocyanide Tank" (WHC 1995).

2.2.4 Organic Tanks

Although many tanks contain some organic solids and liquids, 20 tanks currently present a special hazard from organic substances. Organic tanks listed in Table 2-1 contain amounts greater than or equal to 3 wt% of total organic carbon (equivalent to 10 wt% sodium acetate). High concentrations of organic compounds and chemicals could support an exothermic reaction at temperatures above 285°C (545°F) (Wilson and Reep 1991). Under certain scenarios involving overheating of a tank, such a mixture of organic solids could react rapidly, possibly breaching the tank boundary and allowing a release of radioactive materials.

Most organic chemicals are potentially combustible. Many organic chemicals have an odor that can be detected at relatively low concentrations; however, tributyl phosphate is odorless. The odor of organic chemicals varies; some are sweet smelling, others have a solvent-type odor, and methylamine smells like ammonia. Mixtures of organic salts and nitrites or nitrates may present a fire and/or explosion hazard.

Currently, tank vapor space analysis is preliminary; consequently, data for tank vapor space analysis are incomplete and lack accuracy and precision. Efforts are being developed to ensure the data are gathered more reliably and in a more scientific manner.

Any work in or on these tanks will follow the operating specification in OSD-T-151-00030, Section 30.2.C, "Organic Tank" (WHC 1995). These tanks have been identified as Watch List Tanks in accordance with National Defense Authorization Act for Fiscal Year 1991 Public Law 101-510, Section 3137, "Safety Measures for Waste Tanks at Hanford Nuclear Reservation."

2.2.5 Cutting, Welding, and Burning

Hazards from cutting and welding with electric arcs, oxy-fuel gas flames, and other forms of hot work (such as open flames, grinding, and brazing processes) include extreme heat, sparks, hot slag, fumes, gases, noise, and shock. WHC-CM-4-41, Section 5.3, provides the requirements and responsibilities for the control of these hazards. A formal Confined Space
Entry Permit (WHC form A-6000-895.1, available on JetForm for Hanford Local Area Network [HLAN] users) is required for all hazardous work being done outside of designated welding areas.

2.2.6 Flammable/Combustible Material

Flammable liquids shall be stored and dispensed from U.S. Department of Transportation (DOT)-approved shipping containers or approved safety containers. The vapors given off from these liquids are above their flash point and therefore are susceptible to any ignition source. WHC-CM-4-41, Section 5.5, provides the requirements for the use, storage, and handling of these liquids.

Flammable gases shall be stored at high pressures in DOT-approved shipping containers, which provide protection. Failure of such a container will release very large volumes of gas; therefore, expert attention to equipment design is needed in handling, transporting, and use of these materials. WHC-CM-4-3, Section PS-2, provides the requirements for the storage, transportation, identification, and use of compressed gases.

2.3 CHEMICAL AGENTS

Exposure to chemical agents could result if personnel come in contact with gaseous, liquid, or solid materials at the tank farms. Some chemical hazards known to exist in waste tanks include normal paraffin hydrocarbon (NPH), ammonia, acetone, butanol, tributyl phosphate and formic acid. Personnel shall make every effort to avoid direct contact with tank contents or other hazardous materials.

The hazards associated with organic materials are described in Section 2.1.

A number of inorganic chemicals are also known to be present in tank waste. Among the compounds that have been detected are ammonia, nitrogen oxides, hydrogen, and acid gases (e.g., hydrogen sulfide, hydrogen cyanide, sulfur dioxide, sulfur trioxide, and hydrogen fluoride). Various nitrates and nitrites are also known to exist in the tank waste.

Many inorganic chemicals smell like ammonia. The sulfur-containing compounds all have a strong, unpleasant sulfur odor (i.e., rotten egg). Nitrogen oxides may smell slightly sweet or pungent and acrid.

Chemical exposure may occur through inhalation, absorption, ingestion, or injection.

- Inhalation of hazardous materials may occur from lack of or improper use of respiratory equipment, malfunctioning monitoring equipment, or the presence of either undetected chemicals or chemicals in quantities greater than respiratory equipment protection limits.
Absorption through the skin or eyes of solid, liquid, or gaseous hazardous substances can occur by direct contact or through cuts and/or abrasions. Skin or eye absorption can occur when a worker does not wear the proper protective clothing or proper eye protection, when a break or a tear occurs in the protective clothing, or when unwashed hands come in contact with the eyes.

Exposure by ingestion might occur and affect the digestive system if hazardous substances are ingested by workers who do not practice good personal hygiene habits (e.g., washing hands thoroughly after completion of work or before smoking, eating, drinking, or chewing gum or tobacco).

Hazardous substances may be injected into the body through puncture wounds while using contaminated equipment with sharp edges, from protrusions, pressurized hoses, or air lines.

To mitigate potentially harmful chemical exposure, administrative controls have been implemented at the tank farms until a full characterization can be completed and engineering controls implemented. These administrative controls are based upon the best currently available data, modeling, and worst-case scenarios to ensure that conservative levels of protection are achieved.

2.4 PHYSICAL AGENTS

2.4.1 Heat Stress

Workers who wear protective clothing and/or become exposed to elevated ambient temperatures may experience an increase in body temperature that may lead to the potential for heat stress disorders. This situation is worsened by the use of containment structures in addition to layers of protective clothing. Based on injury statistics, heat stress is considered the greatest occupational risk to tank farm workers. Administrative controls and monitoring are required to minimize exposure. The person-in-charge, supported by the SSHR and the Industrial Hygiene (IH), shall obtain and track the wet bulb globe temperature (WBGT) and make adjustments in the work/rest cycle based on the WBGT, the clothing ensemble, level of work effort, and degree of worker heat acclimatization. The PIC is responsible for complying with the requirements of this section after receiving training on the fundamentals of heat stress. Guidelines for a work/rest schedule, based on the WBGT, have been established by the American Conference of Governmental Industrial Hygienists (ACGIH). TWRS-IH&S has modified the ACGIH guidelines for use by the PICs and safety personnel in the tank farms (Heat Stress Control Procedure, Section 2.4.2). If the PIC and/or the SSHR determines that a heat stress potential exists, based on criteria contained in this section, an appropriate work/rest regimen should be implemented immediately. If the PIC makes the determination that a heat stress potential exists, the SSHR should be informed.
High body temperatures can result in various heat stress disorders including physical discomfort, heat fatigue, and in extreme cases, heat stroke and even death. Workers must be informed of the signs and symptoms of heat stress to preserve safe work conditions in the tank farms. Work scheduled for summer months requires special attention with respect to heat stress. In addition, work performed in nonventilated containment devices (e.g., greenhouses) will involve higher than ambient temperatures.

Workers shall be trained in recognizing the signs and symptoms of heat stress (24- and 40-hour hazardous waste training). PICs will reinforce this training in pre-job briefings during warm temperature conditions.

The symptoms of heat stress, listed below, require the affected worker to be immediately removed from the work area to a cool area and given attention appropriate for the symptoms present. Three of the listed heat stress symptoms marked with an asterisk (i.e., confusion, fainting, and slurred speech) indicate the affected worker requires emergency care.¹ The Hanford Fire Department (contact by dialing 911 plant telephone or 811 cellular telephone) shall transport any worker needing emergency care for heat stress. If any of the other heat stress symptoms listed (excluding confusion, fainting, or slurred speech) are present, the affected worker shall be provided cool water and be allowed to rest in a cool area. Workers may be taken to the Health Service Center on normal day shift for treatment and/or further evaluation.

- Confusion
- Fatigue
- Fainting
- Nausea
- Slurred speech
- Profuse sweating
- Clammy skin
- Skin color change
- Dizziness
- Vision problems

Many methods are available to minimize the effects of heat stress besides personnel monitoring and varying the work/rest schedule. For example, work can be scheduled to begin early in the day or later at night to avoid high temperatures encountered in the afternoon. During breaks, each worker may rest in a shaded area and drink water. There is a desk instruction that covers the allowance of drinking water inside the farms (Drinking Water in a CA, DI-33300-12). Ice vests are also available for use in the tank farms.

¹Confusion, fainting, and slurred speech are the most serious symptoms of heat stress. The presence of any of these three symptoms shall require the Hanford Fire Department transport the affected worker for emergency care (dial 911 on plant telephone or 811 on cellular telephone to contact the Hanford Fire Department).
Glovebags may be an option for use during some work activities where a containment structure has previously been required. This option can be explored with the Tank Waste Remediation Health Physics (TWRHP) organization.

TWRS-IH&S is using a modified version of the ACGIH heat stress threshold limit values as a basis for monitoring and controlling heat stress in the tank farms. The heat stress control procedure, appearing in Section 2.4.2, is used by field supervisors (PICs) and TWRS-IH&S staff in prescribing appropriate work/rest limitations to control the potential for heat stress disorders. The PIC may institute additional administrative controls to alleviate the potential for heat stress disorders at their discretion.

Following is the tank farm heat stress control procedure. Individuals implementing this procedure must read and fully understand how the procedure is to be applied. Site Safety and Health representatives are available for consultation should questions or concerns arise.

2.4.2 Heat Stress Control Procedure

This procedure is provided to supplement WHC-CM-4-3, Industrial Safety Manual, for heat stress protection for tank farms personnel. It provides guidance for implementing the ACGIH modified procedure for applying WBGT data to set safe work and rest times in the field. This procedure will be implemented by job supervisors (PICs) and TWRS-IH&S personnel. The following section defines common terms used in heat stress control, describes important heat stress disorders, assigns responsibilities, and provides guidance for applying modified ACGIH heat stress controls. Field work supervisors should read, understand, and implement this procedure in total. Any questions relating to the application of requirements or guidance should be directed to the Site Safety and Health representative (SSHR) or Industrial Hygiene (IH).

2.4.2.1 Terms

Acclimatization. The psychological and physiological changes that occur as a result of working in a hot environment for at least two hours per day for seven to ten days. Acclimatization tends to reduce the strain created by environmental heat stress.

Heat Stress. The combination of environmental and physical work factors that constitute the total heat load imposed on the body. Environmental factors include the following:

- Air temperature
- Radiant heat exchange rate
- Air movement
- Relative humidity.
When working, the body adds to heat stress by creating body heat in proportion to the exertion expended to do the work. Clothing also influences heat stress. Heat stress evaluations should take into account all of these factors in order to provide a realistic picture of the heat stress experienced by workers.

Personal Heat Stress Monitoring. A method to collect physiological monitoring data, including core body temperature and heart rate.

Rest. Cessation of work in a shaded environment allowing the worker time to cool down between work periods.

Contamination Area. An area designated by Health Physics to contain radioactive contamination.

Wet Bulb Globe Temperature. A type of indicator to define human heat stress potential based on a combination of dry bulb, wet bulb, and globe temperature.

Work Type. Three categories have been established for exertion levels for use with the modified ACGIH heat stress guidelines: light, moderate, and heavy.

- Light work includes standing, walking, taking instrument readings, and writing.
- Moderate work includes lifting and moving small pieces of equipment and work that requires a moderate amount of moving around.
- Heavy work includes lifting or moving moderately heavy to heavy pieces of equipment and work that requires high levels of continuous motion.

2.4.2.2 **Personnel Responsibilities.** Personnel from several disciplines will be required to implement the Heat Stress Control Procedure.

The Site Safety and Health Representative. The SSHR will review work packages, attend plan-of-the-week (POW) and plan-of-the-day (POD) meetings, perform job walkdowns, and field incoming questions or concerns regarding heat stress for potential follow-up monitoring.

TWRS-IH&S and Industrial Hygiene Field Services Personnel. Personnel from TWRS-IH&S and Industrial Hygiene Field Services (IHFS) will track heat stress affected work, and implement work controls as necessary, in conjunction with the PIC, to reduce the potential for tank farm workers succumbing to heat stress disorders.

Industrial Hygiene Personnel. Personnel from IH will review work packages and field incoming questions or concerns regarding heat stress for potential follow-up monitoring. Industrial Hygiene personnel will track heat stress affected work, in conjunction with the SSHR and PICs, and implement further work controls as necessary to reduce the potential
for tank farm workers succumbing to heat stress disorders. Industrial Hygiene personnel will monitor WBGT as necessary, under actual field conditions of the workers, to determine appropriate levels of work. Industrial Hygiene personnel will investigate all heat stress disorder cases. Industrial Hygiene will make notification to tank farm Operations regarding the potential for heat stress for the upcoming day based on a heat stress index available from the Battelle Weather Station.

Industrial Hygiene Technicians. IH technicians will collect WBGT data in the field upon request, and report findings to the SSHR or an industrial hygienist.

Battelle Meteorologic Personnel. Meteorologic personnel from Battelle will collect and dispense WBGT data and apparent temperature information to interested parties.

The Person-In-Charge. The PIC will schedule work and allow work breaks in a manner that will prevent employees from being exposed to undue heat. The PIC will also appropriately institute work/rest regimens including 100 percent work, 75 percent work/25 percent rest, and 50 percent work/50 percent rest. The PIC will contact the SSHR or an industrial hygienist to inform them when a work/rest regimen of 50 percent work/50 percent rest or above has been imposed. The PIC will also inform Industrial Hygiene whenever work will take place in a greenhouse between May 15 and September 30.

2.4.2.3 General Heat Stress Control Strategy.

1. **Know what the conditions are.** The Battelle Meteorologic and Climatologic Laboratory (located between the 200 East and 200 West Areas) can provide nearly current WBGT data. Call 373-2716 (or 373-2710 for emergencies only) to get this information anytime after 6 a.m.

2. **Apply the modified ACGIH guideline for heat stress protection.** Table 2-2 gives standard work/rest times for the kinds of work being performed, the WBGT, clothing ensemble, and the worker's level of acclimatization.

3. **Communicate the "apparent temperature" as reported from the Battelle Weather Station to interested parties.** During warm weather conditions, TWRS-IH&S will communicate the "apparent temperature" and a general heat stress index to key tank farm personnel via electronic mail. This communication is commonly titled "Heat Stress Alert."

4. **Training.**
 a. Tank farms employees will be trained to recognize and respond to heat stress.
 b. TWRS-IH&S staff will be instructed in the application of the tank farm heat stress control procedure.
Table 2-2. Modified American Conference of Governmental Industrial Hygienists Guidelines for Heat Stress Protection (for acclimatized workers).

<table>
<thead>
<tr>
<th>Work type</th>
<th>Clothing type</th>
<th>Percent ratio of work/rest for each hour based on threshold limit values in Table (expressed in °C and [°F])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Light</td>
<td>Street and summer clothing</td>
<td>30 (86)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing</td>
<td>30 (86)</td>
</tr>
<tr>
<td></td>
<td>Double Anti-C with modesty clothing</td>
<td>28.3 (83)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing in greenhouse</td>
<td>25 (77)</td>
</tr>
<tr>
<td>Moderate</td>
<td>Street and summer clothing</td>
<td>26.7 (80)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing</td>
<td>26.7 (80)</td>
</tr>
<tr>
<td></td>
<td>Double Anti-C with modesty clothing</td>
<td>25 (77)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing in greenhouse</td>
<td>21.6 (71)</td>
</tr>
<tr>
<td>Heavy</td>
<td>Street and summer clothing</td>
<td>25 (77)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing</td>
<td>25 (77)</td>
</tr>
<tr>
<td></td>
<td>Double Anti-C with modesty clothing</td>
<td>23.3 (74)</td>
</tr>
<tr>
<td></td>
<td>Anti-C with modesty clothing in greenhouse</td>
<td>20 (68)</td>
</tr>
</tbody>
</table>

Notes:

For unacclimatized workers performing a moderate level of work, reduce the permissible heat exposure threshold limit value by 2.5 °C (4.5 °F) (i.e., subtract 2.5 °C (4.5 °F) from the wet bulb globe temperature in Table 2-2.

For conditions in these columns (50/50 and 25/75), contact Tank Waste Remediation System Industrial Hygiene group for increased monitoring. Less stressful conditions (100 and 75/25 percent columns are monitored by the Site Safety and Health representative and the person-in-charge.

Reduce the permissible heat exposure threshold limit value by 0.6 °C (1 °F) for summer clothing under Anti-Cs. Reduce the permissible heat exposure threshold limit value by 1.1 °C (2 °F) for street clothing under Anti-CS. Subtract 0.6 or 1.1 °C (1 of 2 °F) from the wet bulb globe temperature in Table 2-2.

Threshold limit values are estimated for greenhouse work. Use actual wet bulb globe temperature values and clothing types when available.

2-12
5. **Work package review and field coverage.** TWRS-IH&S staff will review each tank farms work package to determine whether heat stress could be a concern for that job.

Where heat stress could be a factor, the reviewer will submit comments (using an RCR) to the cognizant engineer preparing the work package, specifying that a nonsignatory prerequisite be included in the package to ensure the SSHR is notified before the job starts. This stipulation also applies to all greenhouse work taking place between May 15 and September 30.

As an additional precaution, SSHRs will attend each plan-of-the-week (POW) and Plan of the Day (POD) meeting or communicate with the scheduler to note any other work that may create a heat stress concern. If such work is identified, the SSHR will collect the current WBGT data and, with the PIC, set the appropriate control levels.

6. **Extra monitoring during potentially high heat stress conditions.** If the control level reaches a 50 percent work/50 percent rest regimen (Table 2-2), the SSHR and/or the PIC must contact an industrial hygienist. Monitoring in the field may be performed to collect local job-site WBGT readings and implement further control(s) as necessary. Additional controls may include the following:

- Additional rest in a shaded area with fluid replenishment
- Personal protective equipment (such as ice vests)
- Changing aspects of the work environment
- Other control measures.

7. **Limit exposure based on clothing factors.** A study is being implemented to collect personal monitoring data about heat stress in the tank farms. This study will use homogeneous exposure groups (HEG) based on field clothing requirements. Personnel monitoring will be used to develop accurate exposure limits based on local conditions. Four HEGs will be defined initially based on clothing type: (1) street clothing, (2) anti-Cs, (3) double anti-Cs, and (4) anti-Cs worn in containment tents.

8. **Investigate/share lessons learned.** All reported heat stress cases in the tank farms will be individually investigated by TWRS-IH&S. The lessons learned from these investigations will be used to improve the tank farm heat stress control procedure.
9. **Use appropriate monitoring equipment.** Metrosonics heat stress monitors (HSM) will be made available to allow Industrial Hygiene personnel to monitor for potential heat stress concerns. Industrial Hygiene personnel will also collect personal heat stress data using Metrosonics personal heat stress monitors.

10. **Ensure water availability.** Water will be made available to tank farm employees working in a contamination area (CA) in accordance with the *Drinking Water Desk Instruction* (DI-333300-12, Rev. 1). The desk instruction calls for dispensing of water at the discretion of the PIC as soon as any administrative control has been put in place to prevent heat stress. In addition to providing drinking water to employees, necessary engineering and administrative controls are to be implemented as outlined in this procedure.

NOTE: Contact TWRS-IH&S should you have any question or concern about implementing this procedure. PICs may institute controls for 100 percent work, 75 percent work/25 percent rest, and 50 percent work/50 percent rest. The PIC is responsible for contacting an SSHR or industrial hygienist to inform them that a work/rest regimen of 50 percent work/50 percent rest or above has been instituted. The PIC is also responsible for informing TWRS-IH&S Industrial Hygiene whenever work will take place in a greenhouse between May 15 and September 30.

11. **Set work/rest levels to control heat stress based on WBGT Threshold Limit Values (TLVs).**

 a. **Estimate the work type** (light, moderate, or heavy) using the definitions provided above.

 b. **Get the most current WBGT available** (either local or from Battelle).

 c. **Read Table 2-2 from left to right and look across the row appropriate for the given work level and clothing type until the threshold limit value (TLV) that exceeds the local WBGT is identified.**

 d. **Read up from the TLV found in "c" and find the work/rest ratio appropriate for the current WBGT, work load, and clothing, taking into account the notes at the bottom of Table 2-2. Anytime a work/rest regimen of 50 percent work/50 percent rest is instituted, the PIC shall notify TWRS-IH&S.**

2Metrosonics is a trademark of Metrosonics, Inc., Rochester, New York.
2.4.3 Cold Exposure

Exposure to low temperatures may be a factor if work is done in the evening hours, if winds are high, if unpredictable weather moves in, or during the winter months (see Table 2-3 for wind chill factors). Extra care must be exercised while working in these environments. Workers should observe each other's facial extremities (ears and nose) and exposed skin for signs of frostbite (whitening of the skin surface). Decreased mental coherence and body movements are signs of hypothermia. If individuals demonstrate evidence of hypothermia or other significant cold injuries (e.g., frostbite), coworkers should notify the Hanford Fire Department ambulance by calling 911 on plant telephone or 811 on cellular telephone.

Table 2-3. Cooling Power of Wind on Exposed Flesh Expressed as Equivalent Temperature (Under Calm Conditions).

<table>
<thead>
<tr>
<th>Estimated wind speed (in mph)</th>
<th>Actual temperature reading (°F)</th>
<th>Equivalent chill temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Calm</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>48</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>11</td>
</tr>
</tbody>
</table>

(Wind speeds greater than 40 mph have little additional effect) LITTLE DANGER In < hour with dry skin. Maximum danger of false sense of security INCREASING DANGER Danger from freezing of exposed flesh within one minute GREAT DANGER Flesh may freeze within 30 seconds

2.4.4 Worker Fatigue

Worker fatigue can lead to a temporary decrease in physical and mental performance. When fatigued, a worker may feel tired, irritable, and experience general weakness and other nonspecific symptoms such as headache or indigestion. Fatigue has a protective function much like thirst or hunger. It is the body's way of telling a person that they need to rest and refrain from further stress to recover.
From time to time workers in the tank farms may experience symptoms of fatigue. Usually a night's rest will be all that is needed for a complete recovery. Some of the work conditions in the tank farms that are most likely to cause fatigue include the following: working long or consecutive shifts, working with supplied air respirators, performing particularly strenuous or static tasks, or a combination of these conditions.

Fatigue may be avoided by adjusting the work/rest schedule of workers who may be at risk. Workers at risk of fatigue should be taken into account when work assignments are made. Overtime should be controlled by the following guidance (any deviation from the overtime requirements shall be authorized on a case-by-case basis in accordance with company policy):

- A person shall not be permitted to work more than 16 consecutive hours, excluding turnover time.
- A person shall not be permitted to work more than 24 cumulative hours in any 48-hour period, excluding turnover time.
- A person shall not be permitted to work more than 72 hours in a 7-day period, excluding turnover time.
- A person shall not be permitted to work more than 14 consecutive days without having 2 consecutive days off.

2.4.5 Noise Hazards

If an employee is exposed to an 8-hour time-weighted average of 85 decibels (dB) or greater, or otherwise exceeds the noise exposure criteria, the employee shall be placed in a hearing conservation program and hearing protection shall be provided as stated in WHC-CM-4-3, *Industrial Safety Manual*, Section W-7, "Noise/Hearing Conservation." Tank farm personnel may be exposed to high levels of noise generated by heavy equipment, exhaust fans, and other sources. For specific tank farm noise sources, refer to the appendices.

When there is concern of high noise levels, a noise survey must be performed. Areas where the noise levels exceed 85 dB are considered noise hazard areas. If stay times are used, they should be estimated conservatively.

Allowable stay times are shown in Table 2-4. Appropriate hearing protection shall be provided, and all tank farms employees will be provided an audiogram at their medical examination. High noise areas will be designated and posted. A warning sign identifying the need to wear hearing protection is available as WHC store stock item 37-8070-025.
Table 2-4. Exposure Limits for Continuous or Intermittent Noise.

<table>
<thead>
<tr>
<th>Duration (hours per day)</th>
<th>Sound level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>.5</td>
<td>105</td>
</tr>
<tr>
<td>.25</td>
<td>110</td>
</tr>
<tr>
<td>.125</td>
<td>115*</td>
</tr>
</tbody>
</table>

*Exposure in excess of 115 dBA is not permitted without hearing protection.

2.4.6 Personal Protective Equipment (PPE)

Wearing PPE may reduce a worker’s ability to move freely, see clearly, and hear directions or noise that might indicate a hazard. Also, PPE can increase the risk of heat stress. Personnel must adjust their work habits to accommodate the limitations created by the required PPE. Section 4.0 of this HASP deals with PPE requirements.

2.4.7 Illumination

Tank farm personnel will likely encounter areas in the tank farms with inadequate lighting levels. When there is concern of inadequate lighting, an illumination survey must be performed and improvements made to allow safe conduct of work activities.

Requirements for minimum illumination intensities (measured in foot-candles) have been established by 29 CFR 1910.120. Areas accessible to tank farm employees shall be lighted to not less than the minimum intensities listed in Table 2-5.

2.5 RADIOLOGICAL HAZARDS

The potential exists for personnel exposure to radioactive contamination and radiation fields while working at any of the tank farms. Sources of contamination include exhausters, exposed pipes, process pits, flake boxes, liquid level indicators, and other equipment during installation, operation, or removal.
The primary means of contamination control is containment. Areas where contamination has already spread are posted to warn personnel.

The Radiation Work Permit (RWP) is used to govern all entries to radiation zones or areas, all radiological work, and all storage of radioactive materials (see WHC forms A-6000-272 and A-6000-272.1).

Table 2-5. Minimum Illumination Intensities in Foot-Candles.

<table>
<thead>
<tr>
<th>Foot-candles</th>
<th>Area or operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Normal lighting</td>
<td>General site areas.</td>
</tr>
<tr>
<td>3 Nonemergency lighting</td>
<td>Excavation and waste areas, access ways, active storage areas, loading platforms, refueling, and field maintenance areas.</td>
</tr>
<tr>
<td>5</td>
<td>Indoors: Warehouses, corridors, hallways, and exitways.</td>
</tr>
<tr>
<td>5</td>
<td>Tunnels, shafts, and general underground work areas (Exception: Minimum of 10 foot-candles are required at tunnel and shaft heading during drilling, mucking, and scaling).</td>
</tr>
<tr>
<td>10</td>
<td>General shops (e.g., mechanical and electrical equipment rooms, active storerooms, barracks or living quarters, locker or dressing rooms, dining areas, indoor toilets, and workrooms).</td>
</tr>
<tr>
<td>30</td>
<td>First aid stations, infirmaries, and offices.</td>
</tr>
</tbody>
</table>

2.6 ERGONOMIC HAZARDS

The most common ergonomic hazard identified at the tank farms is manual lifting of tools, equipment, or materials necessary to perform operations. This hazard could and has resulted in back injuries—the predominant reportable injury in the tank farms.

The Hanford Environmental Health Foundation (HEHF) provides a back injury prevention program emphasizing back strengthening and flexibility. Job hazard evaluation in the tank farms should consider the ergonomic risks. The following is a guide for manual lifting activities:

1. If available, use a material handling system when possible.

2. If the lifting activity occurs regularly, a material handling system or tool should be purchased (e.g., dolly, hoist, and spring-loaded cart).
3. Male employees lifting over 29.5 kg (65 lb), or female employees lifting over 20.4 kg (45 lb), should seek assistance from coworkers (one-time lift only, not repetitive).

4. Employees who perform manual lifts should be instructed in proper lifting techniques (materials on manual lifting are available from the Shared Resource Center, listed in the Hanford Site phone directory).

5. Physical capabilities or limitations of potential employees should be considered. Any concerns about a potential employee’s lifting ability should be discussed with the physicians at HEHF and/or with the SSHR.

Other ergonomic hazards that have been identified and/or characterized by TWR-1H&S as needing further observation include baseline work evaluations involving the extent of repetitive motion illnesses and lifting injuries.

2.7 BIOLOGICAL HAZARDS

Snakes, scorpions, bees, and spiders may hide under or inside of equipment, or in protective clothing storage areas. Workers disturbing them may be bitten or stung. The consequences of a bite or sting can be a severe reaction and, possibly, death. If an injury from a biological hazard occurs, prompt medical aid must be requested and provided. Workers with known extreme reactions to bee stings should consider carrying an anaphylaxis emergency treatment kit. Workers are advised to shake out all protective clothing before donning.

2.8 WORK ENVIRONMENT

Hazards discussed in this section may be encountered in routine job activities performed in the tank farms. Subsections 2.8.1 through 2.8.23 correlate with items listed for consideration on the JHA form required for use in planning of nonroutine work activities (see WHC-CM-4-3, Standard A-3).

2.8.1 Asbestos

Asbestos-containing materials (ACM) are found throughout the tank farms in thermal insulation, building materials, aboveground piping, floor tiles, siding, roofing, cement asbestos boards, and gasket material. When working on or disturbing ACM, controls as stated in WHC-CM-4-40, Industrial Hygiene Manual, Section 2.3, "Asbestos Control Program," must be used and followed. An asbestos work permit, WHC form 54-6700-149, shall be completed before performing asbestos work.
ACM might present an inhalation hazard if it becomes damaged (friable). Chronic (long-term) exposure can cause lung cancer, mesothelioma, digestive system cancer, and asbestosis. These risks are minimal when material is not disrupted.

Facilities with ACM have postings at each entrance, and known ACM is identified using ACM labels or pink coating. Only Washington State-certified asbestos workers may handle asbestos.

2.8.2 Elevated Work Areas

If workers are exposed to the hazard potential of falling 1.8 m (6 ft) or more from work areas that are impractical to guard with guardrails, requirements and responsibilities in WHC-CM-4-3, Industrial Safety Manual, Section CM-2, "Fall Protection," shall be followed to protect personnel.

During the course of work in the tank farms, personnel may be required to work in elevated positions on ladders, scaffolds, or equipment. When such work must be performed, a WHC fall protection work plan shall be developed and followed.

2.8.3 Walking/Working Surfaces

The walking/working surfaces in the tank farms present slip, trip, and fall hazards. Next to heat stress, this hazard has the highest potential (based on injury statistics) for causing harm to employees. Hazards that may exist include uneven terrain, guy wires, stairs, ramps, wind-blown soil, risers, conduit, ducts, well caps, electrical cords, and hoses. Additional risks from walking/working surface hazards are present during inclement weather or during the evening when illumination (lighting) in the tank farms may not be adequate. Workers must be informed of these potential hazards during general tank farm orientation training, and in previous briefing in accordance with WHC-CM-4-3, Industrial Safety Manual.

2.8.4 Working in Proximity to Moving Equipment/Vehicles

A variety of equipment may be used in the tank farms, including cranes, backhoes, personnel lifts, sample trucks, pickup trucks, and other vehicles. Spotters and/or signal persons must be used whenever there is a potential hazard from the movement or operation of machine or vehicle, in accordance with the Hanford Site Hoisting and Rigging Manual (DOE-RL 1993) and WHC-CM-4-3.

Government vehicles require a 360-degree walkaround before moving. Workers must pay close attention when working in areas where vehicles are operated. For instance, anyone working in proximity to an operating backhoe must wear a hardhat at all times. The drivers of vehicles must also be aware of people and obstacles around them. Where a vehicle has a
limited view to the rear, a spotter must be used when backing up. When cranes are used, workers on the ground around the cranes must wear hardhats and must never work or pass under lifted loads.

2.8.5 Machine Guarding

Further, those authorized to remove guarding, for any purpose, must follow WHC-IP-0842, Waste Tank Project Administration, Section 5.9.1, "Lock and Tag," (WHC 1992) and then immediately replace the guards when their work is complete, in accordance with WHC-CM-4-3. A variety of electric motors, pumps, and other power-driven equipment is found or used in the tank farms. Although all machinery shall be equipped with appropriate machine guarding, instances may occur when workers in the tank farm area might be exposed to unguarded drive shafts and couplers, chains and sprockets, v-belts and pulleys, and reciprocating parts, pinch points, or unexpected startups. Workers must be aware of these potential hazards and must report them when observed as soon as possible so that they may be properly guarded in accordance with WHC-CM-4-3, Section CM-4, "Machine Guarding."

2.8.6 Electrical Hazards

Overhead power lines, downed electrical wires, and buried cables all pose the danger of shock or electrocution. Electrical equipment may also pose a hazard to workers. Careful observation for overhead electrical hazards shall be performed by operating personnel before raising masts on drill rigs, booms on cranes, or when operating any equipment capable of coming into contact with electrical wires. Before drilling or digging in the tank farms, whether by hand or excavator, workers must first contact the tank farm facility manager to determine safe clearances. Workers must also look for frayed cables, uncovered openings in boxes and switch centers, and any other defects in electrical equipment. These hazards must be reported to the line manager as soon as they are observed, in accordance with WHC-CM-4-3, Section E.

Temporary electrical power and lighting installations are not permitted except during periods of construction, remodeling, maintenance, repair, or demolition of buildings, structures and equipment, or for experimental or developmental work.

2.8.7 Natural Hazards

Because most work performed in the tank farms is done out-of-doors, many environmental factors need to be considered. As identified in Sections 2.4.1 through 2.4.3, heat and cold stress can be a problem for workers. Inclement weather can make walking/working surfaces slippery. In addition, rain or melting snow can fill in low areas in normal walkways, causing workers to take new routes, where they may encounter other hazards.
Thunderstorms and their resultant lightning are of particular concern at the tank farms. If lightning strikes more than 8 km (5 mi) away from the tank farms, people can continue to work. If lightning strikes within 8 km (5 mi), they should leave the tank farm; workers may return if no lightning strikes are observed within 30 minutes.

The impact of wind (dust storms/high winds with potential to resuspend contamination and reduce visibility) on work in outdoor areas containing nonfixed contamination will be controlled by the applicable RWP. Operations (via standing orders) will determine additional precautions to be taken in the tank farms in high wind and predicted high-wind conditions.

2.8.8 Stored Energy Sources/Lock and Tag

Stored energy sources pose a potential hazard to tank farm workers. These hazards include (but are not limited to) electrical, mechanical, hydraulic, pneumatic, chemical, radiation and thermal energies and various forms of potential energy (e.g., springs, compressed gases, or suspended objects). Lockouts/tagouts shall be used to protect workers from these energy sources. The lockout/tagout procedures are described in WHC-IP-0842, Section 5.9.1 "Lockout/Tagout," (WHC 1992) and are controlled by Tank Farms Shift Operations.

2.8.9 Roof Work

At various times in work activities at the tank farm supporting facilities, it is required that workers access and work on the roof of a facility. When it is necessary for these activities to occur, all safety practices in WHC-CM-4-3 must be observed. A visual inspection of the roof by qualified inspectors must have been made before workers may walk on the surface (ask the building administrator for the latest roof inspection). If potential weak spots not previously identified are discovered during conduct of work, these shall be reported to the building administrator. The load limits of the roof must be determined and/or known before a load is placed on the roof. When working on the outer 3.7 m (12 ft) of the roof, a fall protection plan is required.

2.8.10 Fall Hazards

All work areas, when possible, shall be free of all fall hazards. When it is not possible to secure the work area of fall hazards, the hazards have to be identified and reported to the PIC and/or facility representative. If the fall hazards involve elevations of more than 1.8 m (6 ft), the "Fall Protection Standard" (WHC-CM-4-3, Section CM-2) must be followed. Good housekeeping prevents many fall hazards.
2.8.11 Excavation, Trenching, and Shoring

All excavation and trenching shall be planned in accordance with Standard WHC-CM-4-3, Section A-3, "Pre-job Safety Plan." An excavation permit (WHC form A-7400-373) is required in all areas before performing any excavation activities. The permit provides for the review, coordination, and supplemental approval of all excavation activities. The requirements for an excavation permit are specified in WHC-CM-4-3, Section CM-8, "Excavation, Trenching, and Shoring." The excavation permit may be used as a tool to identify all potential hazards.

The excavation shall be inspected by the PIC/supervisor before the entry of personnel. The inspection is necessary to identify any cracks, spills, or unintended load that can lead to instability. The excavation must be clearly marked to prevent accidental entry.

Excavations greater than 1.2 m (4 ft) deep shall be stabilized against collapse by shoring, sloping, or shielding. For excavations more than 6.1 m (20 ft) deep or where sloping/shoring systems cannot be met, a designed protective system must be implemented. Adequate means of exit shall be provided within 7.6 m (25 ft) of any work location. In addition, excavations ≥ 1.2 m (4 ft) must be reviewed for potential confined space issues as part of the permit planning process.

2.8.12 Scaffolding

Scaffolding materials purchased, erected, and used shall meet the applicable OSHA and Washington Industrial Safety and Health Administration safety standards and the manufacturer's rules and instructions for safe use and erection. Upon completion of erection and before use, a "Scaffold Safety Checklist" (WHC BC-5600-167) and status tag shall be attached next to the access ladder. Scaffolding shall be inspected and recertified every 30 days.

When scaffolding is used in the tank farms, all requirements of WHC-CM-4-3, Section G-9, "Scaffolding Safety," shall be followed.

2.8.13 Aerial Lifts

All requirements and responsibilities for the construction, inspection, maintenance, and operation of vehicle-mounted, boom-supported, and self-propelled elevating work platforms or aerial lifts shall be in compliance with WHC-CM-4-3, Section CM-12, "Elevating Work Platforms."
2.8.14 Ladders
Ladders purchased and used at the tank farms shall be appropriate for industrial applications and comply with the specifications of WHC-CM-4-3, Section CM-5, "Portable Ladders." Employees working with portable ladders shall know and follow established rules and safe practices for ladder use. Ladders shall be maintained in good condition at all times, inspected before each use, and stored properly.

2.8.15 Vehicle Traffic
All vehicle drivers in tank farms shall obey all posted signs and Washington State vehicle laws. Guidelines for transportation are provided in WHC-CM-4-3, Section T, "Transportation." Vehicles are not allowed in the tank farms unless the job requires the use of a vehicle.

Pedestrians in the tank farms shall be aware of all vehicle traffic and obey all safety rules.

2.8.16 Heavy Equipment
All heavy equipment operators shall obey all posted signs and Washington State vehicle laws. Heavy equipment shall be used in accordance with manufacturer's instruction for use. Guidelines for transportation are provided in WHC-CM-4-3, Section T, "Transportation."

2.8.17 Rigging Operation
For operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, and rigging equipment refer to DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual (DOE 1993).

2.8.18 Power Tools
Tank farm employees who operate power tools shall be properly trained in the use of the equipment. Power tools should be operated in strict accordance with the manufacturer's instructions. Required personal protective equipment shall be worn as needed when operating power tools. The requirements and responsibilities for the use of power tools are located in WHC-CM-4-3, Section TE-3, "Portable Power Tools."
2.8.19 Pinch Points

During certain work activities in the tank farms, a situation may arise exposing workers to moving machinery injury hazards. This situation may present a "pinch-point hazard." Pinch-point injury hazards can exist between unguarded rotating and fixed parts that create a shearing, crushing, or abrading action. For guidance of preventing pinch-point injuries refer to WHC-CM-4-3, Section CM-4, "Machine Guarding."

2.8.20 Falling Objects

During tank farm operations and maintenance elevated work activities, it is important to remember there is a potential for falling objects. Hard hats are required. No work shall be conducted beneath an elevated platform or load.

2.8.21 Sharp Objects

Certain work activities in tank farms may expose workers to hazards involving sharp object injuries. Sharp objects can be encountered as a result of mechanical failure, in the course of using tools and machinery, and in handling discarded waste materials. For guidance of preventing the encounter of sharp objects refer to WHC-CM-4-3, Industrial Safety Manual.

2.8.22 Overhead Obstructions

Some work activities will require passage beneath low hanging structures such as piping or conduit. Any repeated work activities requiring passage beneath low-hanging structures shall require the use of hardhats. If overhead obstructions are in areas where it is not feasible to reroute, the obstructions shall be marked with caution tape (yellow and black stripe) or signs. For general guidance, refer to the WHC-CM-4-3, Industrial Safety Manual.

2.8.23 Sanitation

Requirements for a sanitary work environment are located in WHC-CM-4-3, Section W-2, "Industrial Sanitation." All work places shall be kept clean and housekeeping shall be monitored regularly. At the end of each task/job, the work area will be clean with all work materials, tools, and equipment returned to appropriate storage locations. Adequate potable water and toilet facilities shall be provided.
2.9 SAFE WORK PRACTICE (Rev. 13)

REQUIREMENTS FOR ENTRY INTO TANK FARM RESPIRATORY PROTECTION ZONES. REV. 13

1. PURPOSE

This safe work practice (SWP) implements requirements for entry into the 200 Area Tank Farms and establishes nonradiological respiratory protection and air monitoring control requirements for all work activities conducted at the 200 Area Tank Farms. These requirements are based on measured contaminant levels and good industrial hygiene practices. This SWP was developed by TWRS IH&S and the material presented is intended to be in agreement with other documents such as Operating Specification Documents (OSD) and Safety Analysis Report Revised (SARR). However, compliance with this SWP does not ensure compliance with other applicable documents.

2. SCOPE

This SWP is used by Westinghouse Hanford Company (WHC) industrial hygienists and industrial hygiene and safety technicians (IHST) responsible for monitoring work areas and ensuring appropriate respiratory protection is worn at the 200 Area Tank Farms. This SWP is also used by tank farm operations personnel for planning, scheduling, and work package preparation.

The SWP is an integral part of the Tank Farm Health and Safety Plan. The SWP provides the guidelines by which the WHC industrial hygienist and IHST will determine specific monitoring and respiratory protection requirements for all work activities performed at the 200 Area Tank Farms.

All monitoring and respiratory protection prescribed by this SWP shall be performed by a WHC industrial hygienist or IHST. These persons follow the guidelines established in this SWP (Section 4) to determine requirements for monitoring and respiratory protection. Questions regarding interpretation of this SWP, including field determinations, should be addressed to these individuals.3

Monitoring requirements determined using the guidelines established in this SWP are based on hygiene concerns. In specific situations and as determined by following guidelines in Section 4, the WHC industrial hygienist or IHST can reduce or eliminate requirements;

3Requests for additional protective respiratory equipment shall be referred to TWRS Industrial Health and Safety.
however, these decisions have no impact on monitoring requirements prescribed in other documents (e.g., respiratory protection requirements as prescribed by the Radiation Work Permit to address radiological concerns).

3. DEFINITIONS

Supplied air respiratory protection zones. Posted areas, within single-shell tank farms, where supplied air use is required (See Section 4.A and Table 1). These zones are indicated on the respiratory protection boundary maps of the HASP appendices.

Air monitoring zones. Posted tanks, or barricaded portions of tanks, where potential vapor exposures could occur. Entry to the posted/barricaded areas requires either industrial hygiene monitoring with appropriate air monitoring instrumentation or the use of supplied air (sampling locations and analytes are specified in Section 4.A).

Breach of containment. An action to create an opening through the outside of a tank to the tank internals (e.g., through a tank riser or equipment) resulting in a potential route for escape of tank vapors contained inside the tank.

Waste intrusive work. Work performed within the tank dome that penetrates into the waste. This does not apply to surface level measurements.

IHST coverage. Intermittent Industrial Hygiene air monitoring as determined necessary by a WHC Industrial Hygienist or IHST following guidelines established by this SWP (See Section 4.B). All monitoring activities prescribed by this SWP are conducted by a WHC industrial hygienist or IHST.

4. DETERMINING FACTORS FOR MONITORING AND RESPIRATORY PROTECTION REQUIREMENTS

Supplied air or air monitoring may be required based either on the work location or on the type of work to be performed. The correct level of monitoring and respiratory protection is based on the MOST STRINGENT of the two levels called for under the job and work location. Thus, a job may require supplied air because the tank to be worked on is located in an area where supplied air is required, even though the job does not involve breaking containment on the tank. Similarly, a job may require monitoring because of the work being performed, even though no monitoring is required for entry into the farm. ONLY BY CONSIDERING BOTH THE LOCATION OF THE WORK AND THE TYPE OF WORK BEING PERFORMED CAN THE PROPER LEVELS OF RESPIRATORY PROTECTION AND MONITORING BE SELECTED.

Supplied air must be used if a health and safety technician is not available to perform air monitoring.
In order to reduce potential for exposures at the tank farms, the minimum contingent of employees necessary to perform the work scope should be used. Employees not needed to support the immediate work activity should stand well clear of the work area in the upwind direction if possible.

Any necessary monitoring shall be performed by a Westinghouse Hanford Company industrial hygienist or IHST before starting work activities. All monitoring will be conducted in accordance with the specifications provided in Section 5.

A. WORK LOCATION

Whenever a job involves entering an air monitoring or respiratory protection zone, air monitoring or respiratory protection must be used. (See Section 5 for further information regarding air monitoring.)

Respiratory protection involves the use of supplied air only. Generally, it is not necessary that BOTH air monitoring and supplied air be used except during initial monitoring; however, either the specified type of air monitoring or supplied air must be used for entry into an air monitoring or respiratory protection zone.

The size of an air monitoring or respiratory protection zone is defined for each farm and tank based on the history of exposure incidents and air monitoring data that has been collected. Depending on the tank farm, this area may be as small as a circle around a breather filter, or as large as an entire farm.

Defined air monitoring and respiratory protection zones are provided in Table 1. Air monitoring or supplied air respiratory protection must be afforded to employees working in these zones. Criteria for establishment of monitoring requirements in defined zones are specified in Table 1 and Section 4.

B. WORK ACTIVITY PERFORMED

(1) Air Monitoring Necessary. Breach of containment and waste-intrusive work activities require that air monitoring be done irrespective of the level of respiratory protection afforded employees. Specific variances may be granted for the use of a glove bag for breach of containment or waste-intrusive work (by a WHC industrial hygienist).

(2) Glove Bag Use. Although glove bags are used primarily for containment of radioactivity, they can also offer protection from vapor exposure if they are properly used. To provide vapor protection, a glove bag should meet the specifications for glove bags (WHC-S-0228), should be free from obvious holes or tears, and should have well-taped
seams. Any glove bag judged not to meet these requirements by the IH or IHST shall be considered as inadequate for vapor protection, and employee protection provided as if a glove bag was not being used.

A properly used glove bag will effectively contain low levels of vapors and respiratory protection for vapors should not be necessary for people working inside the glove bag. However, the degree of containment needs to be established for each glove bag use. The IH or IHST determines the degree of containment using an OVM and checking vapor levels both inside and outside (near a seam) of a glove bag. If these readings indicate vapor leakage from the glove bag (OV levels above 1 ppm outside bag), the bag must be immediately repaired or replaced, or employee protection provided as if a glove bag were not being used.

Based on initial containment readings, the IH or IHST will decide whether continuous monitoring is required for glove bag use. If initial readings inside the glove bag show OV levels below 2 ppm, continuous OVM monitoring is not required. If OV levels exceed 2 ppm, continuous monitoring of OV levels inside the glove bag should be performed, with occasional readings taken outside the glove bag to check for leakage. If the OV levels inside the bag exceed 25 ppm, supplied air must be used by employees working inside or next to the glove bag.

Vapor levels inside the glove bag should also be checked before the glove bag is removed. If OV levels exceed 2 ppm, supplied air must be worn during glove bag removal.

(3) Inoperative ventilation system. In the event a tank ventilation system is inoperable, the following precautionary measures apply.

- Work shall not be permitted on double-shell tanks.
- Work shall not be permitted on ventilated single-shell tanks that are on the flammable or organic watch list.
- Work shall be curtailed that cannot be completed within two hours of the tank ventilation system becoming inoperable.
- Work on ventilated single-shell tanks not on the flammable or organic watch lists shall be approved in writing by an IH from TWRS IH&S.
- Work shall not be permitted inside an inoperable ventilation system.

(4) Opening Riser. Initial monitoring shall be performed at the tank exhauster for ventilated tanks, and supplied air is not required. Initial monitoring shall be performed at the breather filter for nonventilated tanks, and supplied air is not required unless the breather filter is in an established respiratory zone. After the riser bolts sealing the riser flange are loosened enough to take a gas sample from the riser, a five minute pause shall be observed to allow accumulated gases to disperse.
<table>
<thead>
<tr>
<th>Tank</th>
<th>Breather filter 5-ft barricade</th>
<th>Pump pit 5-ft barricade</th>
<th>Saltwell pit 5-ft barricade</th>
<th>Distribution pit 5-ft barricade</th>
<th>Liquid level 5-ft barricade</th>
<th>Entire tank barricade</th>
<th>Partial farm barricade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-101</td>
<td>OVM/NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-102</td>
<td></td>
<td></td>
<td>OVM/NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U-111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX-111</td>
<td></td>
<td></td>
<td>OVM/NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-104</td>
<td>N₂O/OVM/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-107</td>
<td>NH₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY-108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N₂O = nitrous oxide air monitoring.
OVM = organic vapor meter monitoring.
NH₃ = ammonia air monitoring.
SA = supplied air.
On double-shell tanks not on the Flammable Gas Watch List, no further sampling is required for riser opening. On double-shell Flammable Gas Watch List tanks, combustible gas readings shall be taken from the exhaust line every 15 minutes. If any of these readings exceed 20% of the lower flammable limit, a gas sample shall be collected for analysis and work shall cease.

On single-shell tanks, monitoring shall be performed using supplied air for the compounds specified in Section 5.B at the riser opening. In addition, flammable gas measurements will be taken on single-shell Flammable Gas Watch List tanks as follows. After complete riser cover removal and before the activity proceeds in the tank, monitoring shall be conducted in the tank vapor space. If the combustible gas reading is less than 20% of the lower flammable limit, the work can proceed. If the reading exceeds 20%, a grab sample will be collected for analysis, the activity shall cease, and the tank shall be placed in safe shutdown mode. The activity shall not resume until results of the sample are known, and the appropriate Safety and Tank Farm Project Management approvals are received. The flammable gas readings shall be taken every 15 minutes during the in-tank activities.

Factors that vary with nature of work activities at the 200 Area Tank Farms include 1) whether or not the work activity involves penetration into the tank waste, 2) whether or not the tank is ventilated, and 3) whether or not the work activity involves breach of containment. The combination of these factors help form the basis for determining requirements for monitoring and use of respiratory protection.

(5) Waste-Intrusive and Non-Waste-Intrusive Work on Ventilated Tanks with Breach of Containment. Supplied air is not required for work on ventilated tanks. Monitoring shall be performed at the tank exhaust every 15 minutes for the compounds in Section 5-B for waste intrusive work.

(6) Waste-Intrusive Work on Nonventilated Tanks. Supplied air is required whenever there is a potential for employees to release significant amounts of trapped vapors and be exposed to the release of these vapors. Thus, supplied air will be used when working on Flammable Gas Watch List tanks unless a glove bag is used. For tanks not on the Flammable Gas Watch List, each activity must be evaluated based on the possibility of releasing vapors and the potential for exposure if the vapors are released. The following activities have been evaluated by TWRS Industrial Health and Safety, and the controls necessary to reduce the risk of exposure established. All other activities require the use of supplied air unless a written exemption is obtained from TWRS Industrial Health and Safety.

- **Grab Sampling.** Very low potential for vapor release, and large volume (tank headspace) to allow for vapor dilution. No supplied air required.

- **Auger Sampling.** Close tolerance between drill bit and pipe effectively seals tank. No supplied air required during sampling. Supplied air will be necessary when removing sampler unless tank atmosphere can be sampled.
Push Mode Sampling. Brief potential for exposure when removing sample. Need to verify that high levels of vapors are not released at these times or wear supplied air. Supplied air not required at other times. Supplied air will be necessary when removing sampler unless tank atmosphere can be sampled.

Rotary Mode Sampling. Supplied air is not required as the valves on the sampler isolate the tank from the employee. Supplied air will be necessary when removing sampler unless tank atmosphere can be sampled.

Supplied air is required during monitoring at the breather filter before breach of containment if the breather filter is in an area where supplied air is required (e.g., tanks 241-C-102 and 241-C-103).

All other activities require supplied air to be worn by all employees within 3.1m (10 ft) of an open riser. Supplied air is also required inside of a containment tent erected over an open riser.

For the duration of a waste-intrusive work activity on a nonventilated tank that the tank riser is open, monitoring will be performed at the riser every 15 minutes. Readings are taken using procedures outlined in Section 5.

(7) Non-Waste-Intrusive Work with Breach of Containment on Nonventilated Tank.

- Initial monitoring is required at the breather filter. Unless required for the area where the breather filter is located, supplied air is not required during this initial monitoring at the breather filter until breach of containment.

- Continuous monitoring may be required based on contaminant levels as specified in Section 5.

(8) Non-Waste-Intrusive Work without Breach of Containment. No special monitoring or respiratory protection is required for jobs that do not involve breach of containment on a tank unless the area in which work is taking place is located inside a respiratory protection zone.

All requirements discussed in Sections 4.A and 4.B must be observed.

5. MONITORING

This section of the SWP provides a description of the specific monitoring methods used by the WHC industrial hygienist or IHST to monitor compounds of concern in accordance with the guidelines established in Section 3 for determining requirements. Also provided are the exposure standards limits and appropriate actions to be taken in the event that limits are exceeded.
A. METHODS

Organic vapors are measured using an organic vapor meter (OVM) monitor to collect and read organic vapor samples taken at the work area. This type of monitoring is performed only by a trained technician.

Ammonia, nitrous oxide, and hydrogen cyanide levels are determined using colorimetric indicator tubes or direct-reading badges to measure samples taken in the work area. Hydrogen cyanide monitoring is performed at FeCN Watchlist Tanks during breaks in containment at the tanks.

Flammable gases are measured to determine their percent of lower flammability limit (LFL) and oxygen content using a Model 251 Industrial Scientific Combustible Gas Meter, or TMX-410 multi-gas monitor, or equivalent. Before LFL sample collection, the open riser is allowed to off-gas for a period of five minutes. Wire-coated Tygon tubing (or equivalent) is used for collecting LFL samples inside the riser of a Flammable Gas Watch List tank because of bonding issues.

B. COMPOUNDS OF CONCERN

Air monitoring is required for breach of containment at all tanks. The air monitoring descriptions provided are in the appropriate order for the monitoring to be performed.

(1) Flammability. A grab sample shall be taken by the WHC industrial hygienist or IHST to determine flammability levels for flammable gases, in percent of LFL, and arrangements made for analysis.

- If levels exceed 20 percent of the LFL, work shall stop. Work will not continue until levels drop below 20 percent of the LFL.
- Work will not continue until results are received from grab sample analysis and management approval has been received.

(2) Organic Vapors. Levels of organics in parts per million (ppm) shall be determined using a Thermo Environmental 580B Organic Vapor Meter or equivalent.

If breathing zone OVM readings exceed the values shown in Table 2, either supplied air will be worn or the work will be discontinued as shown in the Table.

Operations will not resume until approval is received from the Facility Operations Manager and a TWRS IH&S industrial hygienist.
(3) Ammonia, Nitrous Oxide, and Hydrogen Cyanide. Ammonia and nitrous oxide levels are measured inside breather filter barricades and breach of containment locations for tanks 241-BY-104, 241-BY-107 and 241-BY-108. Hydrogen cyanide levels are measured for breach of containment for FeCN Watch List tanks. Initial readings taken at the riser or in the vapor space that exceed exposure standards shall require a WHC industrial hygienist or IHST to collect breathing zone samples for respiratory protection setting. If the values exceed the limits specified in Table 2, either supplied air will be worn or the work will be discontinued as shown in the Table.

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>SUPPLIED AIR Required if ANY of the following Levels are Exceeded:</th>
<th>STOP WORK and EVACUATE AREA if ANY Levels Exceed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org. Vapors (3 min)</td>
<td>2 ppm</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>25 ppm</td>
<td>300 ppm</td>
</tr>
<tr>
<td>Nitrous Oxide</td>
<td>50 ppm</td>
<td>500 ppm</td>
</tr>
<tr>
<td>Hydrogen Cyanide</td>
<td>4.7 ppm</td>
<td>50 ppm</td>
</tr>
</tbody>
</table>

In the event that exceeded WHC breathing zone levels of ammonia, nitrous oxide, or hydrogen cyanide result in the stop of work and evacuation of the farm, operations at the farm will not resume until approval is received from the Facility Operations Manager and a TWRS IH&S industrial hygienist.

Table 3 lists the current status of each single- and double-shell tank.

6. REFERENCES

Unclassified Operating Specifications for the 241-AN, AP, AW, AY, AZ and SY Tank Farms; OSD-T-151-000007, Rev/Mod H-8.

Operating Specifications For Watchlist Tanks; OSD-T-151-00030.

Waste Tank West Operations Standing Order - SX Tank Farm Vapor Restrictions During Active Exhaust Shutdown; 94-08, Rev 0.
Safety Basis for Activities in Double-Shell Flammable Gas Watch List Tanks; WHC-SD-WM-SARR-002, Rev. 0.

Safety Basis for Activities in Single-Shell Flammable Gas Watch List Tanks; WHC-SD-WM-SARR-004, Rev. 0.

Prepared by

[Signature]

David Carls, Industrial Hygienist
TWRS Industrial Health & Safety

Approved by

[Signature]

M. T. Hughey, Manager
TWRS Industrial Hygiene Field Services

Approved by

[Signature]

TWRS Plant

3/29/95
Date
<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>WHC – TANK DESIGNATIONS & CONTROLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FARM</td>
</tr>
<tr>
<td>A</td>
<td>S</td>
</tr>
<tr>
<td>AN</td>
<td>D</td>
</tr>
<tr>
<td>AP</td>
<td>D</td>
</tr>
<tr>
<td>AW</td>
<td>D</td>
</tr>
<tr>
<td>AX</td>
<td>S</td>
</tr>
<tr>
<td>AY</td>
<td>D</td>
</tr>
<tr>
<td>AZ</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>S</td>
</tr>
<tr>
<td>BX</td>
<td>S</td>
</tr>
<tr>
<td>BY</td>
<td>S</td>
</tr>
<tr>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>SX</td>
<td>S</td>
</tr>
<tr>
<td>SY</td>
<td>D</td>
</tr>
<tr>
<td>T</td>
<td>S</td>
</tr>
<tr>
<td>TX</td>
<td>S</td>
</tr>
<tr>
<td>TY</td>
<td>S</td>
</tr>
<tr>
<td>U</td>
<td>S</td>
</tr>
</tbody>
</table>

LEGEND

<table>
<thead>
<tr>
<th>D</th>
<th>Double Shell Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Single Shell Tank</td>
</tr>
<tr>
<td>H</td>
<td>High Heat Watchlist Tank</td>
</tr>
<tr>
<td>g</td>
<td>Hydrogen Gas Watchlist Tank</td>
</tr>
<tr>
<td>f</td>
<td>Ferrocyanide Watchlist Tank</td>
</tr>
<tr>
<td>w</td>
<td>Actively Ventilated Tank</td>
</tr>
<tr>
<td>o</td>
<td>Organic Salt Watchlist Tank</td>
</tr>
<tr>
<td>h</td>
<td>Air Monitoring</td>
</tr>
<tr>
<td>S</td>
<td>Supplied Air</td>
</tr>
<tr>
<td>A</td>
<td>Air Purifying Respirator</td>
</tr>
</tbody>
</table>

1. OVM/Ammonia Monitoring within 5' breather filter barricade
2. OVM/Ammonia Monitoring entire tank
3. OVM/Ammonia Monitoring within 5' non-breather filter barricade
4. OVM/Ammonia/Nitrous Oxide Monitoring within 5' breather filter barricade

TWRS – IH&S

372 - 3242

SWP Rev 13 – 3/23/95

SWP13.WK3
3.0 TRAINING

3.1 GENERAL OVERVIEW

Tank Farm safety training is designed to provide employees with the necessary skills and knowledge to perform assigned duties and functions in a safe and healthful manner.

Training for tank farm personnel is dependent on the level and type of work each individual will be responsible for performing. At a minimum, each worker requires a general level of training to meet the Occupational Safety and Health Administration (OSHA) requirements of both 29 CFR 1910.120, "Hazardous Waste Operations and Emergency Response," and 29 CFR 1910.1200, "Hazard Communication." Additional training that meets other regulatory requirements provides further safety and health training for tank farm operations [such as "Dangerous Waste Management" (WAC 173-303), Radiation Protection for Occupational Workers (DOE 1988), and Accreditation for Performance Based Training for Category A Reactors and Nuclear Facilities (DOE 1991)].

Normal tank farm operations are required to comply with 29 CFR 1910.120 because the tank farms are Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facilities. Operations involving cleanup under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) past-practice or RCRA past practice sites listed in the Tri-Party Agreement (Ecology et al. 1994) are outside normal tank farm operations.

3.2 REQUIREMENTS

All employees working onsite who may be exposed to hazardous substances, or health or safety hazards shall receive appropriate training. All managers are responsible for ensuring that a training program is in place and that employees are properly trained. Employees shall not be permitted to participate in or supervise field activities until they have been trained to a level required by their job function and responsibility. Worker qualification records are maintained by WHC Training Records. Entry qualifications into tank farm radiological control areas are verified through the Westinghouse Radiation Area Management (WRAM) system, which contains the employee hazardous waste worker training and medical history information. Entry to tank farm radiological control areas will be denied if entry requirements are not met (see Table 3-1).

Tank Farm Orientation and initial field experience received under escort will include discussion of applicable safe work practices. Applicable safe work practices and site-specific hazard communication information will be maintained at or near the point of entry for all tank farm RBA/URMA for review by employees. As part of the entry process through the WRAM stations, employees are required to acknowledge when they sign-in on the
Table 3-1. Tank Farm Facilities Required Training and Entry Requirements for 200 East/200 West Tank Farms.

<table>
<thead>
<tr>
<th>Job Specific</th>
<th>Entry</th>
<th>Course Number</th>
<th>Recertification/Requalification Course</th>
<th>Course Title</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>02006A</td>
<td>000001</td>
<td>Hanford Site Orientation</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>000001</td>
<td>000001</td>
<td>Hanford General Employee Training</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350710</td>
<td>350760</td>
<td>Initial Facility Orientation--200 East/200 West</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>350760</td>
<td>350760</td>
<td>Facility Orientation Retrain--200 East/West (HGET)</td>
<td>24 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>03E060</td>
<td>03E060</td>
<td>Building Emergency Plan Review Checklist for WHC-IP-0263-TF</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>020001</td>
<td>020003</td>
<td>Radiation Worker II Safety Training</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>020003</td>
<td>020003</td>
<td>Radiation Safety Requalification</td>
<td>24 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Criticality Safety Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>02006G</td>
<td>XXXXX</td>
<td>Hazard Communication and Waste Management Awareness</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>031220</td>
<td>032020</td>
<td>40-Hour Hazardous Waste Operations Training</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>031110</td>
<td>032020</td>
<td>24-Hour Hazardous Waste Operations Training</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>032020</td>
<td>032020</td>
<td>8-Hour Hazardous Waste Operations Refresher (W/SCBA, SCA PAK)</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>031310</td>
<td>XXXXX</td>
<td>8-Hour Manager/Supervisor Hazardous Waste Training</td>
<td>Initial</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>020030</td>
<td>020030</td>
<td>Scott 4.5 SCBA--Annual (included in 032020)</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>020031</td>
<td>020031</td>
<td>Scott 4.5 SCBA--Quarterly</td>
<td>3 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>020032</td>
<td>020032</td>
<td>SKAPAK MSA-PAPR (included in 032020)</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>XXXXXX</td>
<td>XXXXX</td>
<td>Hazardous Waste Worker Physical</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>XXXXXX</td>
<td>XXXXX</td>
<td>Whole Body Count</td>
<td>12 months</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
*Entry requirements verified through the WRAM system.

Equivalent training through course numbers 031220 or 031110.

Equivalent Training for 24-hour course numbers 020100, 170202, 031210, and vendor 100011 or 40-hour course numbers 020200, 170200, and vendor 100012.
WRAM that they have read and understand the applicable RWP. As part of the entry through the RBA access point, employees are required to sign the RBA access log.

Any person entering a tank farm RBA/URMA must first have a current hazardous waste worker physical that qualifies him/her as a hazardous waste worker. For WHC employees, this physical shall be performed by HEHF. The hazardous waste worker physical requirements are the same for both the 24- and 40-hour training categories. Access by the WRAM system verifies that the employee’s hazardous waste worker physical requirements are met.

General hazards that pose health risks specific to the tank farms shall be discussed as part of the Tank Farm Orientation. Formal pre-job briefings, as described in WHC-IP-0842, 15.3 (WHC 1992), are required when the specific hazards require a JHA (WHC-CM-4-3, Standard A-3). Any person who feels he/she has been exposed to noxious vapors or suspect that he/she was exposed to a hazardous material or chemical that exceeded the established permissible exposure limit (PEL) and/or threshold limit value (TLV), shall report to their direct supervisor and first aid. The concerned worker will be evaluated by a designated doctor at HEHF. An entry will be made into the medical surveillance tracking log for continued follow-up, as appropriate.

3.3 TANK FARM WORKERS

Workers involved in routine tasks and operations for the tank farms shall receive of 40 hours of hazardous waste operations training. Typical tank farm activities include maintenance and operations of the existing facilities to ensure their continued integrity and safety. Specific activities include surveillance, equipment maintenance, waste transfers, in-tank sampling and single-shell tank pumping. For tank farms operations, course number 031220, provided by Environmental Training, will meet this basic requirement. This training must be supplemented with a minimum of 3 days of actual field experience under the direct supervision of a trained, experienced supervisor. The program shall include annual 8-hour refresher training.

Workers involved in activities for the tank farms that do not potentially expose individuals to direct contact with the waste shall receive 24 hours of hazardous waste operations training. For tank farms operations, course number 031110, provided by Environmental Training, will meet this basic requirement. This training must be supplemented with a minimum of 1 day of actual field experience under the direct supervision of a trained, experienced supervisor. The program shall include annual 8-hour refresher training.
3.3.1 Upgrading of Worker Status

Workers with 24 hours of hazardous waste worker training who become general hazardous waste site workers can upgrade their training by obtaining an additional 16 hours of training and 2 days of actual field experience under the direct supervision of a trained, qualified supervisor.

3.3.2 Equivalent Training

Tank farm employees who can document or certify that their work experience and/or training has resulted in training equivalent to a 24- or 40-hour course written to 29 CFR 1910.120 requirements, shall not be required to retake initial training. Responsibility for determination of equivalent training is with the Environmental Training organization. However, certified employees who are new to the Hanford Site shall receive appropriate site-specific training before site entry and shall have appropriate supervised field experience at the site to qualify for unescorted access.

3.3.3 Refresher Training

All employees requiring 24- or 40-hour hazardous waste worker training shall receive 8 hours of refresher/retraining annually. This material is covered in "Hazardous Waste Site Refresher" (8-hour course number 032020/032030). Workers who do not complete the refresher training (such as those not assigned to hazardous waste operations for an extended period) must retake initial training if (1) they are reassigned to hazardous waste operations and (2) more than 3 years have passed since they completed the initial or refresher training.

3.4 ONSITE MANAGEMENT AND SUPERVISORS

Onsite management and/or supervisors who supervise or are directly responsible for employees engaged in activities at the tank farms must be trained to the same level as the employees they supervise. Managers and supervisors are required to complete an additional 8 hours of hazardous waste training at the time of job assignment. This training is provided by course number 031310.

3.5 HEALTH AND SAFETY STAFF

Personnel assigned to TWRS IH&S shall meet the most stringent of health and safety training requirements for the tank farms. This requirement allows field support to be provided under all conditions.
3.6 VISITORS

For the purposes of this HASP, visitors are defined as persons who are only occasionally at the tank farm site for limited periods solely to observe the tank farms. Visitors shall receive 24 hours of hazardous waste operations training. Visitors will not be directly engaged in any tank farms site activities that require entry into a controlled zone or activities that could result in exposure to hazardous substances or other health and safety hazards. Visitors shall never be permitted to enter a controlled (i.e., exclusion) zone or decontamination zone (i.e., contamination reduction zone and corridor), unless they meet all of the training requirements specified for the area they are to enter. Access is controlled by the WRAM system as described in Section 8.0, Site Control.

3.7 REGULATORS

Personnel from regulatory agencies not falling under WHC oversight responsibilities shall be responsible for compliance with applicable federal, state, and local requirements for entry into the tank farms. When checking in with the WRAM entry station, they will be requested to verify that they have met appropriate training and physical requirements for tank farms entry by completing the WRAM Access Authorization Form (A-5400-319). Unless regulators have completed Tank Farm Orientation and met applicable tank farm supervised field experience requirements, they will require an escort.

3.8 RECORD OF TRAINING

A record of training shall be kept and entered into the WRAM system database. If completed training for an individual has not been entered into the WRAM system, training may be documented using the WRAM Access Authorization Form (A-5400-319).

Training conducted as part of the Quality Training and Resource Center program is recorded upon receipt of course completion rosters. WHC Training Records enters the data, which includes employee payroll number, course number, course title, date taken, name of instructor, and recertification date (if required). This data is then entered into the Soft Reporting System where the Training Records Information System (employee training) can be accessed. Training information required by the WRAM system is forwarded electronically for incorporation into the WRAM database.

Personnel completing the 24-hour or 40-hour worker hazardous waste operations training are issued a card by the International Environmental Institute to reflect completion of OSHA 29 CFR 1910.120 hazardous waste operations training.
This page intentionally left blank.
4.0 PERSONAL PROTECTIVE EQUIPMENT

The purpose of personal protective equipment (PPE) is to shield or isolate individuals from the chemical, physical, biological, and radiological hazards that may be encountered at the tank farms. The use of PPE to mitigate a hazard should be chosen only after a determination that engineered safeguards and/or administrative controls do not provide adequate protection. The specific PPE requirements will vary depending on the nature of the work being performed and the area of the tank farms where the task is taking place. Requirements for PPE are itemized or noted in work control documentation and/or Radiation Work Permits (RWPs), as applicable, and requirements should be discussed with tank farm workers when pre-job briefings are conducted.

4.1 PERSONAL PROTECTIVE EQUIPMENT SELECTION GUIDELINES

The Site Safety and Health Representative (SSHR) must evaluate the hazards identified during site characterization and analysis. If engineered safeguards and/or administrative controls cannot be used, the SSHR, in concert with the PIC, will select PPE to protect employees from the known and potential hazards likely to be encountered in the tank farms. Health Physics will identify PPE requirements for radiological hazards via the RWP. Where PPE is necessary to address both chemical and radiological concerns, the SSHR, PIC, and Health Physics will jointly determine requirements.

Employees who are engaged in activities at the tank farms which require the use of PPE must meet all applicable training requirements specified in Section 3.0, and the medical surveillance requirements identified in Section 5.0 of this HASP.

Once a work activity has begun, if the level of PPE for the actual site conditions is found to be inadequate, the job supervisor/PIC will be notified immediately and work will stop until an evaluation is performed and approval to resume work activities is granted.

For specific PPE requirements, refer to Section 5.0 of the applicable appendix.

4.2 LEVEL D PERSONAL PROTECTIVE EQUIPMENT

Level D PPE is the basic level of personal protection equipment used in the tank farms for areas or operations where no air contaminants are present which would require respiratory protection. Specific PPE requirements will be determined by hazards associated with the work activity and may include the following:
• Coveralls and/or street clothes
• Anti-contamination clothing (as required by Health Physics if radiological hazards exist)
• Safety glasses or goggles (as required)
• Safety shoes (as required)
• Hardhat (as required)
• Hearing protection (as required)
• Gloves (as required).

4.3 LEVEL C PERSONAL PROTECTIVE EQUIPMENT

Level C PPE is required where conditions are known or characterized, and a potentially hazardous atmosphere exists. Use of Level C PPE is not permitted in oxygen-deficient atmospheres (less than 19.5 percent oxygen), for contaminants with poor warning properties (odor detection level is greater than the TLV), or when contaminant concentrations exceed the respirator canister limits. Personnel working inside the tank farms and wearing Level C PPE shall wear the following as a minimum:

• Full-face air-purifying respirator (with appropriate filters and prescription eye wear)
• Disposable chemical-resistant coveralls (as required)
• Anti-contamination clothing (as required by Health Physics if radiological hazards exist)
• Safety shoes (as required)
• Chemical-resistant shoe covers (as required)
• Hardhat (as required)
• Inner chemical-resistant gloves (as required)
• Outer chemical-resistant gloves (as required)
• Hearing protection (as required)
- Eye protection (as required)
- Two-way radio communication (as required).

4.4 LEVEL B PERSONAL PROTECTIVE EQUIPMENT

Level B PPE is required where conditions are unknown, and a potentially hazardous atmosphere exists. Level B PPE may be used only when it is unlikely that workers will be exposed to high concentrations of contaminants or chemical splashes that will affect the skin or be absorbed by it. Level B is generally the same as Level C, except the respiratory protection is upgraded to air-supplied respirator or self-contained breathing apparatus (SCBA). Personnel working inside the tank farms with designated Level B PPE shall wear the following as a minimum:

- Air-supplied respirator or SCBA
- Disposable chemical-resistant coveralls (as required)
- Anti-contamination clothing (as required by Health Physics if radiological hazards exist)
- Safety shoes (as required)
- Chemical-resistant shoe covers (as required)
- Hardhat (as required)
- Inner chemical-resistant gloves (as required)
- Outer chemical-resistant gloves (as required)
- Hearing protection (as required)
- Two-way radio communication (as required).

4.5 LEVEL A PERSONAL PROTECTIVE EQUIPMENT

Level A PPE is required where atmospheric conditions are immediately dangerous to life and health (IDLH). In rare circumstances, it may be necessary for personnel in the tank farms to wear Level A PPE. Level A PPE has the same maximum respiratory protection as Level B; however, the highest available skin and eye protection are required for Level A. Personnel working inside the tank farms with designated Level A PPE shall wear the following as a minimum:
• Air-supplied respirator or SCBA
• Fully encapsulating, chemical-resistant suit (suit material must be compatible with substances involved)
• Additional anti-contamination clothing (as required by Health Physics if radiological hazards exist)
• Safety shoes (as required)
• Chemical-resistant shoe covers (if applicable)
• Hardhat (if applicable)
• Inner chemical-resistant gloves
• Hearing protection (as required)
• Two-way radio communication (as required).
5.0 MEDICAL SURVEILLANCE

5.1 MEDICAL EXAMINATIONS

All employees who (1) require access to the tank farms; (2) may potentially be exposed to hazardous materials at or above the threshold limit value (TLV) and/or permissible exposure limit (PEL) for 30 or more days per year; or (3) are required to wear a respirator will participate in the medical surveillance program as required by 29 CFR 1910.120. The hazardous waste worker physical requirements are the same for both 24- and 40-hour training categories. The WRAM system contains employee medical clearance information which shall be verified before entry into tank farm radiological controlled areas.

The medical surveillance program, which is designed to assess, monitor, and maintain records for worker health and fitness for employment, consists of a pre-employment screening, periodic medical examination, follow-up exposure physicals [as required by the occupational health examiner (OHE)], and a termination examination.

The Hanford Environmental Health Foundation (HEHF) is the medical contractor for the Hanford Site and provides medical services for WHC. The HEHF will be provided with information relative to the type of work being performed, potential and actual exposures, and expected contaminants.

5.2 PRE-EMPLOYMENT SCREENING FOR HAZARDOUS WASTE WORKERS

Pre-employment screening will determine the individual’s fitness for duty, including the ability to work while wearing PPE, and provide baseline data for comparison with future medical data.

The pre-employment screening consists of the following:

- Occupational and medical history
- Physical examination
- Chemical panel
- Urinalysis
- Complete blood count
- Pulmonary function test (PFT)
- Respirator fit test
5.3 PERIODIC MEDICAL EXAMINATION

The periodic medical examination will determine biologic trends that may mark early signs of adverse health effects, and thereby facilitate appropriate protective measures. The frequency of the periodic medical examination will depend upon the extent of potential or actual exposures as determined by the OHE, but shall be provided at least annually.

The annual examination consists of the following:

- Updated medical history
- Physical examination
- Chemical panel
- Urinalysis
- Complete blood count
- PFT (as determined by the OHE)
- Respirator fit test
- EKG (as determined by the OHE)
- Chest X-ray within 54 months (as determined by the OHE)
- Visual acuity
- Hearing conservation audiogram (for individuals exposed to an 8-hour time-weighted average of 85 dBA or greater).
5.4 FOLLOW-UP EXPOSURE PHYSICAL

Potential job-related symptoms or illnesses must be reported as soon as possible to the employee's supervisor and HEHF. The OHE will perform a follow-up physical to evaluate the symptoms or illness in the context of the employee's exposure to hazardous substances.

Based upon the results of the pre-employment or periodic medical examinations, the OHE may determine that follow-up examinations or consultations are medically necessary. It is the responsibility of the employee to participate in the follow-up examinations as directed by the OHE.

5.5 EMERGENCY MEDICAL SURVEILLANCE

Employees must notify their supervisor and report to an HEHF Health Service Center for an evaluation. The contents of the evaluation will be determined by the OHE based upon the circumstances of the incident.

Employees who feel they may have been exposed to noxious vapors, or suspect that they received an over exposure to a hazardous material or chemical (which exceeded the established PEL and/or TLV), shall promptly notify their supervisor and report to first aid. An OHE will evaluate the employee and based upon the evaluation, enter the individual into the medical surveillance tracking log for continued follow-up as appropriate.

5.6 TERMINATION MEDICAL EXAMINATION

A termination examination will be provided at the end of an individual's employment unless: (1) the individual has had a complete examination within the last six (6) months, (2) no exposure has occurred since the last examination, and (3) no symptoms associated with exposure have developed since the last examination.

The termination examination protocol consists of the following:

- Updated medical history
- Physical examination
- Chemical panel
- PFT
- EKG
- Chest X-ray (as determined by the OHE)
- Hearing conservation audiogram.
5.7 RECORD KEEPING

Employee medical records are maintained by HEHF for the duration of employment plus 30 years.

Copies of the medical examinations can be made available to the employee as requested. Employees or their designated representative may request a copy of their medical records by completing the Request for Information form from HEHF. For records older than 2 years, the Privacy Act Information Request (DOE form F1800.1) must be completed. This form can be obtained from the U.S. Department of Energy-Richland Operations Office. HEHF provides the physician's written opinion (PWO) to the employee and a copy to Industrial Hygiene. The PWO contains information regarding the employee's fitness for work, including the ability to wear PPE, and the results of the examinations and tests. The PWO is maintained in the employee's medical file.

The medical clearance form is forwarded to the employee and to the employee's manager by HEHF. A medical clearance indicates restrictions or provides full clearance for performing the work duties. If an employee is injured or exposed to a toxic material, a medical clearance must be evaluated by HEHF and signed before the employee is authorized to return to work.

5.8 SCHEDULING MEDICAL EXAMINATIONS

The manager of the employee is responsible for requesting the hazardous waste worker (HWW) medical examination required for access to the tank farms. The request for the medical examination is made by contacting HEHF to set up an appointment.

In addition to the requirements for HWWs, employees may need a medical examination for other work activities (e.g., asbestos or carcinogens). The request for these special examinations must also be scheduled directly with HEHF.

WHC managers are required to schedule medical examinations as follows:

- Call WHC Medical Scheduling if changes are needed
- Change or cancel appointments that will not be met (at least 48 hours in advance).
6.0 MONITORING

6.1 OVERVIEW

The purpose of industrial hygiene monitoring is to assess employee exposure to chemical and physical agents in the workplace. This monitoring effort is essential before instituting control measures, as the degree of control must be based on level of hazard present. Monitoring at the tank farms can be divided into monitoring for assessment purposes and monitoring for entry into tank farms. While both types of monitoring are necessary, they serve somewhat different purposes. The primary purpose of assessment monitoring is to evaluate the agents present and determine their levels as part of an industrial hygiene strategy. Entry monitoring is performed to evaluate agents at the time specific work is being performed. Entry monitoring is thus targeted more toward verifying that existing control measures are adequate, rather than identifying or quantifying contaminant levels. Entry monitoring will be discussed under control measures for specific agents.

Assessment monitoring is primarily directed toward identifying and quantifying specific chemical and physical agents present in the workplace. This effort is being guided by the Hanford Occupational Exposure Assessment Program (HOEAP). This program, which is based on the Occupational Exposure Assessment Strategy issued by the American Industrial Hygiene Association, provides a mechanism for all phases of workplace evaluation including initial assessment. Subsequent monitoring, evaluation, and control will be based on HOEAP assessments.

Monitoring can be broken down into two basic subgroups: chemical and physical agents. Chemical agents primarily include gases and vapors being given off from the waste tanks, but could also include any chemical agents used in operations or maintenance activities at the farms. Physical agents include noise, heat, illumination, explosivity, confined spaces, asbestos, ergonomic and biologic factors, radiological agents, and others. Monitoring for both classes of occupational stressors is necessary to fully characterize the hazards associated with routine and nonroutine work within the tank farms. Radiation hazards are exclusively monitored by WHC Health Physics and will not be further discussed here.

Both routine and nonroutine tank farm activities have been identified as important for monitoring. Routine and nonroutine monitoring will be conducted to characterize worker exposure for these types of activities. Routine tank farm work includes all tank farm maintenance activities which are conducted on an ongoing basis as part of operations routine maintenance. Nonroutine tank farm work includes all activities requiring the generation of specific work control documents, and always includes activities where tank containment will be broken.

Monitoring will continue to be prioritized based on perceived need given the amount of available baseline monitoring data and a job hazard analysis. As of 1994, the need for
collecting baseline vapor data has been considered of prime importance in downgrading personnel protection requirements in the tank farms. Future monitoring will emphasize nonroutine vapor monitoring and both routine and nonroutine physical agent monitoring.

Specific monitoring activities are discussed in the appendices.

6.2 CHEMICAL AGENTS

Although it has been postulated that numerous organic and inorganic compounds could be emanating from underground waste storage tanks at the farms, personal monitoring has not shown levels of significant importance with regard to worker exposure. Source monitoring conducted to date indicates that ammonia and low levels of various volatile organic compounds are being released from farm tanks. Grab samples for hydrogen cyanide have shown levels below detection limits. Samples collected thus far demonstrate that employee exposure levels do not exceed any of the established protection criteria (permissible exposure limit (PEL), threshold limit value (TLV), recommended exposure limit (REL) and workplace environmental exposure levels (WEELs) commonly used in the industrial hygiene community.

Monitoring has proceeded along several lines to determine the likelihood for employee exposure. Monitoring has been conducted for personnel, area, source, and tank headspace monitoring.

6.3 PHYSICAL AGENTS

Tank farms contain numerous physical hazards which can cause employee exposure and subsequent injury or disease. Physical agents at the farms include noise, heat, illumination, explosivity, confined spaces, asbestos, ergonomic and biologic factors, radiological agents, and others (see tables).

Sampling is routinely conducted for explosivity and oxygen content for source and area monitoring.

6.4 MONITORING STRATEGY

The monitoring strategy, based on the HOEAP, involves performing baseline qualitative evaluations, defining homogeneous exposure groups (HEGs), conducting monitoring and sampling based on these evaluations, and recommending proper control methods. This strategy is followed for all work performed at the Hanford Site. The actual implementation, however, differs depending upon the work performed. Two types of work, that is, routine exposure monitoring and work package activity monitoring are discussed in the following subsections.
6.4.1 Routine Exposure Monitoring

In cases where the exposure is routine, the HOEAP strategy can be followed closely. The initial step in the HOEAP process involves a baseline qualitative evaluation for potential hazards to be used in prioritizing necessary sampling efforts. The baseline hazard evaluation for the tank farms was completed in 1993 and involved a qualitative review of tank farm health hazards. This review is being used to define which hazards need additional evaluations and to conduct those evaluations. For each hazard being evaluated, a HEG can be defined, and monitoring or sampling performed to evaluate potential exposure levels. Once monitoring has been performed, recommendations for control measures and maintenance monitoring will be made.

Because of high levels of employee concern and mandatory use of supplied air, the decision was made to initiate the HOEAP process for tank farm vapors even before the process had been finalized. Because of previous exposure incidents, the baseline exposure assessment focused on gathering data on previous exposure incidents, as well as recent monitoring data in the farms. From this information, three HEGs were defined for each farm complex. (A tank farm complex was defined as one or more contiguous farms where routine entries are made.) Eight farm complexes were defined. It was decided to focus initial efforts on single-shell (nonventilated) tank farms, because previous exposure incidents were associated with these farms. Similarly, it was decided to concentrate initial efforts on determining exposure levels during routine tasks. This is because these tasks have the greatest potential for high levels of cumulative exposure caused by the high task frequency. Twenty-four HEGs were defined. To adequately assess routine vapor exposure levels, it was determined that six samples should be collected from each of the 24 HEGs. One hundred forty-four samples were defined as the initial goal of the sampling effort.

Choosing agents to sample was based on previous monitoring efforts and initial efforts at tank headspace characterization. Sampling equipment was chosen for ammonia, acetone, n-butanol and hydrogen cyanide. Sampling for hydrogen cyanide was performed because of a high level of concern associated with this agent and the presence of ferrocyanide in some of the waste tanks, not on previous sampling efforts.

The initial 144 samples were completed early in FY 1994, and, based on the results, changes to tank farm entry requirements have been made in nearly all single-shell tank farms. This sampling is continuing and has been expanded to cover double-shell tanks, selected work packages, and tank emission monitoring. This process will be expanded to include other agents based on the baseline hazard evaluation.

6.4.2 Work Package Activity Monitoring

Although selected work packages are being evaluated as part of the sampling program, it is not practical nor desirable to sample all of them. For these jobs, a job hazard analysis (JHA) of planned work activities shall be performed and reviewed by the industrial hygienist and
WHC-SD-WM-HSP-002, Rev. 2

the SSHR. This review is to ensure that all hazards that might affect employee health have been considered before entry into the farm. This includes existing hazards present in the farm before entry, chemicals introduced during operation activities, and any expected reaction products.

The JHA consists of an evaluation for any potential exposure to contaminants based on where the work is to be performed and what operations are to be conducted. Thus, monitoring may be required on some operations because of the hazards located in the work vicinity. Other operations will require monitoring based on the nature of the work itself. This monitoring plan was developed to ensure that employee exposures to chemical and physical hazards are evaluated, and that appropriate controls are instituted to protect worker health and safety. There are four types of monitoring being used to assess exposure levels. Each of these is discussed below.

6.4.3 Personnel Monitoring

Personal sampling consists of attaching various sampling devices to an employee during their work tasks and evaluating any determinate exposures. Personal exposure monitoring is considered to be the closest measure of employee exposure.

6.4.4 Area Monitoring

Area monitoring involves the collection and analysis of samples in the general area where work is taking place. Area monitoring provides a general overview of the potential for employee exposure and is considered more representative than source monitoring discussed below. Area monitoring can include both entry and assessment monitoring, if entry monitoring has been defined as a control measure for the specific agent.

6.4.5 Source Monitoring

Source monitoring consists of the collection of samples at the supposed source. This type of monitoring is used to determine the highest potential for which employees could be exposed. Source monitoring is also useful in providing an estimate of the frequency and magnitude of any release.

6.4.6 Tank Headspace Monitoring

Headspace monitoring is currently being conducted to speciate and quantitate levels of volatile and semi-volatile organic contaminants, ammonia, hydrogen cyanide and acid gases, oxides of nitrogen and sulfur, hydrogen, methane and carbon dioxide in each tank for several farms. The process of sampling tank headspace began in August of 1992 and will continue.
until 36 tanks have been sampled. Tank headspace sampling may continue after the initial sampling effort. This work is being conducted by tank farm operations personnel. The tank headspace monitoring data will be used to determine the potential for vapor release and subsequent exposure to employees. This program, titled *Program Plan for the Resolution of Tank Vapor Issues; WHC-EP-0562, (Osborne 1994)*, is currently being managed under the Tank Vapor Issue Resolution Program.

6.5 SAMPLING AND MONITORING EQUIPMENT

Monitoring equipment is currently maintained by WHC, HEHF, and ICF KH. Tables 6-1 and 6-2 describe the types of monitoring equipment available to assist in the characterization of employee exposures at the farms for both chemical and physical agents.

6.6 SAMPLING

Under the direction of TWRS-IH&S, WHC, HEHF, and ICF KH staff will be responsible for sample collection and analysis. Sampling and analytical methods will adhere to standard operating procedures and will follow the Quality Assurance Program Plan for industrial hygiene monitoring and evaluation.

Sampling will be initiated by the WHC industrial hygienist who will review the work package and detail the sampling assignment to obtain the desired exposure profiles. Safety inspection/observation, which applies to many of the physical agent hazards, will be initiated by the SSHR or the industrial hygienist. These assessments will be based on hazard and baseline evaluations whenever possible. An industrial hygiene sampling plan will be prepared to document the purpose and desired endpoints for sampling. This strategy will follow the NIOSH decision-making scheme (or equivalent) and include sufficient sampling to ensure statistical validity for subsequent actions. Periodic sampling may be recommended to evaluate changing conditions and to increase confidence in any original sampling and decision making scheme.

6.7 MONITORING DATA REVIEW AND ACTION

Monitoring data will be reviewed by a WHC industrial hygienist and compared to established safe levels. Safe levels for gas or vapor exposure have been established in the form of an administrative action level by TWRS-IH&S. This action level is known as an occupational exposure limit (OEL) which has been defined as one-half of the lower of either the PEL or the TLV. Engineering controls will be implemented or personal protective equipment issued if monitoring data suggests that workers could be exposed at a level exceeding the OEL. Data review/action for dermal exposure to chemical agents and exposure to physical agents in the tank farms will be completed using OSHA standards and ACGIH guidelines.
Table 6-1. Chemical Agents - Monitoring Tool.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>OVM</th>
<th>Sorbent tubes</th>
<th>Detector tubes</th>
<th>Toxilog</th>
<th>TMX 410</th>
<th>TDU</th>
<th>Other</th>
<th>MX251 LEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Vapor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Gasses</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOx</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Methane</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Notes:
- LEL = Lower Explosive Limit
- TDU = Thermal Desorption Unit
- OVM = Organic Vapor Monitor
- TMX410 = Environmental Instruments multi-gas monitor.
- MX251 = Industrial Scientific combustible gas meter.

Table 6-2. Physical Agents - Monitoring Tool.

<table>
<thead>
<tr>
<th>Hazard</th>
<th>02/LEL Meter</th>
<th>Observation</th>
<th>WBGT</th>
<th>Light Meter</th>
<th>SLM/Band Analyzer</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen/LEL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergonomic</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat stress</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold stress</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker fatigue</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illumination</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- LEL = Lower Explosive Limit
- SLM = Sound Level Meter
- WBGT = Wet Bulb Globe Thermometer
6.6 SAMPLING

Under the direction of TWRS-IH&S, WHC, HEHF, and ICF KH, staff will be responsible for sample collection and analysis. Sampling and analytical methods will adhere to standard operating procedures and will follow the Quality Assurance Program Plan for industrial hygiene monitoring and evaluation.

Sampling will be initiated by the WHC industrial hygienist who will review the work package and detail the sampling assignment to obtain the desired exposure profiles. Safety inspection/observation, which applies to many of the physical agent hazards, will be initiated by the SSHR or the industrial hygienist. These assessments will be based on hazard and baseline evaluations whenever possible. An industrial hygiene sampling plan will be prepared to document the purpose and desired endpoints for sampling. This strategy will follow the NIOSH decision-making scheme (or equivalent) and include sufficient sampling to ensure statistical validity for subsequent actions. Periodic sampling may be recommended to evaluate changing conditions and to increase confidence in any original sampling and decision making scheme.

6.7 MONITORING DATA REVIEW AND ACTION

Monitoring data will be reviewed by a WHC industrial hygienist and compared to established safe levels. Safe levels for gas or vapor exposure have been established by TWRS-IH&S in the form of an administrative action level. This action level is known as an occupational exposure limit which has been defined as one-half of the lower of either the PEL or the TLV. Engineering controls will be implemented or personal protective equipment issued if monitoring data suggests that workers could be exposed at a level exceeding the OEL. Data review/action for dermal exposure to chemical agents and exposure to physical agents in the tank farms will be completed using OSHA standards and ACGIH guidelines.
This page intentionally left blank.
7.0 DECONTAMINATION PROCEDURES

Normal tank farm operations deal mainly with radiological decontamination. When unusual work is performed at the tank farms and a step-by-step decontamination protocol for site personnel and equipment is required, this protocol can be found in the task-specific HWOP. The HWOP will be incorporated as part of the work package when needed. When tank farm operations move into site investigation and cleanup work, a full-scale hazardous waste decontamination procedure will be implemented.

WHC general guidance and procedures for decontamination are found in WHC-CM-4-3, Volume 4 (HWO-1, and Appendix K). Where necessary for clarity or emphasis, WHC policy has been incorporated into the following policies, guidelines, and requirements for tank farms that amplify or are more stringent than WHC procedures.

Tank farm site activities will frequently require intrusion into areas of known chemical and/or radiological contamination. Consequently, it is possible that personnel and equipment will be contaminated with hazardous chemical and radiological substances in various ways, many of which are not readily apparent to the individual. Potential sources of contamination include airborne vapors, gases, dust, mists and aerosols, splashes, spills, walking through contaminated areas, and handling contaminated equipment.

Decontamination, the process of removing or neutralizing contaminants that have accumulated on personnel and equipment, is critical to the worker health and safety. Decontamination protects workers from contact with hazardous substances that may contaminate and eventually permeate protective clothing, respiratory equipment, tools, vehicles, and other equipment used on site. Decontamination (1) protects all site personnel by minimizing the transfer of harmful materials into clean areas; (2) helps prevent mixing of incompatible chemicals; and (3) protects the community by preventing uncontrolled transportation of contaminants from the site.

For tank farms, decontamination takes on additional significance in that most chemical contamination will be combined with radiological contamination, thus making the decontamination problem one of dealing with mixed wastes. If equipment or personnel are radiologically contaminated, decontamination procedures shall comply with guidelines established in HSRCM-1, Rev. 2, (WHC 1994). If radiological contamination is detected on skin or clothing by any means, an Health Physics technician (HPT) must be contacted. Contaminated personnel shall be decontaminated following WHC procedures. Easily detected radiological contamination serves as an indicator of potential chemical contamination when working with mixed wastes, similar to the use of radioactive tracers.
7.1 PREVENTING CONTAMINATION

7.1.1 Minimizing Contamination

The amount of decontamination required can be minimized substantially by adhering to the following operating guidelines and requirements.

1. Observe work practices that minimize contact with hazardous substances (e.g., do not walk through areas of known contamination; do not directly touch potentially hazardous substances).

2. Use remote sampling, handling, and container-opening techniques (e.g., drum grapplers, pneumatic impact wrenches).

3. Protect monitoring and sampling instruments by bagging the instrument bodies and probes and wrapping cords in appropriate material (such as cellophane or plastic). Make openings in the bags for sample ports and sensors that must contact site materials.

4. Wear disposable outer garments and use disposable equipment where appropriate.

5. Cover equipment and tools with a strippable coating that can be removed during decontamination.

6. Encase the source of contaminants (e.g., with plastic sheeting or overpacks).

7.1.2 Proper Dressing Procedures

Adherence to proper procedures for dressing before entering a radiation area minimizes the potential for contaminants to bypass the protective clothing and escape decontamination. In general, all fasteners should be used (i.e., zippers fully closed, all buttons used, all snaps closed). Gloves and boots should be tucked under the sleeves and legs of outer clothing, and hoods (if not attached) should be worn outside the collar. Another pair of tough outer gloves is often worn over the sleeves. All open joints should be taped to prevent contaminants from running inside the gloves, boots, and jackets (or suits, if one-piece construction). Specific requirements shall be addressed by the applicable RWP.
7.1.3 Personal Protective Equipment Checks

PPE shall be checked before each use to ensure that it contains no cuts or punctures that could expose workers to contaminants. Injuries to the skin (such as cuts and scratches) may enhance the potential for chemicals, radioactive contaminants, or infectious agents that directly contact the worker's skin and penetrate into the body. Workers with open cuts or damaged skin should be kept from working until the skin heals or the area is protected with an approved covering.

7.1.4 Surveying of Instruments

All instruments and equipment must be surveyed for radiological contamination control purposes before being removed from a surface contamination zone. Items with detectable levels of contamination must be controlled as radioactive material (or controlled or regulated equipment).

7.1.5 Respiratory Protection

When using supplied air, there is a high potential for air hoses to become contaminated. Where possible, hoses should be covered with plastic. Cleaning and decontamination of face pieces is performed by the mask cleaning station (i.e., laundry). Maintenance of special respiratory protection equipment (e.g., Ska-Pak, MSA-PAPR) is performed by the Respiratory Protection Services.

7.1.6 Down-Hole Drilling Equipment

Down-hole drilling equipment shall be decontaminated before it is used on another borehole and/or as required to ensure the safety of personnel, and/or to prevent sample cross-contamination.

7.1.7 Heavy Equipment

All possible measures to prevent or limit the contamination of heavy equipment shall be taken. Those parts of drilling or other equipment that become contaminated (such as auger flights) are to be double bagged and taken to an appropriate facility for decontamination before reuse, to minimize personnel contamination potential and sample cross-contamination.
7.2 TYPES OF CONTAMINATION

7.2.1 Physical States of Contaminants

Contaminants may be present in the form of solids, liquids, gases or vapors. Dust and dirt contaminated with radionuclides, toxic organic compounds, or metals may collect on the surface of personal protective equipment, or in cracks, crevices, folds, and seams. Specific contaminants (when known) will be addressed as part of the site-specific characterization and analysis. Specific task-related concerns should be addressed in the RWP.

7.2.2 Liquids and Gases

Liquid and gaseous contaminants (such as organic liquids or vapors) may be limited to the surface of personal protective equipment or may permeate the PPE material. Surface contaminants may be easy to detect and remove; however, contaminants that have permeated a material are difficult or impossible to detect and remove. If contaminants that have permeated a material are not removed by decontamination, they may continue through the material until they reach the inner surface, where they can cause an unexpected exposure (breakthrough). This is one advantage of the use of disposable protective clothing (provided that the clothing is changed at intervals that are less than the chemical breakthrough time).

7.2.3 Breakthrough Time

Five major factors that affect the breakthrough time.

1. Contact time

The longer a contaminant is in contact with an object, the greater the probability and extent of permeation. For this reason, minimizing contact time is one of the most important objectives of a decontamination program.

2. Concentration

Molecules tend to flow from areas of high concentration to areas of low concentration. As concentrations of wastes increase, the potential for permeation of personal protective clothing also increases.

3. Temperature

An increase in temperature generally increases the permeation rate of contaminants.
4. Size of contaminant molecules and pore space

Permeation increases as the contaminant molecules becomes smaller and as the pore space of the material to be permeated increases.

5. Physical state of wastes

As a rule, gases, vapors, and low-viscosity liquids tend to permeate more readily than high-viscosity liquids or solids.

7.3 POLICIES FOR DECONTAMINATION PROCEDURES

7.3.1 General Guidance

1. Decontamination procedures shall be developed, communicated to employees, and implemented before any employees or equipment may enter onsite areas where potential for exposure to hazardous substances exists. Decontamination procedures shall be incorporated as part of the RWP.

2. A step-off pad shall be established between the radiation area and the radiation buffer area for each task. Disposable clothing is to be removed (outer layers are removed first) and placed in containers. Non-disposable clothing (such as Anti-C clothing) that can be cleaned will be removed, bagged, and sent to the laundry. After removing outer protective clothing, each team member must be surveyed before being permitted to go into an uncontrolled area.

3. If radioactive skin or clothing contamination is detected, decontamination must be performed under the direction of the HPT.

4. The RWP should be revised whenever the type of personal protective clothing or equipment changes, the site conditions change, or the site hazards are reassessed based on new information.

7.4 POLICIES FOR SPECIFIC DECONTAMINATION PROCEDURES

7.4.1 Objectives

The primary objective of decontamination procedures is to minimize the risk of personnel exposure to hazardous substances. Historically, decontamination of personnel has involved a successive removal sequence, from outermost to innermost layers of protective clothing. However, in many instances, the objectives of decontamination can be accomplished most
effectively by the use of disposable protective clothing, combined with the systematic removal and disposal of multiple layers of protective coveralls, gloves, and boot covers.

7.4.2 Decontamination Required

All personal, non-disposable clothing, equipment, and samples leaving the contaminated area must be decontaminated or properly packaged to prevent the spread of any harmful chemicals, or radioactive contamination that may have adhered to them.

7.4.3 Health and Safety of Decontamination

Normal radiation decontamination procedures provide adequate decontamination for known chemical agents that are evaluated for health and safety aspects.

7.4.4 Change Rooms

Anti-C clothing is stored at specific locations in the 200 East and West Area Tank Farm areas. The storage locations are designated change areas, and are the only areas where personnel are authorized to don Anti-Cs. At special access points (step-off pads), change rooms are frequently set up for special tasks. Personnel who have reason to don Anti-Cs in areas other than the change rooms shall contact Health Physics before obtaining or transporting the Anti-Cs. Most of the authorized change rooms are trailers that are used as exit-entry points to controlled areas. The location of the trailers and authorized change rooms are noted in Table 7-1.

7.4.5 Showers

Although there are various showers within tank farms that could be used in an emergency for decontamination, the only authorized fixed shower is located at each of the evaporator buildings, and the Plutonium Finishing Plant.

7.5 TESTING FOR DECONTAMINATION EFFECTIVENESS

7.5.1 Visual Observation

In some cases the effectiveness of decontamination can be estimated by visual observation. Discolorations, stains, corrosive effects, visible dirt, or alterations in clothing fabric may
indicate that contaminants have not been removed. It is important to remember that not all contaminants leave visible traces. Many contaminants can permeate clothing and are not easily observed.

Table 7-1. Location of Trailers and Change Rooms.

200 East Area Change Rooms

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Access to</th>
</tr>
</thead>
<tbody>
<tr>
<td>204-AR/244</td>
<td>Room</td>
<td>204 Unloading bay</td>
</tr>
<tr>
<td>A gate</td>
<td>Trailer (MO-825)</td>
<td>A, AY, AX, AZ</td>
</tr>
<tr>
<td>AN gate</td>
<td>Trailer (MO-820)</td>
<td>AN farm</td>
</tr>
<tr>
<td>AW gate</td>
<td>Trailer (MO-818)</td>
<td>AW farm</td>
</tr>
<tr>
<td>BX gate</td>
<td>Trailer (MO-824)</td>
<td>B, BX, BY farms</td>
</tr>
<tr>
<td>C gate</td>
<td>Trailer (MO-822)</td>
<td>C Farm, CR vault</td>
</tr>
<tr>
<td>242-A evaporator</td>
<td>Room</td>
<td>Evaporator, pump</td>
</tr>
<tr>
<td>Lift station</td>
<td>Trailer (MO-816)</td>
<td>Lift station</td>
</tr>
<tr>
<td>AP gate</td>
<td>Trailer (MO-815)</td>
<td>AP farm</td>
</tr>
</tbody>
</table>

200 West Area Change Rooms

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Access to</th>
</tr>
</thead>
<tbody>
<tr>
<td>T gate</td>
<td>Trailer (MO-821)</td>
<td>T farm</td>
</tr>
<tr>
<td>TX, TY gate</td>
<td>Trailer (MO-817)</td>
<td>TX, TY farms</td>
</tr>
<tr>
<td>U gate</td>
<td>Trailer (MO-823)</td>
<td>U farm</td>
</tr>
<tr>
<td>SX gate</td>
<td>Trailer (MO-819)</td>
<td>S, SY, SX farms</td>
</tr>
<tr>
<td>242-S evaporator</td>
<td>Room</td>
<td>Evaporator and pump</td>
</tr>
</tbody>
</table>

7.5.2 Wipe Testing/Direct Reading Sampling

Wipe-testing/direct reading sampling provides after-the-fact information on the effectiveness of decontamination. For this procedure, a dry or wet cloth, glass fiber filter paper, or swab is wiped over the surface of the potentially contaminated object and then analyzed in a
laboratory. For direct reading, a geiger counter or a Personal Contamination Monitor (PCM-1B) may be used for a whole body survey. Both the inner and outer surfaces of protective clothing should be tested.

7.5.3 Testing for Permeation

Testing for the presence of permeated contaminants requires that pieces of the protective garment(s) be sent to a laboratory for analysis.

7.6 HEALTH AND SAFETY HAZARDS

While decontamination is performed to protect health and safety, it can pose hazards under certain circumstances. Decontamination methods may:

- Be incompatible with the hazardous substances being removed
- Be incompatible with the clothing or equipment being decontaminated
- Pose a direct health hazard to workers.

The chemical and physical compatibility of the decontamination solutions or other decontamination materials must be determined before they are used. A qualified health professional should assess the benefits and risks associated with the use of decontamination methods at a waste site.

7.7 DECONTAMINATION EQUIPMENT SELECTION

In selecting decontamination equipment, it is important to consider whether the equipment itself can be decontaminated for reuse or disposed of easily.

7.8 DISPOSAL METHODS

All decontamination equipment must be properly decontaminated and/or disposed of (as necessary). All spent solutions and wash water should be collected and disposed of properly. Incompletely decontaminated clothing should be placed in plastic bags or radiation boxes, pending further decontamination and/or disposal. The WHC Solid Waste Engineering group provides technical support for designating and disposing of hazardous wastes.
7.9 PERSONAL PROTECTION

7.9.1 General Safe Work Practices

1. Eating, drinking, smoking, taking medications, and chewing gum are normally prohibited within the radiation area. Under special conditions drinking may be allowed under high-heat conditions.

2. Do not handle soil, waste samples, or any other potentially contaminated items unless wearing protective gloves as specified in the JHA and RWP.

3. Be alert to potentially changing exposure conditions evidenced by perceptible odors, unusual appearance of excavated soils, or oily sheen on water. Whenever possible, approach from or stand upwind (as indicated by the required onsite windsock) of excavations, boreholes, well casings, and drilling spoils.

4. At the end of the work day, or each job, disposable clothing shall be removed and placed in drums (chemical contamination) or plastic lined radioactive waste containers as appropriate. Clothing that can be cleaned shall be sent to the Hanford Site laundry facility.

5. Thoroughly wash hands and face before eating (or putting anything in the mouth) to avoid hand-to-mouth contamination.

7.9.2 Protection of Decontamination Personnel

1. All decontamination workers who are in a contaminated area must be decontaminated before entering the clean support zone. The extent of their decontamination should be determined by the types of contaminants they may have contacted and the type of work they performed.

2. Decontamination workers who come in contact with personnel and equipment at the first decontamination station require more protection from contaminants than decontamination workers who are assigned to the last station in the decontamination line.

3. The level of protection required will vary with the decontamination equipment used. Appropriate equipment and clothing for protecting decontamination personnel should be addressed by the Site Safety and Health Representative (SSHR), the RWP, or by the HPT.
7.10 EMERGENCY DECONTAMINATION

In an emergency, the primary concern is to prevent the loss of life or severe injury to personnel. Personnel must contact the onsite emergency response organizations by calling 911 (by site telephone), Station 1 (by radio), or 811 (by cellular telephone). If immediate medical treatment is required to save a life, decontamination should be delayed until the victim's condition is stabilized. Kadlec Medical Center does have an emergency room and procedures for handling contaminated personnel. If decontamination can be performed without interfering with essential life-saving techniques or first aid, or if a worker has been contaminated with an extremely toxic or corrosive material that could itself cause severe injury or loss of life, decontamination must be performed immediately. If an emergency due to a heart-related illness develops, protective clothing should be removed from the victim as soon as possible to reduce the heat stress. During an emergency, provisions must also be made for protecting medical personnel and disposing of contaminated clothing and equipment.

If possible, first responders should (1) move the person into the radiological buffer area and remove the person's outermost layer of protective clothing; (2) place the person on a clean blanket or plastic sheet; and (3) then remove their own outermost layer of protective clothing. Ideally, the person's next layer of protective clothing should be removed by rescue personnel who enter the radiological buffer area for appropriate life saving/emergency procedures.
8.0 SITE CONTROL

The purpose of site control is to minimize the potential contamination of workers, protect the public from hazards and prevent unauthorized entry. Site boundary controls are established to limit access to areas of hazard concerns. Based on the expected levels of contamination and work activity, appropriate zones must be established and entry controlled. Unnecessary personnel shall be excluded. Applicable maps reflecting boundary controls shall be posted at the entry points (change trailers) for each tank farm. The SSHR shall be responsible for ensuring that the most current boundaries are displayed.

In addition to general training received concerning PPE, all employees entering tank farms shall receive training on the establishment of respiratory protection zones. As a minimum, all employees are required to read the Safe Work Practice (SWP), Task: Entry Into Tank Farm Respiratory Protection Zones. Specific PPE requirements shall be included as part of the work package and/or RWP.

Because many tasks at the tank farms involve radiological work, Contamination/Airborne Radioactivity Control Areas and/or Radiation Areas are established in accordance with the HSRCM-1, Rev. 2 (WHC 1994).

8.1 RADIOLOGICAL CONTROL ZONES

Radiation Areas are classified as follows:

- **Radiation Buffer Area.** A boundary area around other radiological areas containing greater radiological hazards.

- **Radiation Area** - Any area that is accessible to personnel in which radiation exists at such levels that a major portion of the body could receive in one hour a dose in excess of 5 mrem but less than 100 mrem.

- **High Radiation Area** - Any area that is accessible to personnel in which radiation exists at such levels that a major portion of the body could receive in one hour a dose of 100 mrem to 5,000 mrem.

- **Very High Radiation Area** - Any area that is accessible to personnel in which radiation exists at such levels that a major portion of the body could receive in one hour a dose of 5,000 mrem or greater.
8.2 CONTAMINATION/AIRBORNE RADIOACTIVITY CONTROL AREAS

- **Contamination Area** - An area where contamination levels exceed specific limits.

- **High Contamination Area** - An area where contamination levels are greater than the Contamination Area.

- **Fixed Contamination Area** - An area with no detectable removable contamination but contains fixed contamination levels exceeding specified limits.

- **Soil Contamination Area** - An area where surface or subsurface contamination levels exceed specified limits. A Soil Contamination Area may be located outside an Radiological Controlled Area.

- **Airborne Radioactivity Area** - An area where airborne radioactivity exceeds specified limits.

8.3 HAZARDOUS WASTE OPERATIONS/CLEANUP WORK ZONES

The procedures addressed in this section are only required for those tasks which fall under nonroutine work requiring a HWOP. To reduce the accidental spread of hazardous substances from contaminated areas to clean areas, various zones shall be established. By defining work zones, work activities and contamination can be confined to the appropriate areas and personnel can be located and evacuated in an emergency. Hazardous waste operations and waste cleanup projects can be divided into as many different work zones as needed to meet operational and safety objectives. These zones will be specified in the HWOP. The three primary work zones that shall be established in the HWOP are the exclusion zone, contamination reduction zone, and the support zone.

NOTE: Such work zones shall not be confused with established radiation contamination control zones.

The appendices indicate the specific zones for each tank farm.

8.3.1 Exclusion Zone

The exclusion zone (EZ) is the area where contamination does exist or could occur. The primary activities performed in the exclusion zone are:

- Site characterization such as test boring or sampling.
- Installation of wells for groundwater monitoring.
- Cleanup work such as drum movement, drum staging or material consolidation.

The outer boundary of the exclusion zone shall be clearly marked by rope, barrier tape, fences or other physical barriers which include placards or signs. An access control point should be established at the periphery of the exclusion zone to regulate the flow of personnel and equipment into and out of the area. Personnel working in the exclusion zone may include the supervisor-in-charge, operators, other workers, and specialized personnel such as equipment operators. All personnel working in the exclusion zone must wear the level of personal protection clothing specified in the HWOP.

8.3.2 Contamination Reduction Zone

The contamination reduction zone (CRZ) is a transition area between a contaminated area and the clean area. This zone is designed to reduce the probability that the clean support zone will become contaminated or be affected by hazardous substances from the exclusion zone. Decontamination should take place within a designated area of the CRZ with the access point located in close proximity to the access point for the exclusion zone. The degree of contamination should decrease as one moves away from the exclusion zone towards the support zone. Personnel protective clothing, equal to but not greater than that required in the exclusion zone, should be worn by everyone in the CRZ. Besides decontamination, the CRZ should be used to facilitate emergency equipment, equipment resupply, sample packaging, worker temporary rest areas and drainage or containment of water or other liquids used for decontamination.

8.3.3 Support Zone

The support zone (SZ) is the location of the administration support functions needed to keep the other two zones operational and running smoothly. This can be used as a staging area for equipment, containers, and supplies. No special protective clothing is required in this area. Personnel exiting the CRZ should be monitored before entering the support zone to ensure they are free of all contaminates from the exclusion zone.

8.4 DEFINITION OF ZONE SIGNS

- Supplied Air Respiratory Protection Zones are the areas within 8.5 m (28 ft) of single-shell tank release points and require the use of supplied air. Refer to Section 2.9 for specific details.
Air Monitoring Zones are the areas within 1.5 m (5-ft) around specific tank penetrations with access limited to those authorized by tank farm facility operations. Entry into air monitoring zones will require either industrial hygiene monitoring or supplied air. Any work activity that breaches primary tank containment on passively ventilated tanks, including filter testing activities and pit cover removals, will be conducted on supplied air or accompanied by continuous monitoring throughout the duration of the activity. Monitoring will not be necessary during supplied air activities. Ventilated tanks will not require use of supplied air unless the exhauster is not functioning or waste intrusive work is taking place. Section 2.9 of the HASP dictates specific respiratory controls in Tank Farms in the form of a Safe Work Practice (SWP).

8.5 ACCESS CONTROL

Access control to tank farm areas containing radiological and chemical hazards is performed by two separate means. The Westinghouse Radiation Area Management (WRAM) system is used to verify entry requirements are met for individuals requiring access to tank farms radiologically-controlled areas. Table 3-1 identifies the WRAM entry requirements.

At each radiological controlled area access point, an entry log is maintained. Employees entering these areas are required to review the facility radiological status map and the respiratory requirements and acknowledge understanding of the entry requirements by signing the log. On exiting the area, the log entry must be completed.

8.6 BUDDY SYSTEM

The purpose of the buddy system is to:

- Provide personnel with assistance, if needed
- Observe co-worker for signs of chemical or heat exposure
- Periodically check the integrity of a co-worker’s PPE
- Notify the supervisor if help is needed.

Under the buddy system, an attendant (provided with the required PPE) must be capable of observing the worker performing the task. For tank farms, the buddy system is used in the following cases:

- Entry into confined spaces
- Activities requiring the use of supplied air or SCBA
- Work performed under a HWOP (see Section 1.1).

Enforcement of the buddy system is the responsibility of the supervisor/person-in-charge. Personnel shall not be allowed to proceed beyond the exclusion zone access point unless accompanied by a companion worker.

8.7 COMMUNICATIONS

Communications are essential to all smoothly run operations. Personnel should be provided with the appropriate equipment to facilitate the transmission of information necessary to support work activities, report emergencies and receive emergency information. This does not require that each person be in possession of a transmitting or receiving device but that such instruments be accessible to workers within the assigned work area. Information can be received by one person and given to other individuals by any recognized direct means. The primary means for communicating to and from the field is by use of radios and cellular phones. A single point-of-contact is available at all times (911 or 811, cellular). This single point-of-contact, once notified, has the responsibility to initiate notifications and to dispatch emergency responders.
This page intentionally left blank.
9.0 EMERGENCY RESPONSE PLAN

9.1 PRE-EMERGENCY PLANNING AND COORDINATION WITH OUTSIDE PARTIES

The TWRS Emergency Preparedness Program Plan, WHC-IP-0971, is the primary emergency planning document for the 200 Area Tank Farm facilities. The plan contains descriptions of the (1) hazards, (2) potential emergency conditions, and (3) response plans for pre-identified potential emergency conditions.

The TWRS Emergency Preparedness Program Plan is an agreement among the three major Hanford Site contractors (i.e., an operations, engineering and construction contractor; a research and development contractor; and a medical and health services contractor) which defines the interfaces and notifications required during an emergency. Agreements have been established with a number of offsite authorities, including law enforcement, fire departments, and local hospitals, to reduce the impact to human health and the environment if an incident has offsite public health implications, or if an onsite emergency warrants offsite assistance.

9.2 PERSONNEL ROLES, LINES OF AUTHORITY, AND COMMUNICATION

The overall responsibility for implementation of the tank farm emergency response plan lies with the Building Emergency Director (BED). The BED is responsible for the safety of personnel in and around the tank farms during an emergency. A list of all BEDs is maintained at various locations throughout the facility. The tank farms shift managers act as BEDs, and these individuals can be reached 24-hours/day. The BEDs have the authority to commit all necessary resources (both equipment and personnel) to respond to any emergency. Additional responsibilities have been delegated to the Hanford Fire Department personnel. These Hanford Fire Department personnel have the authority to commit all necessary resources (both equipment and personnel) to respond to any emergency.

Response by a BED is obtained through radio or telephone communications to the shift office (376-2689 East Area or 373-3475 West Area). The Patrol Operations Center has been designated as the single point-of-contact to mobilize responses from support organizations to any emergency. The single point-of-contact is available at all times (by plant telephone at 911 or 373-3800, or by cellular telephone at 811) and has the responsibility to initiate notifications and to dispatch emergency responders (Hanford Fire Department, Hanford Patrol, or ambulance services). All emergency notifications to the BED and building managers can be made directly from the affected facility or through a single point-of-contact. The primary methods of communicating to, from, and at the event scene are radios and cellular telephones.
Depending on the emergency event level (i.e., Alert Level Emergency or higher), other WHC Emergency Response organizations and the Richland Operations Office (RL) emergency organization are activated. The role of the WHC organization is to support the facility, assume notification responsibilities, and determine protective actions for the surrounding area. During a DOE-RL security event, the RL organization has overall control and is responsible for interfacing with onsite and offsite agencies and media (through the Joint Information Center).

9.3 EMERGENCY RECOGNITION AND PREVENTION

Emergency recognition is primarily accomplished through a work force that is knowledgeable about potential emergency conditions associated with their jobs. This is accomplished through the review of the emergency plan, job-specific hazardous worker training, facility orientation, and operator qualification training. In addition to training, the tank farms has in place an emergency procedure (WHC-CM-4-43, Emergency Management Procedures, Section 2.1A, "200 Area Tank Waste Recognition and Classification of Emergencies") that facilitates the rapid recognition and classification of an operational emergency as described in DOE emergency preparedness orders.

For spills of hazardous materials or dangerous waste, the BED ensures that trained personnel (e.g., from the Hanford Fire Department Hazardous Materials Team, or the Industrial Hygiene organization of TWRS-IH&S) identify the character, source, amount, and extent of the hazardous material or dangerous waste involved in the incident to the fullest extent possible. Identification of waste can be made by (1) visually inspecting involved containers; (2) sampling; (3) referencing of inventory records, shipping manifests, or waste tracking forms; or (4) consulting with other operations personnel. Samples of materials involved in an emergency will be analyzed as appropriate.

Prevention of emergencies is the goal. The two primary methods used to help ensure prevention are training and procedural compliance. All work in the facility is governed by procedures that take into account possible hazards and potential emergency conditions.

9.4 SAFE DISTANCES AND PLACES OF REFUGE

The Tank Farm Facility Building Emergency Plan (WHC 1994) identifies evacuation staging areas and routes for the tank farm facilities. In some cases personnel are required to evacuate to a safe upwind location. If a place of refuge is required, personnel have been trained to seek shelter in the nearest available building, office trailer, or change trailer.
9.5 SITE SECURITY AND CONTROL

Initially, it is the responsibility of the discoverer of an emergency situation to ensure that other personnel do not enter the area of danger. If required, the BED requests security and site control support from Hanford Patrol by making the request through the single point-of-contact. The BED provides sufficient information and direction to allow Hanford Patrol to establish effective controls. Examples of controls that may be established include closing a specific area or site, closing main gates, issuing a crash alarm telephone message, and activating 200 Area evacuation or take-cover sirens.

9.6 EVACUATION ROUTES AND PROCEDURAL GUIDELINES

Facility-specific evacuation routes and processes are contained in the TWRS Emergency Preparedness Plan (WHC-IP-0971) (WHC 1994b) and in facility-specific emergency plans. The basic response for an area evacuation is for non-essential personnel to meet at the evacuation staging area for accountability. Essential personnel meet in a safe location for accountability. Relocation from the staging area to another location will be at the direction of the BED or as coordinated by the WHC Emergency Response organization.

9.7 EMERGENCY MEDICAL TREATMENT AND FIRST AID

Health Service Centers are located at both the 200 East and 200 West Areas. The 200 East Area Health Service Center is located on the corner of 4th and Baltimore in Building 2719EA (telephone 373-2314). The 200 West Area Health Service Center is located on 20th street in Building 2719WB (telephone 373-2714). Both stations are staffed during normal day shift hours Monday through Friday.

Ambulance service is provided by the Hanford Fire Department, which uses paramedics and emergency medical technicians as attendants. This service is available from area fire stations on a 24-hour/day, 7-day basis. Additional ambulance service is available from other local city fire departments through mutual aid agreements.

Professional medical help is provided onsite by the Hanford Environmental Health Foundation. Doctors and nurses are available for emergency assistance at all times. These medical personnel are trained in procedures to assist personnel contaminated with hazardous and/or radioactive material. Emergency call lists are maintained to provide professional medical consultation at all times.

Referral to offsite hospital facilities is made by the Hanford Environmental Health Foundation physician providing emergency assistance by telephone or in person. The primary hospital used in emergencies is Kadlec Medical Center, located in the city of Richland. Kennewick General Hospital, located in the city of Kennewick, and Our Lady of
Lourdes Hospital, located in the city of Pasco, are used as backup facilities. Agreements have been established between these hospitals and DOE-RL.

Employees are required to have Medic First Aid training. First aid kits are located in office buildings and change trailers.

9.8 EMERGENCY ALERTING AND RESPONSE

The discoverer of an emergency condition is responsible for immediately providing the initial alert, either in person or by telephone or radio. In the case of a fire, the discoverer activates the fire alarm, which summons the Hanford Fire Department. The BED has the authority to activate facility-specific warning systems and is authorized to order initiation of the area-wide alerting/warning signals through the single point-of-contact. Table 9-1 lists the standard warning signals and provides the appropriate meanings and responses.

Table 9-1. 200 Area Tank Farm Alarms and Appropriate Responses.

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Meaning</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash alarm telephone</td>
<td>Emergency message</td>
<td>Lift receiver, do not speak, listen to caller and relay message(s) to building occupants and BED or alternate.</td>
</tr>
<tr>
<td>(steady ringing phone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gong or bell and flashing lights</td>
<td>Fire</td>
<td>Evacuate building. Move upwind. Keep clear of emergency vehicles.</td>
</tr>
<tr>
<td>Siren (steady blast)</td>
<td>Area evacuation</td>
<td>Proceed promptly to accountability area. Follow instructions.</td>
</tr>
<tr>
<td>Wavering siren</td>
<td>Take cover</td>
<td>Close all exterior doors, turn off all intake ventilation and notify manager of whereabouts. Request call back for status and monitor portable radios.</td>
</tr>
</tbody>
</table>

9.9 CRITIQUE OF RESPONSE AND FOLLOW-UP

In accordance with DOE Order 5000.3B (DOE 1990), an occurrence report is required for incidents occurring at the tank farms involving hazardous materials release and fire. The DOE reporting system establishes three levels of incidents. These descriptions, listed below, are provided in order of descending levels of severity.

- Emergencies--The most serious level of occurrence. Emergencies require an increased alert status for onsite personnel and, in specified cases, for offsite authorities. The detailed definitions and classifications of emergencies and
appropriate emergency responses are provided in WHC-IP-0971, TWRS Emergency Preparedness Program Plan (WHC 1994); and WHC-CM-4-43, Section 2.1A, "200 Area Waste Tank Recognition and Classification of Emergencies."

- Unusual Occurrences--Non-emergency occurrences that have significant impact or potential for impact on safety, environment, health, security, or operations.

- Off-Normal Occurrences--Normal or unplanned events or conditions that adversely affect, potentially effect, or are indicative of degradation in the safety, security, environmental, or health protection performance or operation of a facility.

Specific details regarding occurrence reporting system are found in WHC-IP-0842, Waste Tank Administration Manual, Section 5.6.1, "Tank Farms Occurrence Reporting and Processing of Operations Information." (WHC 1992)

After the event is categorized, proper notifications are completed to onsite and offsite agencies (as required), including the operating contractor, DOE, and county and state organizations. The Tank Farm Occurrence Reporting System ensures compliance with the requirements for accident/incident reporting in accordance with DOE Order 5484.1 (DOE 1984).

Occurrences are investigated, reported, and analyzed promptly to ensure that effective corrective actions are taken in compliance with contractual and statutory requirements.

9.10 PERSONAL PROTECTIVE EQUIPMENT (PPE) AND EMERGENCY EQUIPMENT

PPE is located throughout the tank farm facilities. Specific locations of the emergency equipment are contained in the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF (WHC 1994). Change rooms contain protective clothing, air purifying respirators, and self-contained breathing apparatus. Spill kits and acid suits are located where hazardous materials are stored and handled. Fire extinguishers are located in all facilities. In addition, detection equipment for organic and explosive vapors is on hand. Emergency kits, intended for use by health physics personnel during radiological incidents, are located in response vehicles.
This page intentionally left blank.
10.0 CONFINED SPACE ENTRY POLICIES, GUIDELINES, AND REQUIREMENTS

Numerous confined spaces are found in and around the tank farm facilities. These include but are not limited to storage tanks, valve pits, pump pits, underground vaults, and caissons. The hazards of entering and working in these confined spaces will be reduced by following the requirements and procedures prescribed in WHC-CM-4-40, Section 3.1, "Confined Space Entry." These procedures will be implemented at the tank farms as outlined below.

1. An incomplete listing of confined spaces in the tank farm areas has been compiled and is attached to each applicable farm appendix. Each of the spaces shall be posted with an appropriate warning sign.

2. All personnel who will be involved in confined space entry will be trained in the hazards associated with confined spaces, acceptable entry conditions, and their duties and responsibilities as part of the entry team.

3. Before a confined space entry, the PIC will initiate a Confined Space Entry Permit (Jetform # A-6000-895) to document pertinent information and safety requirements for the entry.

4. Before the entry begins, Health and Safety Technical Services will test the confined space atmosphere for adequate oxygen and potential air contaminants.

5. The following safeguards shall be established for each entry.

 - An attendant will be assigned to stand by outside the confined space in order to monitor activities in the space and call for help in an emergency.
 - The space will be isolated from potentially hazardous energy sources using an approved lock and tag procedure.
 - Mechanical ventilation will be provided, as necessary, to remove atmospheric contaminants and/or ensure adequate oxygen.
 - Appropriate personal protective equipment will be provided to entrants.
 - The emergency response team (Hanford Fire Department) will be notified in advance of high hazard entries as specified in WHC-CM-4-40, Section 3.1, "Confined Space Entry."

6. When all necessary safety actions have been completed, the PIC will sign the entry permit to authorize the entry.
This page intentionally left blank.
11.0 ENVIRONMENTAL PROTECTION AND RESPONSE

Because of the hazardous nature of many materials used and found in the tank farms, only trained personnel shall respond to a hazardous material or hazardous waste spill. Included in the initial and refresher Hazard Waste Training (see Section 3.0) are instructions for cleaning up small spills. Appropriate Material Safety Data Sheets (MSDSs) shall be referenced before performing cleanup.

It is the responsibility of the employee identifying the spill to notify the tank farms shift manager immediately in the event of a release to the environment, or if unexpected contaminated spills are encountered at the tank farms. The tank farms shift manager, after consulting with the appropriate WHC environmental group, will determine whether the spill is a reportable occurrence under DOE Order 5000.3B (DOE 1990). The requirements for notifying state or other regulatory agencies are included in the WHC reporting procedures. Substantial spills of hazardous materials may require response by the Hanford Fire Department Hazardous Materials (HAZMAT) Response Team.

11.1 SMALL CONTROLLED SPILLS

When the spill is a small, controlled amount and the identity of the spilled substance is known, the spill can be cleaned up by personnel at the tank farms who have received appropriate training. To clean-up a spill, the following actions and MSDS guidelines for the substance should be followed.

- Stop the spill.
- Warn other people of the spill.
- Isolate the area around the spill.
- Minimize personal exposure.
- Secure or redirect ventilation systems that might cause airborne contamination.

11.2 LARGE CONTROLLED/UNCONTROLLED SPILLS

When the spill is large, the Hanford Fire Department HAZMAT Response Team should be notified to clean-up the spill. The HAZMAT Team will develop a plan of action on each response (based on training), because every response to a spill is different.
This page intentionally left blank.
12.0 TANK FARM HAZARD COMMUNICATION

The Tank Farm Hazard Communication Program implements the requirements stated in WHC-CM-4-40, Industrial Hygiene Manual, Section 2.1 Hazard Communication Program; and OSHA regulation 29 CFR 1910.1200, "Hazard Communication."

The purpose of this program is to communicate to tank farm workers the potential for illnesses and injuries related to the work environment. This program requires managers to inform their workers of the hazards in the work area and how they can protect themselves. The written program will be kept in various locations throughout the tank farms and will be available to all employees.

12.1 HAZARDOUS CHEMICAL INVENTORY

A complete, current, hazardous chemical inventory will be maintained by each functional group or facility in the tank farms. Right-to-know stations will be located in various locations throughout the tank farms. The chemical inventory must include the MSDS number, may be cross-referenced by synonyms, and may include the Hanford Hazardous Materials Rating.

12.2 PHYSICAL AND BIOLOGICAL HAZARD INVENTORY

A physical and biological hazard inventory will be included in the Tank Farm Hazard Communication Program. The physical agents considered include fire hazards, lighting hazards, noise hazards, temperature-extreme hazards, and ergonomic hazards. Biological hazards include venomous animals and pathogenic materials. Locations of the physical and biological hazard inventory will be in the right-to-know stations as indicated in Section 12.1.

12.3 CHEMICAL LABELING

All hazardous materials will be labeled with manufacturers warning labels or with internally generated hazardous materials information system labels.

12.4 MATERIAL SAFETY DATA SHEETS

Material Safety Data Sheets (MSDS) will be readily available to all employees. They will be retained at the right-to-know stations along with the chemical inventories.
12.5 HAZARDS TRAINING

All employees will be trained to recognize and protect themselves from all hazards identified upon job assignment. All affected employees will be trained whenever a new hazard is introduced into their work areas.
13.0 REFERENCES

ACGIH, 1992, Threshold Limit Values and Biological Exposure Indices for 1992, American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.

APPENDIX A

HEALTH AND SAFETY PLAN
FOR THE A TANK FARM
This page intentionally left blank.
I. TANK FARM DESCRIPTION

A. GENERAL

The A farm consists of six single-shell tanks with a capacity of 3,785,412 L (1,000,000 gal) each. The tanks are numbered 241-A-101 through -106. The tanks were built from 1954 to 1955 and received high-level radioactive waste from the Plutonium Uranium Extraction Facility. Tank 241-A-101 is partially interim isolated, while the remaining five tanks are interim isolated (e.g., physical means have been implemented to reduce the potential for introducing liquids into the tank) and stabilized (e.g., liquid levels have been reduced to prescribed levels).

Tank 241-A-101 is on the Hydrogen/Flammable Gas Watch List because it has the potential to contain concentrations of flammable gases that exceed the lower flammability limit (LFL). These gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of this tank, extreme caution must be exercised to avoid any ignition source near the tank.

Tanks 241-A-101 and -106 vent vapor/gas from their breather filter. These tanks present a confirmed vapor exposure hazard from organics and/or ammonia and possibly other gases/vapors.

Tanks 241-A-101, -102, and -103 are each ventilated using a passive ventilation system. Air for the passive ventilation system is supplied and exhausted through a common high-efficiency particulate air (HEPA) filter mounted on a riser. Air enters the tank when the pressure in the tank is less than that of ambient air. Conversely, air exits the tank when the pressure in the tank is greater than that of ambient air. Tank 241-A-105 is ventilated using an active (electrically powered) 198-m³/min (7,000-ft³/min) exhaust ventilation system. Supply air for the ventilation system is provided through air purge instruments, pit coverblocks or tank risers and is exhausted through a HEPA filtered tank riser. Air discharge from the 241-A-105 ventilation system also provides some airflow through tanks 241-A-104 and -106 because these tanks are connected to 241-A-105 via underground cascade lines.

All A farm tanks contain high-level radioactive waste and various chemical constituents. The A farm is classified as a surface contamination area (SCA) (radiological contamination).
Various A farm tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-825) and adjacent gate (AY) located on Buffalo Avenue. Personnel enter and exit A farm through the support trailer. Equipment such as motorized vehicles enter and exit A farm through the gate adjacent to the trailer.

C. WIND INDICATION

A wind sock located at the southwest corner of A farm indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689 or 373-2396
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include the following:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
Exposure/area monitoring specified by TWRS
Exposure/area monitoring conducted by Industrial Hygiene Field Services (IHFS).

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Hydrogen/Flammable Gas

Tank 241-A-101 is on the Hydrogen/Flammable Gas Watch List because of its potential to contain concentrations of flammable gases that exceed the LFL. These gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of this tank, extreme caution must be exercised to avoid any ignition source near the tank.

2. Vapor/gas

Venting of various vapors/gases to the atmosphere from the breather filter on tanks 241-A-101 and -106 has been documented. Possible gas/vapor constituents include organic vapors and ammonia; however, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the breather filter vent. Extreme caution in the areas is recommended. For the specific controls and personal protective equipment (PPE), refer to the safe work practice (SWP). Controls around breather filter sources include the following:

- Barricaded interior exclusion zones are established at a 1.5-m (5-ft) radius around the pump pit and liquid level reel on tank 241-A-101.
- Organic vapor meter (OVM) monitoring or level B PPE (supplied-air respirator) is required within the barricaded interior exclusion zones around tank 241-A-101; and for any containment breaches on this tank.

To date, all personnel exposure to gases and vapors have been well within established standards; however, strict adherence to controls is mandatory.
3. High-Level Radioactive Waste

All A farm tanks store and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled according to specific operating and safe work practice procedures and work permit processes.

4. Surface Contamination Area

The entire A farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

Noise levels from the 241-A-105 Exhauster Building may exceed the applicable regulatory limit, and hearing protection may be required for personnel in A farm. Requirements for hearing protection will be based on the length of exposure and the proximity to the noise source. Specific information regarding the use of hearing protection is provided in work packages, pre-job briefings, and on posted signs. Additional noise sources such as portable compressors, heavy equipment, portable ventilation exhaust systems, etc. may occasionally be temporarily located in A farm. Hearing protection requirements for temporary noise sources are described in the work package and during the pre-job briefing.

2. Chemicals

No specific chemicals are required for A farm operations that are atypical of operations at other tank farms. Specific chemical use is discussed in the Tank Farm HASP, Section 2.0, and in WHC-CM-4-40, Section 2.
3. Confined Spaces

A listing of confined spaces for A Tank Farm can be found in Table A-1 of this appendix. See Section 10.0 of HASP.

4. Asbestos

Warning signs posted at A farm alert workers that asbestos is present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during A farm activities, unless specifically directed.

C. TASK-BASED HAZARDS

Tasks common to many or all tank farms and their associated hazards evaluations are listed in the Tank Farm HASP, Section 2.0.

Task-specific hazards and their corresponding controls are described in the work permits developed for the specific task to be completed.

Tasks having additional task-based hazard controls specific to A farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers). These tasks must be conducted with Level B PPE (supplied-air respirators) to protect the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for A farm are shown on Figure A-1. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both a RBA/URMA and a controlled area for nonradiological hazards.
VOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.

241A/AX/AY/AZ

APVD BY: _______________________

REV 0

APVD BY: _______________________

APVD BY: _______________________

NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.

Westinghouse Hanford Co.

TWRS III & S

DATE: 2-08-95

DRAWN BY: NICK BARILD

TITLE: 241A/AX/AY/AZ TANK FARMS

RESPIRATORY MONITORING
2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established at a 1.5-m (5-ft) radius around the pump pit and liquid level reel on tank 241-A-101. (Note: There is one breather filter for each tank.) This zone is controlled with OVM monitoring or level B PPE.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway adjacent to the graveled area, and the area from the vehicle entry gate to approximately 9.1 m (30 ft) into the tank farm. Two decontamination lines exit within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE and scan for radiological contamination; (2) the vehicle/equipment decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at A farm, the only significant skin and clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

This zone consists of the portion of the trailer outside the RBA/URMA and also the area outside the perimeter fenceline. No controls other than normal WHC Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to A farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for A farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

Level D PPE is required for all work performed in A farm. Additional respiratory protection may be required as specified in the SWP of this document.

A. EXCLUSION ZONES

Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

B. CONTAMINATION REDUCTION ZONE/CONTAMINATION REDUCTION CORRIDOR

Required Level D PPE consists of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zones. Any additional task-specific PPE requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the specific task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline or into an RBA/URMA, external dosimetry is required as specified in the RWP.
For any containment breach on all tanks, see the *Tank Farm HASP*, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry and as directed for oxygen, explosivity, organic vapors, ammonia, and other hazards specified on work permits, are to be conducted. See confined space entry permit for requirements.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing 241-A-101 or -106 containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located in the A farm complex in building 241-A-701.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently, radiological contamination is the only significant decontamination issue at A farm. See the *Tank Farm HASP*, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to A farm. For additional emergency response information, consult the *Tank Farm Facility Building Emergency Plan*, WHC-IP-0263-TF, Appendix D (Loll 1992) and the *Tank Farm HASP*, Section 9.0.

Operational emergencies could include industrial accidents and injuries, fires, or other sudden threats. In case of power failure, a emergency generator is located in building 241-A-701. Loss of power at the A farm complex may result in the loss of the following equipment:

- All transfer pumps connected with the 241-A receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 241-A Building
- The 241-A vessel vent exhauster
Air sampling and stack monitor
Instrument process air.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of A farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area located on the south side of the parking lot below AP farm at Canton Avenue just above First Street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT A FARM

The A Tank Farm Fire Plan is posted on the wall of the change trailer.

The following emergency equipment is available at A farm:

- First aid and bloodborne pathogen kits
- Wind sock (located in southwest corner of A farm)
- Fire alarm buttons (located just inside doors to buildings 241-A-701 and 241-A-271) (Note: The yellow flashing light indicates that tank pumps are operating.)
- Two self-contained breathing apparatuses (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table A-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/ inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-A</td>
<td>AA & AB</td>
<td>Active</td>
<td>Valve pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td></td>
<td></td>
<td>? F. Zak</td>
<td>AA-24 ft N of AA valve pit AB-24 ft N of AA valve pit</td>
</tr>
<tr>
<td>241-A</td>
<td>AA & AB</td>
<td>Active</td>
<td>Flush pits</td>
<td>Metal cover</td>
<td>Y Hinged lid</td>
<td></td>
<td></td>
<td>? F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>101</td>
<td>Active</td>
<td>Central pump Pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td></td>
<td></td>
<td>? F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>A-350</td>
<td>Active</td>
<td>Catch tank</td>
<td>Cover block(s)</td>
<td>N</td>
<td></td>
<td></td>
<td>? F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Isolated valve pit</td>
<td>Metal cover</td>
<td>N</td>
<td></td>
<td></td>
<td>? F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Lateral cassion</td>
<td>Metal cover</td>
<td>Y Hinged lid</td>
<td></td>
<td></td>
<td>P F. Zak</td>
<td>Ground level</td>
</tr>
<tr>
<td>241-A</td>
<td>417-A</td>
<td>Active</td>
<td>Electrical/ Pipe/pump</td>
<td>Service pit</td>
<td>Metal cover</td>
<td>Y</td>
<td></td>
<td>P F. Zak</td>
<td>~24 ft N of A-417 tank instrumentation enclosure</td>
</tr>
<tr>
<td>241-A</td>
<td>F-562</td>
<td>Active</td>
<td>Piping</td>
<td>Valve pit to 417-A</td>
<td>Metal cover/5 ft dia open x 12 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P F. Zak</td>
<td>Next To 417-A tank instrumentation enclosure panel</td>
</tr>
<tr>
<td>241-A</td>
<td>K-1-5-1 K-1-5-2</td>
<td>Active</td>
<td>De-Entrainer drain pit to 152 x A x catch tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>110</td>
<td>Active</td>
<td>Piping</td>
<td>Seal pot</td>
<td>Y</td>
<td></td>
<td></td>
<td>P F. Zak</td>
<td>~12 ft N of 241-A-702 isolation valve pit</td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Pit</td>
<td>Metal cover/6 ft dia open</td>
<td>N</td>
<td></td>
<td>P F. Zak</td>
<td>~18 ft W of 241-A-501 Bldg</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Piping/electrical</td>
<td>Water meter pit</td>
<td>Metal cover/5 ft dia open x 6 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P F. Zak</td>
<td>E of 241-A-501 Bldg</td>
</tr>
</tbody>
</table>
Table A-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-A</td>
<td></td>
<td>Inactive</td>
<td>241-A-501 Bldg</td>
<td>Door</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>Bldg. has not been opened for years, possible contamination</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>701-A</td>
<td>Active</td>
<td>Air trap</td>
<td>Compressor Bldg blowdown drywell</td>
<td>Metal cover/3 ft dia open x 5 ft deep</td>
<td>Y</td>
<td>P. F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>701-A</td>
<td>Active</td>
<td>Compressor Receiver Tank Air Trap</td>
<td>Metal cover/3 ft dia open x 5 ft deep</td>
<td>Y</td>
<td>Np. F. Zak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>H-2-74721</td>
<td>Active</td>
<td>Pit</td>
<td>Metal cover/7 ft 2 in. dia open x 24 ft 3 in. deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P. F. Zak</td>
<td>Extension ladder in pit must be removed due to safety standards</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Valve Pit</td>
<td>Metal cover/5 ft dia open x 7 ft deep</td>
<td>Y</td>
<td>P. F. Zak</td>
<td>~51 ft NW of valve pit A-A south end of farm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>LLW-A</td>
<td>Active</td>
<td>Fixed ladder</td>
<td>Pit</td>
<td>Metal cover/4 ft dia open x 6 ft deep</td>
<td>Y</td>
<td>NP. F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>H-2-79857 Rev 0 Assy 1</td>
<td>Active</td>
<td>Pit</td>
<td>Metal cover/2 ft x 3 ft open x >50 ft deep</td>
<td>Y</td>
<td>P. F. Zak</td>
<td>~24 ft NE of No. 1 leak detection lateral bldg 101A, 102A, 104A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td>EV-702-4</td>
<td>Active</td>
<td>Electrical</td>
<td>Solenoid Valve Pit</td>
<td>Metal cover/4 ft dia open x 5 ft deep</td>
<td>Y</td>
<td>P. F. Zak</td>
<td>1 ft south of isolation valve pit 702A (behind Bldg. 241-A-702)</td>
<td></td>
</tr>
<tr>
<td>241-A</td>
<td></td>
<td>Active</td>
<td>Lateral caisson</td>
<td></td>
<td>Y</td>
<td>Hinged lid</td>
<td>P. F. Zak</td>
<td>Bldg. over caisson</td>
<td></td>
</tr>
<tr>
<td>LOCATION ROOM/AREA</td>
<td>DESCRIPTION OF TASK/HAZARD</td>
<td>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</td>
<td>ABATEMENT REQUIRED</td>
<td>RELEVANT STANDARD</td>
<td>KEYWORD</td>
<td>RAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-104</td>
<td>Trips/falls: improper storage of dismantled containment tent</td>
<td>Housekeeping: remove and store/dispose</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rodent and pest harborage</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unprotected excavation</td>
<td>Walking/working surfaces</td>
<td>Y</td>
<td>.22</td>
<td>BIIk</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West fence</td>
<td>Trips/falls: improper storage of unistrut</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trips/falls: electrical: unprotected cable partially buried</td>
<td>Remove</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-101</td>
<td>Hazard warning misplaced/on ground</td>
<td>Restore</td>
<td>Y</td>
<td>.1200</td>
<td>AIIc</td>
<td>3*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-105</td>
<td>Electrical: cord passed through wall penetration unprotected</td>
<td>Protect or remove</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective ladder improperly stored/tagged</td>
<td>Destroy and remove</td>
<td>Y</td>
<td>.26</td>
<td>BIII</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-501</td>
<td>Confined space unlabeled</td>
<td>Classify/label</td>
<td>Y</td>
<td>.120</td>
<td>AIIg</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-701</td>
<td>Confined space unlabeled</td>
<td>Classify/label</td>
<td>Y</td>
<td>.120</td>
<td>AIIg</td>
<td>2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBHA. AFARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank.
APPENDIX B

HEALTH AND SAFETY PLAN FOR
THE AN TANK FARM
This page intentionally left blank.
APPENDIX B

HEALTH AND SAFETY PLAN FOR
THE AN TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The AN farm consists of seven double-shell tanks numbered 241-AN-101 through -107. Each tank has a maximum capacity of 4,391,078 L (1,160,000 gal). The seven tanks are essentially identical except tank 241-AN-101, which has two additional concrete process pits (01D and 01E), and tank 241-AN-107, which has 80 risers because of the 21 airlift circulator assemblies installed in the tank. The AN farm is an integrated facility with dedicated service and ventilation equipment. The tanks are specifically designed with slurry bottoms for storage of double-shell slurry produced at the 242-A Evaporator. Tank 241-AN-107 can also serve as a receiver for Plutonium Uranium Extraction Facility high-heat aging waste.

Ventilation for AN farm consists of a primary K1 system for the tanks and a K2 system for the annulus. This ventilation is provided to remove heat and vapors from the stored materials.

The primary exhaust system for AN tank farm has an electrical backup with an automatic switchover should power failure occur.

The AN farm has three tanks (241-AN-103, -104, and -105) on the Hydrogen/Flammable Gas Watch List.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter of AN farm is secured by a chain-link fence with access controlled at the support trailer (MO-820 change trailer). Personnel enter and exit AN farm through the MO-820 change trailer. Equipment such as motorized vehicles enter and exit AN farm through the gate adjacent to MO-820.
The following are support facilities located at AN farm.

- Control Building 241-AN-271 is the center for all alarms and monitors for ventilation, temperature, and leak detection. Electrical power for AW farm is also routed from 241-AN-271. All AN farm instrumentation and electrical supplies are distributed through this building. Signals are transmitted from this building to the 242-A Evaporator control room.

- Water Service Building 241-AN-273 houses instrumentation and backflow prevention devices for raw water, steam, and flushing lines.

- Compressor Building 241-AN-701 houses an air compressor that supplies AN farm instrument air.

- Change Building MO-820 is a change room and fenceline entry and exit point for AN farm workers.

C. WIND INDICATION

A wind sock located at the perimeter fenceline just north of MO-820 indicates wind direction to aid in planning onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689 or 373-2396
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call the shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0.
Key responsibilities include the following:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

The AN farm has three tanks on the Hydrogen/Flammable Gas Watch List (tanks 241-AN-103, -104, and -105); therefore, any work procedures and monitoring conducted at these tanks must be accomplished in accordance with the Tank Farm HASP, Section 2.9, Safe Work Practice.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Flammability

Tanks 241-AN-103, -104, and -105 are on the Hydrogen/Flammable Gas Watch List because of their potential to contain concentrations of flammable gases that exceed the lower flammability limit. These gases originate from the waste or are generated as a by product of the waste. As a result the potentially flammable nature of these tanks, extreme caution must be exercised to avoid any ignition source near the tanks.

2. Confined Spaces

A listing of confined spaces for AN Tank Farm can be found in Section VII of this appendix. See Section 10.0 of HASP.
3. Noise

Noise may be excessive if work must be done in or near double-shell tank exhausters. Ear protection may be required depending on the time and exposure levels encountered. The K1 and K2 units in AN farm are not especially loud; however, workers must follow information posted on signs and instructions from the supervisor.

4. Chemicals

No specific chemicals are used at AN farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

5. Asbestos

Warning signs posted at AN farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during AN farm activities unless specifically directed. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and also the Tank Farm HASP, Section 10.0, for more information.

6. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms, and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.
IV. SITE CONTROLS

A. WORK ZONES

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA) and a controlled area for nonradiological hazards.

2. Radiological Control Area

Within AN farm, RBA/URMAs are indicated on the map of AN farm posted in the MO-820 change trailer (see Figure B-1).

3. Contamination Reduction Zone/Contamination Reduction Corridor

This work zone consists of the RBA/URMA portion of MO-820, the landing and stairway outside the trailer leading into AN farm, and the immediately adjacent graveled area from the vehicle entry gate into AN farm. Two decontamination lines exit within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of MO-820 where workers don and doff personal protective equipment (PPE), scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

B. ACCESS CONTROL

Access to AN farm is to occur only through the contamination reduction zone (CRZ)/CRC (MO-820 and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.
NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.

Westinghouse Hanford Co. TWRS BH&S

NOTE: 241-AN/C TANKFARM COMPLEX
RESPIRATORY MONITORING

SUPPLIED AIR RESPIRATORY PROTECTION ZONE
PERSONNEL MONITORING OR RESPIRATORY PROTECTION ZONE

241-AN/241-C

SWP-REV 13

APVD BY:

APVD BY:

APVD BY:

DATE: 2-03-95

DRAWN BY: NICK BARILO

Figure B-1. AN Tank Farm Site Plan.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for AN farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

PPE for any interior areas controlled for radiological hazards will be identified on the Radiation Work Procedures (RWP).

A. EXCLUSION ZONES

Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

Required Level B PPE consists of the same protective clothing/equipment as Level D PPE plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

B. CONTAMINATION REDUCTION ZONE/CONTAMINATION REDUCTION CORRIDOR

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zones. Additional task-specific requirements will be specified in the RWP or by the site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the specific task.
VI. MONITORING REQUIREMENTS

External dosimetry is required, as specified by the RWP, for entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA.

Monitoring is conducted before entry into a confined space. The confined space entry permit shall specify the hazards to be monitored, (i.e., oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide).

Monitoring for all tasks or operations shall be accomplished in accordance with the Tank Farm HASP, Section 2.9, Safe Work Practice.

VII. DECONTAMINATION PROCEDURES

Currently at AN farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures. The list below identifies some confined spaces that are present at AN farm. See Table B-1 for locations of confined spaces. This list should not be considered an all inclusive list of confined spaces at AN farm; additional spaces must be identified, characterized, and posted.

- Central pump pits
- Annulus pump pits
- Leak detection pump pits
- Ventilation instrument pits
- Valve pits
- Flush pits
- Condensate receiver pits
- Supernatant receiver pits.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to AN farm. For additional information regarding emergency response, consult the Tank Farms Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AN farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area located on the south side of the parking lot below AP farm at Canton Avenue just above First street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT AN FARM

The AN Tank Farm Fire Plan is posted on the wall of the MO-820 change trailer.

The following emergency equipment is available at AN farm:

- First aid and bloodborne pathogen kits
- Panic button and fire alarm (located outside 241-AN-271; yellow light outside 241-AN-271 indicates that tank pumps are operating)
- Two self-contained breathing apparatuses (located on the wall in MO-820)
- Protective clothing (available in MO-820)
- Radiological monitoring equipment (located in MO-820).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See Section the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table B-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AN</td>
<td>01A to 07A</td>
<td>Active</td>
<td>Central pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>01B to 07B</td>
<td>Active</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>01C to 07C</td>
<td>Active</td>
<td>Leak detection pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>OLD</td>
<td>Active</td>
<td>Supernatant rec-pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>01E</td>
<td>Active</td>
<td>Supernatant rec-pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>TK.101-10 TK.101-10</td>
<td>Active</td>
<td>Caisson</td>
<td>Metal cover</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>TK.101-10 TK.101-10</td>
<td>Active</td>
<td>Drain pit</td>
<td>Cover block</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>TK. 102 Only</td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>1 thru 3</td>
<td>Active</td>
<td>Room with exhaust piping</td>
<td>Vent/inst-pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>NP</td>
<td>F. Zak</td>
<td>TK. 101 Thru 106</td>
</tr>
<tr>
<td>241-AN</td>
<td>4</td>
<td>Active</td>
<td>Room with exhaust piping</td>
<td>Vent/inst-pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>NP</td>
<td>F. Zak</td>
<td>TK. 107 Only</td>
</tr>
<tr>
<td>241-AN</td>
<td>AN-A</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover blocks</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td>AN-B</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover blocks</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/ Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AN</td>
<td>AN-801</td>
<td>Active</td>
<td>Service bldg/pit</td>
<td>Building</td>
<td>Y door</td>
<td>P/below grade</td>
<td>F. Zak</td>
<td>Building above pit</td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td></td>
<td>Active</td>
<td>Flush pit</td>
<td>Metal cover</td>
<td>Y hinged lid</td>
<td>P</td>
<td>F. Zak</td>
<td>Located ~3 ft E. O valve pit 241-AN-B/ ~9 ft deep, 4 ft dia open.</td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td></td>
<td>Active</td>
<td>Trap</td>
<td>Steam trap</td>
<td>Metal cover</td>
<td>P</td>
<td>F. Zak</td>
<td>Located SW end, SE of tk103/ ~8 ft 7 in. deep, 4 ft dia opening</td>
<td></td>
</tr>
<tr>
<td>241-AN</td>
<td></td>
<td>Active</td>
<td>De-entrainment vault</td>
<td>Metal cover</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>Crane to remove lid</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

HEALTH AND SAFETY PLAN
FOR THE AP TANK FARM
This page intentionally left blank.
I. TANK FARM DESCRIPTION

A. GENERAL

The AP farm contains 8 double-shell tanks with a capacity of 4,391,078 L (1,160,000 gal) each. The tanks are numbered 241-AP-101 through -108. The AP farm is located northeast of the Plutonium Uranium Extraction Facility and approximately 243.8 m (800 ft) east of the 242-A Evaporator on 4th Street. Active ventilation is used on all AP farm tanks. The ventilation systems are the K1 exhaust system and the K2 annulus exhauster.

The AP farm tanks contain the following:

- Complexed waste--high concentrations of chelating agents, ethylenediaminetetraacetic acid (EDTA) and N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) stored separately from other wastes
- Concentrated complexant--product of concentrating complexed waste
- Noncomplexed waste--sulphate and phosphate from the 100 N Area, concentrated sodium aluminate, diluted saltwell liquor, and process and laboratory waste
- Hanford facility waste--high-phosphate concentrations from 100 N Area.

The AP farm has been designed to operate in a manner similar to AW farm. Liquid wastes are transferred to or from AP farm via AW farm facilities or to 102-AP via the 241-A-B valve pit. Two 3-in. lines connect the AP valve pit to the central pump pit at 241-AW-102. Two 2-in. lines connect the AP valve pit to AW-A and AW-B valve pits. From the AP valve pit, waste may be routed to any tank within AP farm. Waste is transferred to the grout facility from tank 241-AP-102. No watch list tanks exist in AP farm.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the change trailer (MO-815) and adjacent gate located in the center of the fence on the north side of AP farm along 4th Street. Personnel enter and exit AP farm through the change trailer. Equipment such as motorized vehicles enter and exit AP farm through the gate adjacent to the trailer.

The following support facilities are located at AP farm.

- Raw Water Service and Flush Building 241-AP-801 is located outside the west fence of AP farm across from 272-AW.
- Compressor Building 241-AP-273 is located outside the north fence of AP farm on 4th Street. Compressed air is provided for process and instrument requirements.
- Control Room and Instrument Building 241-AP-271 is located outside the north fence on 4th Street. Process and radiological indications are monitored.

C. WIND INDICATION

A wind sock located near the northwest corner of AP farm indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689 or 373-2396
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911
Control board operator of 242-A Evaporator: 373-2737
B. KEY RESPONSIBILITIES

For detailed responsibilities, see the *Tank Farm HASP*, Section 1.0. Key responsibilities include the following:

- Site access is controlled by the shift supervisor
- Work is authorized and controlled by the facility manager
- Safety and health oversight/support is provided by TWRS IH&S
- Exposure/area monitoring is specified by TWRS IH&S
- Exposure/area monitoring is conducted by IHFS

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

The entire AP farm, as defined by the perimeter exclusion zone, is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the *Tank Farm HASP*, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present in AP farm. Hearing protection is required in the compressor building and as specified in work packages or permits for the control intermittent noise sources from any equipment brought into AP farm.

2. Chemicals

No specific chemicals are used at AP farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the *Tank Farm HASP*, Section 2.0.
3. Confined Spaces

A listing of confined spaces for AP Tank Farm can be found in Table C-1 of this appendix. See Section 10.0 of HASP.

4. Asbestos

Warning signs posted at AP farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during AP farm activities unless specifically directed.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permit(s) developed for the specific task as part of the work control process.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for AP farm are shown on Figure C-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

There are no interior exclusion zones in AP farm. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.
3. Radiological Control Area

The zone consists of the RBA/URMA portion of the change trailer. The personnel decontamination line if required exits the RBA/URMA through the portion of the change trailer where workers don and doff personal protective equipment (PPE), scan for radiological contamination, and perform any necessary decontamination. There is no established vehicle/equipment decontamination line but can be set up if required during certain evolutions.

An RMA area also serves as a location for storage of hazardous and radiological waste. A wood-framed storage container is used for storage of contaminated waste. A portable metal building is used for hazardous chemical wastes, mixed wastes. The soiled laundry storage area is a wood-framed shed and is located west of the change trailer outside the fence.

Currently at AP farm, the only significant skin or clothing contamination potential is for radiological contamination from specific work activities; therefore, procedures are implemented and the contamination reduction corridor and change trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the change trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

The AP farm access point is through the contamination reduction zone/contamination reduction corridor (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization and keys for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager or the 242-A/AP/AW/LERF shift manager. Any work activities must be coordinated with the 242-A Evaporator control board operator.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for AP farm beyond those specified in the *Tank Farm HASP*, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONE

Required PPE for any interior areas controlled for radiological hazards will be identified on the RWPs for specific work activities.

B. RBA/URMA ZONE

Required Level D PPE consists of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE. Any additional task-specific PPE requirements will be specified in the RWP or by the site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the *Tank Farm HASP*, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the RBA/URMA inside the fenceline, external dosimetry may be required as specified in the RWP.

For any tank containment breach, see the *Tank Farm HASP*, Sections 2.9, Safe Work Practice, and 6.0.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling must be conducted for oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide, and other hazards as specified on work permits. See the confined space entry permit for requirements.
As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located in the instrument control room, 241-AP-271.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently at AP farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to AP farm. For further information regarding emergency response, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the AP farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 241-AP transfer operation
- All control and instrument systems for 241-AP-271
- The K1 primary tank exhausters
- The K2 annulus exhausters
- The air sampling and stack monitor
- The continuous air monitors
- Instrument and process air.

Loss of water would result in the loss of system flushing capabilities and fire fighting ability. There is no emergency backup for loss of water.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AP farm be required, personnel should assemble at the 200 East Area Tank Farm staging area located southwest of AP farm along Canton Avenue.

B. EMERGENCY EQUIPMENT AVAILABLE AT AP FARM

Currently at AP farm, no fire plan or map is in the change trailer. Fire extinguishers are located in AP farm (1) in the center of the west side of the farm on a light pole, (2) in the center of the east side of the farm on the K1 primary tank exhauster structure (3) in the change trailer, (4) inside the instrument building.

The following equipment is available:

- First aid and bloodborne pathogen kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of change trailer MO-815)
- Wind sock (located just west of change trailer)
- Panic button and fire alarm (located just outside 241-AP-271 Control Room)
- Fire pull box (located inside near rear door of control room)
- Two self-contained breathing apparatuses (located in the change trailer)
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer)
- Portable radio (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table C-1. 241-AP Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AP</td>
<td>01A to 08A</td>
<td>Active</td>
<td>Transfer lines/ Pump(s)</td>
<td>Central pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>03C and 05C</td>
<td>Active</td>
<td>Transfer lines/ Pump(s)</td>
<td>Leak det. Pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>O7D, E, F</td>
<td>Active</td>
<td>Mixer pump pits</td>
<td>Metal cover(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>02D</td>
<td>Active</td>
<td>Transfer lines/ Pump(s)</td>
<td>Feed pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>Active</td>
<td>Transfer lines</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>Pits 1 and 2</td>
<td>Active</td>
<td>Vent lines</td>
<td>Metal covers/3 ft x 3 ft open x 13 ft deep</td>
<td>Y</td>
<td>NP</td>
<td>F. Zak</td>
<td>Located in the center of AP farm</td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>Active</td>
<td>Water line/electric</td>
<td>Flush pit</td>
<td>Metal cover/5 in. dia open x 4 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>NP</td>
<td>Gary Mickle</td>
<td>Located 36 ft NW of central valve pit Note: needs label</td>
</tr>
<tr>
<td>241-AP</td>
<td>Active</td>
<td>Riser topR</td>
<td>Tiser access</td>
<td>Metal covers (double doors)</td>
<td>N</td>
<td>Hinged lid</td>
<td>P</td>
<td>Gary Mickle</td>
<td>See below for locations</td>
</tr>
<tr>
<td>241-AP</td>
<td>Pits 1 thru 20</td>
<td>Active</td>
<td>Electric Wires</td>
<td>Elec. Pull boxes</td>
<td>Concrete covers</td>
<td>Y</td>
<td>Hinged metal lid</td>
<td>P</td>
<td>Gary Mickle</td>
</tr>
<tr>
<td>241-AP</td>
<td>Active</td>
<td>Vent line/pumps/ seal pot</td>
<td>Primary seal pot pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>01B to 08B</td>
<td>Active</td>
<td>Transfer lines/pumps</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
</tr>
<tr>
<td>241-AP</td>
<td>03D</td>
<td>Active</td>
<td>Drain lines</td>
<td>Drain pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>Gary Mickle</td>
<td></td>
</tr>
</tbody>
</table>
Table C-1. 241-AP Tank Farm Confined Spaces.

ELECTRIC PULL BOX LOCATIONS AND SIZE:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 7 ft 3 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>SEE CHART BELOW</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
</tr>
</tbody>
</table>

** NORTH **

1 7 ft 3 in. 6 5 ft 8 in.
2 5 ft 8 in. 7 7 ft 3 in.
3 7 ft 3 in. 8 5 ft 8 in.
4 5 ft 8 in. 9 7 ft 3 in.
5 7 ft 3 in. 10 5 ft 8 in.

DOUBLE DOORS (METAL COVER) LOCATIONS:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
<td>(4 ft X 4 ft OPEN., 5 ft 8 in. DEEP)</td>
</tr>
</tbody>
</table>
C-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/21/94
DATE OF REPORT: 3/7/95
ASSESSMENT NUMBER:
AREA: 200E FACILITY:241-AP
IS AND IH REPRESENTATIVES:_ED PONN______________
OTHER EMPLOYEES:_STACE BAKER______________

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Excess tumbleweed accumulation</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>4*</td>
</tr>
</tbody>
</table>

C-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/21/94
DATE OF REPORT: 3/7/95
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-AP
IS AND IH REPRESENTATIVES:
OTHER EMPLOYEES:

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Excess tumbleweed accumulation</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIZ</td>
<td>4*</td>
</tr>
</tbody>
</table>

This page intentionally left blank.
APPENDIX D

HEALTH AND SAFETY PLAN
FOR THE AW TANK FARM
This page intentionally left blank.
APPENDIX D

HEALTH AND SAFETY PLAN
FOR THE AW TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The AW farm contains six double-shell tanks with a capacity 4,315,370 L (1,140,000 gal) each. The tanks are numbered 241-AW-101 through -106. The AW farm is located at the intersection of 4th Street and Canton Avenue across from the 242-A Evaporator. Active ventilation is used on all AW farm tanks via the K1 exhauster and K2 annulus exhauster. The AW farm double-shell tanks store Plutonium Uranium Extraction Facility low-heat radioactive liquid waste. Stored low-heat wastes include:

- Double-shell slurry
- Decladding waste
- Organic waste
- Cell drainage
- Laboratory waste
- Saltwell liquors pumped from single-shell tanks.

Tank 241-AW-101 is on the Hydrogen/Flammable Gas Watch List because of its potential to contain concentrations of flammable gases that exceed the lower flammability limit (LFL). These gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of this tank, extreme caution must be exercised to avoid any ignition source near the tank. Check SHMS on 101-AW (when available) when conducting intrusive work or breaching containment on the tank or its associated primary vent system.

Tank 241-AW-102 is used to feed the 242-A Evaporator for all waste concentration activities. Tank 241-AW-102 is connected to AP farm.

The AW farm fenceline is classified as a RBNURMA.

Controlled areas are established for radiological hazards. There are no chemical hazard areas in AW farm.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the change trailer (MO-818) and adjacent gate located at the northeast corner of AW farm along Canton Avenue. Personnel enter and exit AW farm through the change trailer. Equipment such as motorized vehicles enter and exit AW farm through the gate adjacent to the trailer.

The following support facilities are located at AW farm.

- Raw Water Service and Flush Building 241-AW-801 is located outside the north fence of AW farm on 4th Street.

- Compressor Building 241-AW-273 is located outside the north fence of AW farm on 4th Street. Compressed air is provided for process and instrument requirements.

- Control Room and Instrument Building 241-AW-271 is located in the fenceline along the north fence on 4th Street. Process and radiological indications are monitored.

C. WIND INDICATION

A wind sock located at the northeast corner of AW farm indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-4565
Shift manager: 373-2689 or 373-0104
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
Health Physics supervisor: 373-2526
Emergency point-of-contact: Call shift manager 373-2689 and 911
Control board operator of 242-A Evaporator: 373-2737
B. KEY RESPONSIBILITIES

For detailed responsibilities see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include:

- Site access controlled by the shift manager
- Work authorized and controlled by the facility manager or delegate
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Hydrogen/Flammable Gas

Hydrogen/Flammable Gas Watch List 241-AW-101 contains a slurry that produces hydrogen gas and other flammable constituents. Other hazards are toxicity of the gas, and surface crust flammability. Hazard control requirements are currently in place and include the following:

- All work in this tank must be in accordance with OSD-T-151-00030
- Spark-resistant tools and other safeguards are necessary to reduce the chance of fire or explosion
- Work in and around this tank must be done in accordance with the Tank Farm HASP, Section 2.9, Safe Work Practices.

2. Vapor/Gas

No vapor hazards have been identified in AW farm.
3. Radiological Contamination

Radiological areas and levels of exposure are posted in the change trailer and documented on radiation work permits for specific activities.

The AW tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an RBA/URMA. Specific controls for activities within the perimeter exclusion zone (also in the RBA/URMA) are specified in the Tank Farm HASP, this appendix, the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

4. Surface Contamination

Contamination areas or high contamination areas may be located through AW farm in pits, near riser, near exhausters, or other areas.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present in AW farm. Hearing protection is required in the compressor building and as required, in accordance with work packages or permits, to control intermittent noise sources from any equipment brought into AW farm.

2. Chemicals

No specific chemicals are used at AW farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A list of confined spaces for AW Tank Farm can be found in Table D-1 of this appendix. See Section 10.0 of HASP.
4. Asbestos

Warning signs posted at AW farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when major operations activities are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks requiring additional task-based hazard controls specific to AW tank farm include the replacement of primary tank filters, and any other containment breach (e.g., opening of risers) on tank 241-AW-101. These tasks may be required to be conducted with Level B PPE (supplied-air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for AW farm are shown on Figure D-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.
2. Interior Exclusion Zones

Interior barricaded exclusion zones are not required at AW farm. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the change trailer. The personnel decontamination line if required exits through the RBA/URMA portion of the change trailer where workers don and doff personal protective equipment (PPE), scan for radiological contamination, and perform any necessary decontamination. There is no established vehicle/equipment decontamination line, but can be set up if required during certain evolutions.

The RBA/URMA also serves as the location for storage of soiled laundry and hazardous waste. A wood-framed storage shed is used for storage of bags of soiled/contaminated clothing. A portable metal building is used for hazardous chemical waste/mixed waste. A wood framed storage container is used for storage of contaminated waste.

Currently in AW farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented, and the CRC and change trailer is equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the change trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Tank Farm safety and health requirements are specified in the support zone.
B. ACCESS CONTROL

The AW farm access point is through the CRZ/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization and keys for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager or the 242-A/AP/AW/LERF shift manager. Any work activities must be coordinated with the 242-A Evaporator control board operator.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements beyond those specified in the Tank Farm HASP, Section 8.0, have been identified for AW farm.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of AW farm.

- Level D PPE is required inside the perimeter fenceline. Required Level D PPE consists of general work clothes. Any additional task specific PPE requirements or entries into any CA’s or RA’s will be specified in the RWP or by the site safety and health representative and/or health physicist technician.

- Level B PPE, may be required when conducting containment breaches and intrusive activities for tank 241-AW-101, a Hydrogen Watch List tank and its associated primary tank vent system. Level B PPE consists of the same protective clothing/equipment as Level D plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

B. CONTAMINATION REDUCTION ZONES

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. Any additional task-specific PPE requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.
C. TASK-SPECIFIC HAZARDS

Required task-specific PPE requirements are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry may be required as specified in the RWP.

For any containment breach on tank 241-AW-101, organic vapor meter (OVM) and LFL monitoring is required even though supplied-air respirators may be used. In addition to other area monitoring, OVM and LFL monitoring must be conducted in all greenhouses and structures near primary tank filters, risers, or other potential emission sources on 101-AW.

Before any containment breach on tank 241-AW-101 and continuously until the activity is completed, vapor and flammability monitoring are required.

For any containment breach on tanks other than 241-AW-101, see the Tank Farm HASP, Sections 2.9, Safe Work Practice, and 6.0.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling must be conducted for oxygen, explosivity, organic vapors, ammonia, and other hazards specified on work permits. See confined space entry permit for requirements.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing tank 241-AW-101 containment breaches, intrusive work on any tank, asbestos work, and other activities involving credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous area monitor for airborne radiological monitoring is located in Instrument Control Room 241-AW-271.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.
VII. DECONTAMINATION PROCEDURES

Currently at AW farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to AW farm. Consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the AW farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 241-AW pumping operations
- All control and instrument systems for the 241-AW-271 Building
- The K1 primary tank exhausters
- The K2 annulus exhausters
- Air sampling and stack monitor
- Continuous air monitors
- Instrument and process air.

Loss of water would result in the loss of system flushing capabilities and fire fighting ability. There is no emergency backup for loss of water.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AW farm be required, personnel should assemble at the 200 East Area Tank Farm staging area located south side of the AW farm along Canton Avenue.
B. EMERGENCY EQUIPMENT AVAILABLE AT AW FARM

Currently at AW farm, no fire plan or map is posted in the change trailer. Fire extinguishers are located (1) in the center of the west side of AW farm on a light pole, (2) in the center of the east side of AW farm on a light pole, (3) inside the instrument building, (4) outside the instrument building (two extinguishers), and (5) inside the change trailer.

The following emergency equipment is available at AW farm:

- First aid and bloodborne pathogen kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of change trailer MO-818)
- Wind sock (located just outside change trailer MO-818)
- Panic button and fire alarm (located just outside 241-AW-271 Control Room)
- A fire pull box (located near the rear door of the control room; yellow flashing light indicates AW farm is an active CA)
- Two self-contained breathing apparatuses (SCBA) (located in the change trailer)
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer)
- Portable radio (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table D-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AW</td>
<td>01A to 06A</td>
<td>Active</td>
<td>central pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>Pit 1 through 3</td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>01B to 06B</td>
<td>Active</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>01C to 06C</td>
<td>Active</td>
<td>Leak det. Pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>02D</td>
<td>Active</td>
<td>Drain pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>02E</td>
<td>Active</td>
<td>Feed pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>AW-A</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>AW-B</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td></td>
<td>Active</td>
<td>De-ent. Vault</td>
<td>Metal cover</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>Crane to remove lid</td>
<td></td>
</tr>
<tr>
<td>241-AW</td>
<td>AW-273</td>
<td>Active</td>
<td>Piping</td>
<td>Water service</td>
<td>Building</td>
<td>Y</td>
<td>Door</td>
<td>P/below grade</td>
<td>Building above pit</td>
</tr>
<tr>
<td>241-AW</td>
<td></td>
<td>Active</td>
<td>Piping</td>
<td>Flush pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>F. Zak</td>
</tr>
<tr>
<td>241-AW</td>
<td></td>
<td>Active</td>
<td>Elect. wires</td>
<td>Elect. pull box</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>Could not open lid</td>
</tr>
<tr>
<td>241-AW</td>
<td>Pits 1 thru 3</td>
<td>Active</td>
<td>Elec. wire exh. pipes (vapor) water</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>NP</td>
<td>F. Zak</td>
<td>Pit 1 through 3</td>
</tr>
<tr>
<td>Table D-1. East Tank Farm Confined Spaces.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vent/instrumentation pit locations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. W side of AW farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. S end of AW farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. E side of AW farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/21/94
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: ED PONN
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-AW
OTHER EMPLOYEES: STACE BAKER, BRIAN BIDDLE

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply trlr, 206B, central pump pit</td>
<td>Electrical: Improper use of temporary cords.</td>
<td>Install permanent wiring</td>
<td>Y</td>
<td>.303</td>
<td>BIIQ</td>
<td>1B</td>
</tr>
<tr>
<td>MO818, AW-104/106</td>
<td>Fire and contamination hazard from debris accumulation</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIQ</td>
<td>4B</td>
</tr>
<tr>
<td></td>
<td>Confined spaces unlabeled</td>
<td>Classify and label</td>
<td>Y</td>
<td>.120</td>
<td>AIIQ</td>
<td>2B</td>
</tr>
<tr>
<td></td>
<td>Walking/working surfaces: capped pipes protruding from ground unprotected</td>
<td>remove or hi-lite for visibility</td>
<td>Y</td>
<td>.22</td>
<td>BIIK</td>
<td>3B</td>
</tr>
</tbody>
</table>
APPENDIX E

HEALTH AND SAFETY PLAN
FOR THE AX TANK FARM
This page intentionally left blank.
II. TANK FARM DESCRIPTION

A. GENERAL

The AX farm consists of four single-shell tanks with a capacity of 3,785,412 L (1,000,000 gal) each. The tanks are numbered 241-AX-101 through -104. The AX farm tanks, completed in 1964, were the last single-shell tanks built at the Hanford Site. When active, these tanks received high-level radioactive waste from B Plant (tanks 241-AX-101 and -102) and the Plutonium Uranium Extraction Facility (tanks 241-AX-101, -103 and -104). Tanks 241-AX-101, -102, and -103 also received evaporator slurry. Tank 241-AX-104 is partially interim isolated (e.g., physical means have been implemented to reduce the potential for introducing liquids into the tank) and stabilized (e.g., liquid levels have been reduced to prescribed levels).

Tanks 241-AX-101 and -103 are on the Hydrogen/Flammable Gas Watch List because of the potential for concentrations of flammable gases that exceed the lower flammability limit. These gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of these tanks, extreme caution must be exercised to avoid any ignition source near the tanks.

All tanks in AX farm are ventilated using a passive ventilation system. Air for the passive ventilation system is supplied and exhausted through a common high-efficiency particulate air filter mounted on a riser. Air enters the tank when the pressure in the tank is less than that of the ambient air. Conversely, air exits the tank when the pressure in the tank is greater than that of ambient air.

All AX farm tanks contain high-level radioactive waste and various chemical constituents. The AX farm is classified as a surface contamination area (SCA) (radiological contamination).

Various AX farm tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-825) and adjacent gate (AY) located on Buffalo Avenue. Personnel enter and exit AX farm through the support trailer. Equipment such as motorized vehicles enter and exit AX farm through the gate adjacent to the trailer.

C. WIND INDICATION

No wind sock is present on AX farm. A wind sock located on AY farm, adjacent to the change trailer and clearly seen from AX farm, indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include the following:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Hydrogen/Flammable Gas

Hydrogen/Flammable Gas Watch List tank 241-AX-101 contain slurries that produces hydrogen gas and other flammable constituents. Other hazards are toxicity of the gas, and surface crust flammability. Hazard control requirements are currently in place and include the following:

- All work in this tank must be in accordance with OSD-T-151-00030
- Spark-resistant tools and other safeguards are necessary to reduce the chance of fire or explosion
- Work in and around this tank must be done in accordance with the Tank Farm HASP, Section 2.9, "Safe Work Practices."

2. High-Level Radioactive Waste

All AX farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

3. Surface Contamination

The entire AX tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.
B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present in AX farm. However, since AX farm is located in close proximity to A farm and, since the noise levels from the 241-A-105 Exhauster Building may exceed the applicable regulatory limit, hearing protection may be required for personnel in AX farm. Requirements for hearing protection will be based on the length of exposure and the proximity to the noise source. Specific information regarding the use of hearing protection is provided in work packages, pre-job briefings, and on posted signs. Additional noise sources such as portable compressors, heavy equipment, portable ventilation exhaust systems, etc., may occasionally be temporarily located in AX farm. Hearing protection requirements for temporary noise sources are described in the work package and during the pre-job briefing.

2. Chemicals

No specific chemicals are used on AX farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for AX Tank Farm can be found in Table E-1 of this appendix. See Section 10.0 of HASP.

4. Asbestos

Warning signs posted at AX farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.
5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to many or all tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to AX farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers). These tasks must be conducted with Level B personal protective equipment (PPE) (supplied-air respirators) to protect against the potential vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for the AX farm are shown on Figure E-1 and are listed below. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite with controls specified in RWPs.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

Currently, no interior exclusion zones are required at AX farm.
3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway adjacent to the graveled area and from the vehicle entry gate to approximately 9.1 m (30 ft) into the tank farm. Two decontamination lines exit within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE and scan for radiological contamination, (2) the vehicle/equipment decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at AX farm, the only significant skin and clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and also the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to AX farm is through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for AX farm beyond those specified in the Tank Farm HASP, Section 8.0.
V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

Level D PPE is required for all work performed in AX farm. Work requiring a different level of PPE will be stated in work permits.

A. EXCLUSION ZONES

Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

B. CONTAMINATION REDUCTION ZONE/CONTAMINATION REDUCTION CORRIDOR

Required level D PPE consists of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. Any additional task-specific PPE requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE requirements are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the specific task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For any containment breach on any AX farm tank, see the Tank Farm HASP, Section 2.9, "Safe Work Practice," and Section 6.0.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling is conducted for oxygen, explosivity, organic vapors, ammonia, and other hazards as specified on work permits. See confined space entry permit for requirements.
As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches on tanks 241-AX-101 or -103, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located in the A farm complex in building 241-A-701.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently at AX farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to AX farm. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, fires, or other sudden threats. In case of power failure, an emergency generator is located in building 241-A-701. Loss of power at A Farm Complex may result in the loss of the following equipment:

- All transfer pumps connected with the 241-AX receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 241-AX Building
- The 241-AX vessel vent exhauster
- Air sampling and stack monitor
- Instrument process air.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AX farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area on the south side of the parking lot below AP farm at Canton Avenue just above First Street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT AX FARM

Figure E-1 shows the location of fire extinguishers and fire alarms at AX farm. The AX Tank Farm Fire Plan is posted on the wall of the change trailer.

The following equipment is available:

- First aid and bloodborne pathogen kits
- Wind sock (located just outside the AY change trailer)
- Fire alarm buttons (located just inside doors to buildings 241-AX-801A and -801B; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparatuses (SCBA) (located in the change trailer)
- Ladder
- Protective anti-C clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AX</td>
<td>01A</td>
<td>Active</td>
<td>Dist. pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td></td>
<td>Active</td>
<td>Leak detection Pit</td>
<td>Cover block</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>AX-A</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>AX-B</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td></td>
<td>Active</td>
<td>Valve</td>
<td>Service pit</td>
<td>Metal cover/4 ft dia open X 6 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>~15 ft SE of 152-AX Diverter</td>
</tr>
<tr>
<td>241-AX</td>
<td>AX-A</td>
<td>Active</td>
<td>Valve/electrical</td>
<td>Raw water pit</td>
<td>Metal cover/3 ft x 3 ft open x 7 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>~27 ft SE of 152-AX Diverter</td>
</tr>
<tr>
<td>241-AX</td>
<td>AX-B</td>
<td>Active</td>
<td>Contaminated</td>
<td>Flush pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>~4 ft SW of AX-B valve pit</td>
</tr>
<tr>
<td>241-AX</td>
<td>152</td>
<td>Active</td>
<td>Flush pit</td>
<td>Concrete/metal</td>
<td>Y</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>501</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td></td>
<td>Active</td>
<td>Water pit</td>
<td>Metal cover/3 ft dia. (depth unknown)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>V713</td>
<td>Active</td>
<td>Valve drain pit</td>
<td>Metal cover/4 ft dia open. (Depth unknown)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td>~21 ft from diverter station (PP-152-AX)</td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td></td>
<td>Active</td>
<td>Raw water hookup</td>
<td>Service pit</td>
<td>Metal cover/3 ft x 3 ft open x 7 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. ZAK</td>
<td>South of PP-152-AX diverter station (catch tank). Hookup for 152-AX transfer.</td>
</tr>
</tbody>
</table>
Table E-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space Contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AX</td>
<td>Active</td>
<td>Inst. Air valve pit</td>
<td>Metal cover/4 ft dia</td>
<td>Y</td>
<td>P F. ZAK</td>
<td>~9 ft East of 152-AX diverter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>Active</td>
<td>Big hole</td>
<td></td>
<td>Y</td>
<td>P F. ZAK</td>
<td>~6 ft North of 152 diversion box</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>Active</td>
<td>Electrical/water/steam</td>
<td>Service pit</td>
<td>Metal cover/5 ft dia</td>
<td>Y</td>
<td>P F. ZAK</td>
<td>~9 ft NW of AX-B valve pit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AX</td>
<td>505</td>
<td>Active</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P F. ZAK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/21/94
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: FRED ZAK/
ROGER MITCHELL

ASSESSMENT NUMBER:
AREA: 200E FACILITY: 241-AX OTHER EMPLOYEES: CLIFF MYERS

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Walking/working surfaces: numerous capped pipes extending approximately 18 in. above grade unprotected</td>
<td>Remove or hi-lite</td>
<td>Y</td>
<td>.22</td>
<td>B1Iz</td>
<td>3B</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
APPENDIX F

HEALTH AND SAFETY PLAN
FOR THE AY TANK FARM
This page intentionally left blank.
APPENDIX F

HEALTH AND SAFETY PLAN
FOR THE AY TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The AY farm consists of two double-shell tanks. The maximum operating capacity of each of the tanks is 3,785,412 L (1,000,000 gal). These aging waste tanks are different from other double-shell tanks because they are equipped with support systems that allow storage of high-heat generating waste. The major equipment, associated with these support systems includes steam coils, airlift circulators, and an exhaust condenser system used to control condensate.

The tanks in AY farm presently hold low-level mixed waste. As system requirements change, the type of waste stored can also vary because of the uniqueness of these tanks.

The 702-A ventilation system reduces the level of radioactivity entering the environment below present airborne discharge limits by drawing the tank vapors through an extensive particle removal system before discharging to the atmosphere.

The system also maintains a vacuum within each tank to prevent radioactive leakage to the environment.

The main components of the 702-A system include two deentrainers buried in caissons, three surface condensers in the 241-A-701 building, a steam heater, and 12 high-efficiency particulate air (HEPA) filters in the 241-A-702 building.

In the 241-AY Annulus Vent System, air is drawn into the ventilation units by the exhaust fan, heated, filtered by two banks of filters, and fed into the annulus. The air is divided into two portions that are distributed (1) at the bottom of the annulus, and (2) in air slots below the inner tanks.

The air circulates in the annulus and is drawn out of the annulus through a duct. The air is monitored by a radiation probe heated by an electric heater, filtered by two banks of HEPA filters, and then released through a 99.1-m³/min (3,500-ft³/min) exhaust fan and stack to the environment.

No watch list tanks exist in AY farm.
Occasionally at AY farm, odors may be noticeable. In the few reported cases ammonia has been the probable contaminant identified. At times, the action of the airlift circulators may overload the ventilation systems and contaminants could be evolved from the tanks. If odors such as ammonia are detected, follow the information set forth the *Tank Farm Health and Safety Plan (HASP)*, Section 2.9, "Safe Work Practice."

B. PERIMETER AND SUPPORT FACILITIES

The perimeter of AY farm is secured by a chain-link fence with access controlled at the support trailer (MO-825 change trailer). Personnel enter and exit AY farm through MO-825. Equipment, such as motorized vehicles, enter and exit AY farm through the gate adjacent to MO-825.

The following support facilities are in AY farm.

- Support Building MO-825 is used by workers at AY farm worker as a change room and as the entry/exit point through the fence.

- Control Room 241-A-271 houses controls, instruments, and alarms that monitor and control activities in AY farm. The Computer-Automated Surveillance System (CASS) substation, located opposite the instrument panels, relay essential operational information and alarms to a central computer located in the 2750-E building.

- Instrument Building 241-AY-801, which is located between the two tanks in AY farm, contains the piping and control valves for airlift circulators, instrumentation, and the MCCs for other AY farm equipment. Process-air and raw-water headers join in the manifolds feeding twenty-two airlift circulators inside each tank. Panels in 241-AY-801 provide local instrument readouts and alarms.

- Ventilation Building 241-A-702 contains the AY farm primary ventilation system steam heater, HEPA filters, deentrainer flush spray controls, and exhaust fans.

C. WIND INDICATION

A wind sock located at the perimeter fenceline just south of MO-825 indicates wind direction to aid in planning onsite work activities, positioning structures and equipment, and planning approach routes.
II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see Tank Farm HASP, Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

Special surveillance requirements have been developed to monitor these tanks and their associated equipment. Instrumentation is installed for measuring liquid level, pressure, temperature, weight factor, and sludge level.

Venting of vapors/gases to the atmosphere from the breather filter on AY farm tanks has been documented. Possible vapor/gas constituents include organic vapors such as petroleum hydrocarbons and inorganic vapors/gases such as ammonia. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. If such odors (e.g., ammonia) are detected, follow the guidelines of the Tank Farm HASP, Section 2.9, "Safe Work Practice."
B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on AY farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into AY farm.

2. Chemicals

No specific chemicals are used at AY farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for AY Tank Farm can be found in Table F-1 of this appendix. See Section 10.0 of HASP.

4. Asbestos

Warning signs posted at AY farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during AY farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.
Tasks requiring additional task-based hazard controls specific to the AY tank farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers). These tasks must be conducted with level B personal protective equipment (PPE) (supplied-air respirators) to protect against the potential vapor hazards. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both a radiological control area (RBA/URMA) and a controlled area for nonradiological hazards. (See map in MO-825).

2. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of MO-825, the landing and stairway outside the trailer leading into the AY farm, and the immediately adjacent graved area from the vehicle entry gate into AY farm. Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of MO-825 where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

B. ACCESS CONTROL

The AY farm is accessed only through the contamination reduction zone (CRZ)/CRC (MO-825 and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements for AY farm have been identified beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

PPE for any interior areas controlled for radiological hazards will be identified on the Radiation Work Procedures (RWP).

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of AY farm.

- Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWP’s may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

- Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

B. CONTAMINATION REDUCTION ZONE/CONTAMINATION REDUCTION CORRIDOR

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D PPE such as that worn in the exclusion zone. Any additional task-specific requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the task.
VI. MONITORING REQUIREMENTS

External dosimetry is required as specified by the RWP for entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA. Monitoring for all tasks or operations shall be accomplished in accordance with the Tank Farm HASP, Section 2.9, "Safe Work Practice."

VII. DECONTAMINATION PROCEDURES

Currently at AY farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

For specific information regarding emergency response, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992). For additional emergency response information, see the Tank Farm HASP, Section 9.0, which applies to all tank farms.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AY farm be required, personnel should assemble at the 200 East Area Tank Farm staging area on the south side of the parking lot below AP farm at Canton Avenue just above First Street, or at an alternate location upwind of AY farm.

B. EMERGENCY EQUIPMENT AVAILABLE AT AY TANK FARM

The AY Tank Farm Fire Plan is posted on the wall of MO-825.

The following emergency equipment is available at AY farm:

- Two self-contained breathing apparatuses (located on the wall in MO-825)
- Protective clothing (available in MO-825)
• Radiological monitoring equipment (located in MO-825)
• Fire extinguisher (located in MO-825).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOUR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table F-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AY</td>
<td>01A & 02A</td>
<td>Active</td>
<td></td>
<td>Central pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>01B, C, D & E</td>
<td>Active</td>
<td></td>
<td>Sluice pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>02B, C, D & E</td>
<td>Active</td>
<td></td>
<td>Sluice pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>01F & 02F</td>
<td>Active</td>
<td></td>
<td>Annulus pump pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>02A</td>
<td>Active</td>
<td></td>
<td>Leak det. Pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>101A & 101B</td>
<td>Active</td>
<td></td>
<td>Leak det. Pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>Dual pits</td>
</tr>
<tr>
<td>241-AY</td>
<td>501</td>
<td>Active</td>
<td></td>
<td>Cond. Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>101 & 102</td>
<td>Active</td>
<td>Vent line</td>
<td>Annulus vent crosst</td>
<td>Metal cover/4 ft dia open x 7 ft 2 in. deep</td>
<td>Y</td>
<td>Removable cover (by hand)</td>
<td>F. Zak</td>
<td>101) 3 ft S of 101-AY Tank transmitter enclosure 102) 3 ft N of 102-AY tank transmitter enclosure</td>
</tr>
<tr>
<td>241-AY</td>
<td></td>
<td>Active</td>
<td>Electrical/ water line/valve</td>
<td>Raw water pit</td>
<td>Metal cover/3 ft dia open x 4 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>Located 30 ft E of leak detection pit AY-101-B</td>
</tr>
<tr>
<td>241-AY</td>
<td></td>
<td>Active</td>
<td>Electrical/ water line/valve</td>
<td>Raw water pit</td>
<td>Metal cover/3 ft dia open x 4 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>Located 30 ft E of leak detection pit AY-101-B</td>
</tr>
<tr>
<td>241-AY</td>
<td></td>
<td>Active</td>
<td>Electrical/ water line/valve</td>
<td>Raw water pit</td>
<td>Metal cover/3 ft dia open x 3 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>Located 24 ft N of leak detection conversion box</td>
</tr>
</tbody>
</table>
Table F-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AY</td>
<td></td>
<td>Active</td>
<td>Electrical/ water</td>
<td>Raw water pit</td>
<td></td>
<td></td>
<td></td>
<td>Located 9 ft N of leak detection conversion box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>line/valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metal cover/4 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dia open x 4 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>101 & 102</td>
<td>Active</td>
<td>Steam line/valve</td>
<td>Steam trap pits</td>
<td></td>
<td></td>
<td></td>
<td>Located 21 ft S of the 241-AY (801) Bldg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metal cover/4.5 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dia open x 6 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AY</td>
<td>601 Caisson</td>
<td>Inactive</td>
<td>Airlift cir.</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td>Unable to locate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
F-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/14/95
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: ED PONN/FRED ZAK/ROGER MITCHELL
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-A
OTHER EMPLOYEES: STACE BAKER/CLIFF MYERS

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Walking/working surfaces: numerous capped pipes extending from ground unprotected</td>
<td>Remove or hi-lite</td>
<td>Y</td>
<td>.22</td>
<td>BIIz</td>
<td>3B</td>
</tr>
<tr>
<td>Stile over steam line</td>
<td>Inaccessible</td>
<td>Repair/replace</td>
<td>Y</td>
<td>.22</td>
<td>BIIz</td>
<td>4C</td>
</tr>
<tr>
<td>All</td>
<td>Extensive debris accumulation</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>4C</td>
</tr>
</tbody>
</table>

CBHAY
APPENDIX G

HEALTH AND SAFETY PLAN
FOR THE AZ TANK FARM
This page intentionally left blank.
APPENDIX G

HEALTH AND SAFETY PLAN
FOR THE AZ TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The AZ farm consists of two double-shell tanks. The maximum operating capacity of each of the tanks is 3,785,412 L (1,000,000 gal).

These aging-waste tanks are different from typical double-shell tanks because they are equipped with support systems that allow for storage of high-heat generating waste. The major equipment, associated with these support systems includes steam coils, airlift circulators, and an exhaust condenser system to control condensate.

Tanks in AZ farm currently store waste from past Plutonium Uranium Extraction Facility operations. As system requirements change, the type of waste stored in AZ farm tanks can also be changed because of the unique storage capability of the tanks.

The AZ farm uses the 702-A Ventilation System to reduce radioactivity entering the environment to levels that are below current airborne discharge limits. The tank vapors are drawn through an extensive particle removal system before being discharged to the atmosphere. The system maintains a vacuum in each tank that also prevents radioactivity from leaking to the environment.

The main components of the 702-A Ventilation System include two deentrainers buried in caissons, three surface condensers in the 241-A-701 Building, a steam heater, and 12 high-efficiency particulate air (HEPA) filters in the 241-A-702 Building.

In the 241-AZ Annulus Vent System, tanks 241-AZ-101 and -102 are served by a common annulus ventilation system. Air is drawn into the system by an exhaust fan, heated, filtered by three filter banks, and divided into four separate ducts. Two of the ducts lead to the annulus of each tank while the other two ducts lead to air slots below each inner tank. The distributed air then flows into a common 16-in. duct which leads to two filter boxes. The air passes a radiation probe, flows by electric heaters, and passes through two banks of HEPA filters. From each tank, the filtered air flows.
from a duct that connects to a common rectangular underground duct. The air is released through a 198-m³/min (7,000-ft³/min) exhaust fan and stack to the environment.

Neither tank at AZ farm is on any tank farm watch list.

Occasionally, odors may be noticeable at AZ farm. In the few reported cases of odors, ammonia was identified as the probable contaminant. The action of the airlift circulators may overload the ventilation systems and result in odors from contaminants evolved from the tanks. If odor is detected (e.g., such as ammonia odor), follow the information set forth in the *Tank Farm Health and Safety Plan* (HASP), Section 2.9, "Safe Work Practice."

B. PERIMETER AND SUPPORT FACILITIES

The perimeter of AZ farm is secured by a chain-link fence with access controlled at the support trailer (MO-820 change trailer). Personnel enter and exit AZ farm through MO-820. Equipment such as motorized vehicles enter and exit AZ farm through the gate adjacent to MO-820.

The following support facilities are at AZ farm.

Support Building MO-820 is a change room facility and also is the entry/exit point through the perimeter fenceline.

Control Room 241-A-271 contains controls, instruments, and alarms, and is the center for monitoring and control activities at AZ farm. A computer-automated surveillance system substation, located opposite the instrument panels, relays essential operational information and alarms to a central computer located in the 2750-E Building.

Instrument Building 241-AZ-801, located between the two tanks in AZ farm, contains the piping and control valves for airlift circulators, the instrumentation, and the need to spell out acronym (MCCs) for other AZ farm equipment. In this building, process-air and raw-water headers join in manifolds that feed the airlift circulators (22 for each tank). Control panels located in the building provide instrument readouts and alarms.

Ventilation Building 241-A-702 contains the AZ farm primary ventilation system steam heater, HEPA filters, deentrainer flush spray controls, and exhaust fans.
C. WIND INDICATION

A wind sock, located at the perimeter fenceline on the west side of AZ farm, indicates wind direction to aide in planning onsite work activities, positioning structures and equipment, and planning approach routes. In the event evacuation is required, the wind sock will aid in locating an up-wind location.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2820
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

The following list represents key responsibilities for AZ farm. For further information regarding responsibilities, see the Tank Farm HASP, Section 1.0:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and Health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

Special surveillance requirements have been developed to monitor the AZ farm tanks and associated equipment. Instrumentation is installed for measuring liquid level, pressure, temperature, weight factor, and sludge level.

Venting of vapors/gases to the atmosphere from the breather filter on the AZ farm tanks has been documented. Possible vapor/gas constituents include organic vapors such as petroleum hydrocarbons and inorganic vapors/gases such as ammonia. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. If odors such as ammonia are detected, follow the guidelines of the Tank Farm HASP, Section 2.9, "Safe Work Practice."

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on AZ farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from equipment brought into the farm.

2. Chemicals

No specific chemicals are used at AZ farm that are atypical of operation at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for AZ Tank Farm can be found in Table G-1 of this appendix. See Section 10.0 of HASP.
4. Asbestos

Warning signs at AZ farm alert workers that asbestos materials are present. Asbestos is found in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during AZ farm activities, unless specifically directed.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks requiring additional task-based hazard controls specific to AZ farm included replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on the tanks. These tasks must be conducted with level B personal protective equipment (PPE) (supplied-air respirators) to protect against the potential vapor hazards. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both a radiological control area (RBA/URMA) and a controlled area for nonradiological hazards (See map in MO-820).

2. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of MO-820, the landing and stairway outside the trailer leading into the AZ farm, and the immediately adjacent graveled area from the vehicle entry gate into AZ farm. Two decontamination lines exist within the contamination reduction corridor (CRC):
(1) the personnel decontamination line is through the RBA/URMA portion of MO-820 where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

B. ACCESS CONTROL

The AZ farm may be accessed only through the contamination reduction zone (CRZ)/CRC (MO-820 and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for AZ farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

PPE for any interior areas controlled for radiological hazards will be identified on the Radiation Work Procedures (RWP).

Two levels of PPE are required in designated exclusion zones of AZ Farm.

- Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

- Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-min. escape bottle.
B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

External dosimetry is required as specified by the RWP for entry into the CRZ/CRC, inside the fenceline, or into a RBA/URMA. Monitoring for all tasks or operations shall be accomplished in accordance with the Tank Farm HASP, Section 2.9, "Safe Work Practice."

VII. DECONTAMINATION PROCEDURES

Currently at AZ farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information regarding decontamination procedures.

VIII. EMERGENCY RESPONSE

For specific information regarding emergency response consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which presents information that applies to all tank farms.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of AZ farm be required, personnel should assemble at the 200 East
Area Tank Farm staging area on the south side of the parking lot below AP farm at Canton Avenue just above First Street, or at an alternate location upwind of AZ farm.

B. EMERGENCY EQUIPMENT AVAILABLE AT AZ TANK FARM

The AZ Tank Farm Fire Plan is posted on the wall of the MO-820 change trailer.

The following emergency equipment is available at AZ farm:

- First aid and bloodborne pathogen kits
- Two self-contained breathing apparatuses (located on the wall in MO-820)
- Protective clothing (available in MO-820)
- Radiological monitoring equipment (located in MO-820)
- Fire extinguisher (located in MO-820).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AZ</td>
<td>01A & 02A</td>
<td>Active</td>
<td>Central pump pit(s)</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>01B & 01C</td>
<td>Active</td>
<td>Sluice pit(s)</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>02B & 02C</td>
<td>Active</td>
<td>Sluice pit(s)</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>01F</td>
<td>Active</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>02F</td>
<td>Active</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>101</td>
<td>Active</td>
<td>Leak det. pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>101/102</td>
<td>Active</td>
<td>Leak det. pits</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td>Dual pits</td>
</tr>
<tr>
<td>241-AZ</td>
<td>155</td>
<td>Active</td>
<td>Contam. storage pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>154</td>
<td>Active</td>
<td>Cond. Pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>152</td>
<td>Active</td>
<td>Divers. Box</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. ZAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>152</td>
<td>Active</td>
<td>PIPE Pit</td>
<td>Metal cover/4 ft dia open x 10 ft 8 in. dp</td>
<td>Y</td>
<td>P</td>
<td>F. ZAK</td>
<td>Located 36 ft E of 152-AZ transfer box</td>
<td></td>
</tr>
<tr>
<td>241-AZ</td>
<td>101</td>
<td>Active</td>
<td>Seal loop drain valve pit</td>
<td>Metal cover/3 ft dia open x 20 deep</td>
<td>Y</td>
<td>P</td>
<td>F. ZAK</td>
<td>Located in SW corner of AZ farm note: contamination found</td>
<td></td>
</tr>
</tbody>
</table>
Table G-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-AZ</td>
<td></td>
<td>Active</td>
<td>PIPE</td>
<td>Steam trap pit</td>
<td>Metal cover/5 ft dia open x 6 ft 9 in. deep</td>
<td>Y</td>
<td></td>
<td>NP F. ZAK</td>
<td>Located 8 ft S of steam trap SE corner of AZ farm</td>
</tr>
<tr>
<td>241-AZ</td>
<td></td>
<td>Active</td>
<td>PIPE/VALVE</td>
<td>Valve pit</td>
<td>Metal cover/5 ft dia open x 12 ft 4 in. deep</td>
<td>Y</td>
<td></td>
<td>P F. ZAK</td>
<td>Located 8 ft N of valve pit in SE corner of AZ farm</td>
</tr>
<tr>
<td>241-AZ</td>
<td></td>
<td>Active</td>
<td>Steam lines and valves</td>
<td>Steam trap pit</td>
<td>Metal cover/5 ft dia open x 7 ft 8 in. deep</td>
<td>Y</td>
<td></td>
<td>P F. ZAK</td>
<td>Located 8 ft E of the instrumentation house 241-AZ (801A)</td>
</tr>
<tr>
<td>241-AZ</td>
<td>161</td>
<td>Active</td>
<td>Electrical/ water line</td>
<td>Check valve caisson</td>
<td>Metal cover 3 ft x 3 ft open x 10 ft 2 in. deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>NP F. ZAK</td>
<td>Located 4 ft W of the instrumentation house 241-AZ (801A)</td>
</tr>
<tr>
<td>241-AZ</td>
<td>162</td>
<td>Active</td>
<td>Electrical/ water line</td>
<td>check valve caisson</td>
<td>Metal cover/3 ft x 3 ft open x 10 ft 2 in. deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>NP F. ZAK</td>
<td>Located 4 ft W of the instrumentation house 241-AZ (801A)</td>
</tr>
</tbody>
</table>
G-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/14/95
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: ED PONN/FRED ZAK/ROGER MITCHELL
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-AZ
OTHER EMPLOYEES: CLIFF MYERS

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ-801</td>
<td>Noise: no warning/no available protection for small compressor bldg</td>
<td>Post warning/provide hearing protection</td>
<td>Y</td>
<td>.95</td>
<td>AII</td>
<td>2B</td>
</tr>
<tr>
<td>Exhauster</td>
<td>Exceeds 85DBA</td>
<td>post warning/provide protection</td>
<td>Y</td>
<td>.95</td>
<td>AII</td>
<td>2B</td>
</tr>
<tr>
<td>Chg trlr</td>
<td>HASP not available</td>
<td>Provide HASP</td>
<td>Y</td>
<td>.120</td>
<td>AIIb</td>
<td>2B</td>
</tr>
<tr>
<td>AZ-801</td>
<td>Electrical (instrument) panel open and unattended with exposed contacts</td>
<td>Secure the panel</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>Defective wooden ladders untagged/improper storage</td>
<td>Destroy and remove</td>
<td>Y</td>
<td>.25</td>
<td>BIII</td>
<td>3B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 PAGE
APPENDIX H

HEALTH AND SAFETY PLAN
FOR THE B TANK FARM
APPENDIX H

HEALTH AND SAFETY PLAN
FOR THE B TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The B tank farm contains 12 single-shell tanks with a capacity of 1,892,706 L (500,000 gal) each. Also present are four smaller tanks rated at 208,198 L (55,000 gal). The tanks are numbered 241-B-101 through -112 and 241-B-201 through -204, respectively, and are located just east of the BX/BY farms. The B farm was one of the first built from 1943 to 1944. All of the tanks in B farm have been interim stabilized, and nine are interim isolated. Tanks 241-B-101 and 241-B-202 have been shown to be a potential source of organic vapor/ammonia venting to the atmosphere. Tank 241-B-103 is on the Organic Watch List because of the relative high concentration of organic waste and oxidizing agents present in the tank. Under certain conditions, the organic waste materials and oxidizing agents (e.g., sodium nitrate, sodium nitrite, etc.) may result in a potentially hazardous exothermic reaction. Passive ventilation is used on all tanks at B farm. The high organic and vapor source tanks are identified below.

All B tanks contain low-level radioactive waste and various chemical constituents. The receiver tank (double-contained) for B farm is 241-BX-244, located in BX farm. The B tank farm is classified as a surface contamination area (SCA) (radiological contamination).

All B tanks are assumed to be leaking and therefore pose a hazard for all subsurface activities due to radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at a small support enclosure across from BX farm and an adjacent gate located at the west side of B farm along Baltimore Avenue. Personnel enter through the gate and exit the farm through the enclosure. Equipment such as motorized vehicles enter and exit the farm through the same access gate.
C. WIND INDICATION

A wind sock, located at the west side of B farm, indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Organic Vapors

Tank 241-B-103 is on the Organic Watch List and may present a special hazard because of the volume of organic substances contained in the tank. Fire and explosion are always a concern. Hazard control requirements are currently in place.

- All work done at this tank must be in accordance with OSD-T-151-00030.
- Spark-resistant tools and other safeguards are necessary to reduce the chance of fire or explosion.
- All work in T farm is done in accordance with the Tank Farm HASP, Section 2.9, "Safe Work Practice."

2. Vapor/Gas

Venting of various vapors/gases to the atmosphere from the breather filters of Tanks 241-B-101 and -202 has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the proximity of the breather filter vent. Extreme caution in these areas is recommended. For the specific controls and DPE, refer to the SWP. Controls around breather filter sources include:

- Barricaded interior exclusion zone established at a 1.5-m (5-ft) radius around the breather filter on tank 241-B-101
- Organic vapor meter (OVM) monitoring or respiratory protection required within interior exclusion zones
- Supplied-air used for all intrusive work (unless approved by TWRS IH&S) before breaking tank containment.
All personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

3. Low-Level Waste

All B tanks store low-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

4. Surface Contamination

The entire B tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on B farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on B farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for B Tank Farm can be found in Table H-1 of this appendix. See Section 10.0 of HASP.
4. Asbestos

Warning signs posted at the B farm complex (MO-824), alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Task having additional task-based hazard controls specific to B farm include replacement of breather filters, change out of seal loop fluid, and any other containment breach (e.g., opening of risers) on tank 241-B-101. These tasks must be conducted with Level B personal protective equipment (PPE) (supplied-air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on this tank regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for B farm are shown on Figure H-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.
2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual tanks, groups of tanks, and point-source emissions to deal with specific hazards. Interior exclusion zones are established at a 1.5-m (5-ft) radius around the breather filters (one each) on tank 241-B-101 and are controlled with Level B PPE. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the immediately adjacent graveled area from the vehicle entry gate to approximately 12.2 m (40 ft) into the tank farm (see Figure H-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the small support enclosure where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontaminated; (2) the vehicle/equipment decontamination line is through the vehicle gate where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at B farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the farm outside the RBA/URMA at the access gate and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company (WHC) Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

The only access point to B farm is through the contamination reduction zone (CRZ)/CRC at the vehicle gate unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for B farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of B farm.

- Level D PPE is required inside the perimeter fenceline. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

- Level B PPE is required inside the interior barricaded area around the breather filter on tank 241-B-101 unless under OVM monitoring, or during a breach in containment of any tank unless a waiver is authorized by TWRS IH&S. Required Level B PPE consists of the same protective clothing/equipment as Level D plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are to be listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.
VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into the interior barricaded areas around tank 241-B-101, OVM/HN₃ monitoring is required unless supplied-air respiratory protection is used. In addition to general area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tank 241-B-101, OVM/HN₃ monitoring is required even though supplied-air respirators must be used. In addition to other area monitoring, OVM/HN₃ monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks other than 241-B-101, see the Tank Farm HASP, Section 2.9, "Safe Work Practice," and Section 6.0.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling must be conducted for oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide, and other hazards specified on work permits. See confined space entry permit for requirements.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches on tank 241-B-101, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. There are five area radiation detectors in B farm. The nearest continuous air monitor for airborne radiological monitoring is located north of B/BY farms at the intersection of 12th and Baltimore.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Radiological contamination is the only significant decontamination issue at B farm at this time. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.
VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to B farm. For further information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the B farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-B receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 244-B Building
- The 244-B vessel vent exhauster
- Air sampling and stack monitor
- Instrument process air.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of B farm be required, personnel should assemble either at the 200 East Tank Farm staging area on the south side of the parking lot below AP farm at Canton Avenue just above First Street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT B FARM

Figure H-1 shows the location of fire extinguishers and fire alarms at the site. The B Tank Farm Fire Plan is posted on the wall of the change trailer. The following equipment is available:

- First aid and bloodborne pathogen kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of the change trailer)
• Wind sock (located just outside the change trailer)
• Panic button and fire alarm (located in the control room; yellow flashing light indicates that tank pumps are operating)
• Two self-contained breathing apparatuses (located in the change trailer)
• Ladder
• Protective clothing (available in the change trailer)
• Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-B</td>
<td>Caisson</td>
<td>Inactive</td>
<td>No ladder</td>
<td>Steam trap pit</td>
<td>Metal cover</td>
<td>Y</td>
<td></td>
<td>P</td>
<td>F. Zak</td>
</tr>
</tbody>
</table>

Outside of fence/located on left at entrance/-9 ft deep 6 in. dia. opening/trap is isolated.
H-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 1/17/95
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: ED PONN/FRED ZAK
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-B
OTHER EMPLOYEES:

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changeout booth</td>
<td>Surface contamination: surface grade allows water to drain from hot stepoff to cold stepoff pad</td>
<td>seal roof and doors check and adjust grade</td>
<td>Y</td>
<td>.22</td>
<td>IIk</td>
<td>3B</td>
</tr>
<tr>
<td>B-105, B-112</td>
<td>Uncontrolled trash/debris creates fire/tripping/rodent hazards</td>
<td>Housekeeping</td>
<td>Y</td>
<td>.141</td>
<td>Bllz</td>
<td>4C</td>
</tr>
<tr>
<td>Unlabeled enclosure</td>
<td>NE corner of farm lacks asbestos identification and warnings</td>
<td>Color code as required</td>
<td>Y</td>
<td>.1001</td>
<td>Blld</td>
<td>2C</td>
</tr>
<tr>
<td>B-203 et al.,</td>
<td>Sink holes and washouts in various locations create slip/trip and fall hazards</td>
<td>Backfill to grade</td>
<td>Y</td>
<td>.22</td>
<td>Bllk</td>
<td>3B</td>
</tr>
</tbody>
</table>

APPENDIX I

HEALTH AND SAFETY PLAN
FOR THE BX TANK FARM
APPENDIX I

HEALTH AND SAFETY PLAN
FOR THE BX TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The BX farm contains 12 single-shell tanks with a capacity of 1,892,706 L (500,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. The tanks are numbered 241-BX-101 through -112. Tanks 241-BX-102 and -106 are on the Ferrocyanide Watch List and therefore have a possible, although unlikely and undetected, hydrogen cyanide (HCN) occupational exposure potential. Four tanks cascade with the two Ferrocyanide Watch List tanks and therefore also have a possible, but even less likely, HCN exposure potential. Tanks 241-BX-104, -105, and -111 vent vapor/gas to the atmosphere from their breather filters and have a confirmed vapor exposure hazard from organics and/or ammonia and possibly other gases/vapors. Passive ventilation is used on all tanks in BX farm.

All BX farm tanks contain high-level radioactive waste and various chemical constituents. In addition to the tanks, a double-contained receiver tank (241-BX-244) is present in BX farm, serving the entire B complex (B, BX, and BY farms). The BX farm is classified as a surface contamination area (SCA) (radiological contamination).

Various BX farm tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-824) and adjacent gate located at the southeast corner of BX farm along Baltimore Avenue. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.
C. WIND INDICATION

A wind sock located at the southeast corner of BX farm indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the *Tank Farm Health and Safety Plan (HASP)*, Section 1.0. Key responsibilities include:

- Site access controlled by shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Ferrocyanide Watch List tanks include 241-BX-102 and -106. The possible but unconfirmed hazard is exposure to HCN gas. To date, no detectable HCN exposures or area concentrations have been found. Removal of the HCN controls is under consideration. Nevertheless, exposure control requirements to protect against possible exposures are currently in place and include the following:

- A controlled interior exclusion zone (barricaded area) around breather filters on tanks 241-BX-103, -104, -105, -107 and -111 requires OVM/HN₃ monitoring for entry or use of Level B PPE if no monitoring is performed.

2. Vapor/Gas

Vapor/gas emitting tanks include 241-BX-103, -104, -105 and -111. Venting of various vapors/gases to the atmosphere from the breather filter on these tanks has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the proximity of the breather filter vent. Extreme caution in these areas is recommended. Controls around breather filter sources include the following:

- Barricaded interior exclusion zones are established at a 1.52 m (5-ft) radius around the breather filters on tanks 241-BX-103, -105, -107, and -111. (Note: one breather filter is present for each tank).

- OVM/HN₃ monitoring or the use of Level B PPE (supplied-air respirator) is required within these interior exclusion zones, and for any containment breaches on these tanks.
To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

3. High-Level Radioactive Waste

All BX tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

4. Surface Contamination

The entire BX farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on BX farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on BX farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for BY Tank Farm can be found in Table I-1 of this appendix. See Section 10.0 of HASP.
4. Asbestos

Warning signs posted at BX farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permit(s) developed for the specific task as part of the work control process.

Tasks having additional task-specific hazard controls specific to BX farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tanks in BX farms. These tasks must be conducted in accordance with the *Tank Farm HASP*, Section 2.9, "Safe Work Practice."

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for BX farm are shown on Figure I-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both a RBA/URMA and a controlled area for nonradiological hazards.
2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around point source emissions to deal with specific hazards.

- Barricades are erected in a 1.52-m (5-ft) radius around the breather filters on tanks 241-BX-103, -104, -105, -107 and -111. Controls include OVM monitoring or Level B PPE.

- In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure I-1). Two decontamination lines exist within the CRC: (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at BX farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the contamination reduction corridor (CRC) and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.
B. ACCESS CONTROL

Access to BX tank farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.

C. COMMUNICATION/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for BX farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

One level of PPE are required in designated exclusion zones of BX farm.

- Level D PPE is required inside the perimeter fenceline. Level D with OVM and ammonia monitoring is required within a (5-ft) radius of the breather filters on tanks 241-BX-103, 241-BX-104, 241-BX-105, 241-BX-107 and 241-BX-111. Required level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

- Level D PPE is required with OVM/Ammonia (NH₃) monitoring within 5-ft of the non-breather filter on tank 241-BX-111.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.
B. CONTAMINATION REDUCTION ZONE

Level D PPE is required, which consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D PPE clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health Representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Task-specific PPE requirements are to be listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into the interior barricaded areas around tanks 241-BX-102, -104, -105, -106 and -111, OVM/HN3 and monitoring are required unless supplied-air respiratory protection is used. In addition to general area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks 241-BX-104, -105, or -111, OVM monitoring or supplied-air respirator use is required. In addition to other area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks other than 241-BX-103, -104, -105, -107 or -111, See the Tank Farm HASP, Section 2.9, "Safe Work Practice," and Section 6.0.

Before confined space entry and possibly periodically or continuously during entry, sampling for oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide, and others is conducted. Monitoring requirements are specified on confined space entry permits.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing 241-BX-103, -104, -105, -107 and -111 containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.
No permanent area monitors are in place for vapors/gases. There are five area radiation detectors in BX farm. The nearest continuous air monitor (CAM) for airborne radiological monitoring is located north of BX/BY farms at the intersection of 12th and Baltimore.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by health physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently at BX farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to BX farm. For additional information regarding emergency response issues, consult the WHC Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the B farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-BX receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 244-BX Building
- The 244-BX vessel vent exhauster
- Air sampling and stack monitor
- Instrument process air.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the *Tank Farm HASP*, Section 9.0. Should evacuation of BX farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area on the south side of the parking lot below AP farm located at Canton Avenue just above First Street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT BX FARM

The BX Tank Farm Fire Plan is posted on the wall of the change trailer. The following equipment is available:

- First aid and bloodborne pathogen kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of the change trailer)
- Wind sock (located just outside the change trailer)
- Panic button and fire alarm (located just outside the 244-BX Control Room; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparatuses (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
Table I-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>244-BX</td>
<td>01A</td>
<td>Active</td>
<td>Central pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>North of central pump pit.</td>
<td></td>
</tr>
<tr>
<td>244-BX</td>
<td>Caisson</td>
<td>Active</td>
<td>244-BX inst. pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>244-BX</td>
<td>Caisson</td>
<td>Active</td>
<td>Air line (pipe)</td>
<td>Inst. air pull box</td>
<td>Metal cover 4 ft dia. open x 4 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>N F. Zak</td>
<td>East of 244-BX central pump pit instrument shack.</td>
</tr>
<tr>
<td>244-BX</td>
<td>Active</td>
<td>Heater</td>
<td>Inst. Pit</td>
<td>Metal cover 4 ft dia. open x 8 ft deep fixed ladder</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P F. Zak</td>
<td>~ 1 ft N of central pump pit/4 ft dia. open x 8 ft deep/fixed ladder</td>
<td></td>
</tr>
<tr>
<td>241-BX</td>
<td>Active</td>
<td>Water pipe</td>
<td>Water service pit</td>
<td>Metal cover 5 ft dia. open x 5 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>~ 15 ft E of pit cover with ID H-2-74721</td>
<td></td>
</tr>
<tr>
<td>241-BX</td>
<td>Active</td>
<td>Water pipe/unsecured ladder</td>
<td>Service pit</td>
<td>Metal cover</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>~ 15 ft W of pit cover with ID H-2-75140</td>
<td></td>
</tr>
<tr>
<td>241-BX</td>
<td>Active</td>
<td>Heater/electrical</td>
<td>Heater control station service pit</td>
<td>Metal cover/fixed ladder</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>NE side of BX</td>
<td></td>
</tr>
<tr>
<td>241-BX</td>
<td>Active</td>
<td>Steam valve</td>
<td>Exhaust condensate steam valve pit</td>
<td>Metal cover/5 ft dia. open x 6 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>~ 42 ft NW of FIC 106-BX</td>
<td></td>
</tr>
<tr>
<td>241-BX</td>
<td>Active</td>
<td>Steam pipes</td>
<td>Steam service pit</td>
<td>Metal cover/4 ft dia. open x 8 ft deep</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>~ 12 ft NW of FIC 112-BX</td>
<td></td>
</tr>
</tbody>
</table>
Table I-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-BX</td>
<td>107-BX</td>
<td>Active</td>
<td>Service pit</td>
<td>Salt-well</td>
<td>Salt-well pump pits</td>
<td>N</td>
<td>P</td>
<td>F. Zak</td>
<td>111-BX Wiring covers the pit, so a permit sign was attached with wire.</td>
</tr>
<tr>
<td>241-BX</td>
<td>107-BX</td>
<td>Active</td>
<td>Service pit</td>
<td>Metal cover/4 ft</td>
<td>Metal cover/4 ft dia open x 5 ft</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>1) ~15 ft NE of 241-BX-107 saltwell pump pit 2) ~30 ft SW of 241-BX-107 saltwell pump pit</td>
</tr>
<tr>
<td>241-BX</td>
<td>109-BX</td>
<td>Active</td>
<td>Catch tank</td>
<td>Metal cover/5 ft</td>
<td>Metal cover/5 ft dia open x 5 ft</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>~12 ft of phosphoric acid prototype control center SW side of farm</td>
</tr>
<tr>
<td>241-BX</td>
<td>110-BX</td>
<td>Active</td>
<td>Drainage pit</td>
<td>Metal cover/3 ft</td>
<td>Metal cover/3 ft dia open x 6 ft</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>SW (BX-R) Side</td>
</tr>
<tr>
<td>241-BX</td>
<td>111-BX</td>
<td>Active</td>
<td>Flush pit</td>
<td>Metal cover</td>
<td>Metal cover</td>
<td>Y</td>
<td>P</td>
<td>F. Zak</td>
<td>Next to 244-BX shack.</td>
</tr>
<tr>
<td>241-BX</td>
<td>112-BX</td>
<td>Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/15/95
DATE OF REPORT: 3/8/95
IS AND IH REPRESENTATIVES: ROGER MITCHELL/FRED ZAK/ED PONN

ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-BX

OTHER EMPLOYEES: STACE BAKER
LISA HARTLEY

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX-111/110</td>
<td>Confined spaces improperly identified</td>
<td>classify and label</td>
<td>Y</td>
<td>.146</td>
<td>Allg</td>
<td>2B</td>
</tr>
<tr>
<td>All</td>
<td>Capped pipes extend 18 in. above grade creating tripping hazards</td>
<td>Remove or hi-lite</td>
<td>Y</td>
<td>.22</td>
<td>BIIk</td>
<td>3B</td>
</tr>
<tr>
<td>NRAF</td>
<td>Improper use/protection of electrical cables and cord creates electrical and tripping hazards</td>
<td>correct installation per NEC</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2B</td>
</tr>
<tr>
<td>BX-107</td>
<td>Lock #84 on pump switch box without required tag</td>
<td>install proper lock and tag</td>
<td>Y</td>
<td>.147</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>BX-104</td>
<td>Small enclosure contains ACBM which is unlabeled</td>
<td>Color code and label</td>
<td>Y</td>
<td>.1001</td>
<td>AlllC</td>
<td>2C</td>
</tr>
<tr>
<td></td>
<td>Small pink structure between BX and BY contains open electrical panels unprotected from contact</td>
<td>Secure panel and lock building post for authorized personnel only</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>All</td>
<td>HAZCOM: phosphoric acid tank improper label warning signs misplaced storage cabinet labeled "flammable" contains unlabeled materials.</td>
<td>Correct storage label as required</td>
<td>Y</td>
<td>.1200</td>
<td>Alllc</td>
<td>2B</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>Rigging slings and wire ropes improper storage out of certification</td>
<td>Properly store/test and certify or destroy</td>
<td>Y</td>
<td>.184</td>
<td>Alllr</td>
<td>1A</td>
</tr>
<tr>
<td>DCRT</td>
<td>Guardrailing partially dismantled creates tripping hazard</td>
<td>Repair/replace</td>
<td>Y</td>
<td>.22</td>
<td>Bllj</td>
<td>2A</td>
</tr>
<tr>
<td>CBHBX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This page intentionally left blank.
APPENDIX J

HEALTH AND SAFETY PLAN
FOR THE BY TANK FARM
This page intentionally left blank.
APPENDIX J

HEALTH AND SAFETY PLAN
FOR THE BY TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The BY tank farm contains 12 single-shell tanks with a capacity of 2,839,059 L (750,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. The tanks are numbered 241-BY-101 through -112. Nine of the 12 tanks (i.e., 241-BY-103, -104, -105, -106, -107, -108, -110, -111, and -112) are on the Ferrocyanide Watch List and therefore have a possible, although unlikely, hydrogen cyanide (HCN) occupational exposure potential. Ferrocyanide serves as a scavenger of radiocesium and other soluble radionuclides and as such was added to tanks to reduce the volume of radioactively contaminated liquids in the tanks. In the presence of oxidizing agents such as nitrates/nitrites and high temperatures (> 285° C), ferrocyanides have the potential to explode. Additionally, under special conditions such as high radiation and pH < 10.5, ferrocyanide may be converted to HCN. One tank is in the cascade with a Ferrocyanide Watch List tank and therefore also has a possible, but even less likely, HCN exposure potential. Passive ventilation is used on all tanks in BY farm.

All BY farm tanks contain high-level radioactive waste and various chemical constituents. In addition to the tanks, a double-contained receiver tank (241-BX-244) is present in the BX farm, serving the entire B complex (B, BX, BY). The BY tank farm is classified as a surface contamination area (SCA) (radiological contamination).

Various BY tanks may be leaking and therefore pose a hazard for any subsurface activities due to radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-824) and adjacent gate located at the southeast corner of BX farm along Baltimore Avenue. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.
C. WIND INDICATION

Wind socks located at the southeast and northeast fences of BY farm indicate wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm HASP, Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS-IH&S
- Exposure/area monitoring specified by TWRS-IH&S
- Exposure/area monitoring conducted by TWRS-IH&S
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Ferrocyanide Watch List tanks include 241-BY-103, -104, -105, -106, -107, -108, -110, -111 and -112. The possible, but as yet unconfirmed hazard, is exposure to HCN gas. To date, no detectable HCN exposures or area concentrations have been found. Removal of the HCN controls is under consideration. Nevertheless, exposure control requirements to protect against possible exposures include the following.

- A controlled interior exclusion zone (barricaded area) established at a 1.52-m (5-ft) radius around breather filters on tanks 241-BY-104, -107, and -108 requiring OVM/NH$_3$/N$_2$O monitoring or respiratory protection for entry within the barricades. Barricades at tank 241-BY-110 requires OVM/NH$_3$ monitoring.

- A controlled interior exclusion zone (barricaded area) established at a 1.52 m (5-ft) radius around the breather filter and liquid level reel on tank 241-BY-102, -104, and -110 requiring OVM monitoring or respiratory protection for entry within the barricades.

- Level B personal protective equipment (PPE) (supplied-air respirator) is required for initial containment breaches on all BY tanks or continuous when OVM monitoring is not available at containment breach or thereafter. For waste intrusive work OVM monitoring is required every 15 minutes.

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.
2. High-Level Radioactive Waste

All BY farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

3. Surface Contamination

The entire BY farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on BY farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on BY farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

A listing of confined spaces for BY Tank Farm can be found in Table J-1 of this appendix. See Section 10.0 of HASP.
4. Asbestos

Warning signs posted at BY farm alert workers that asbestos materials are present. Asbestos can be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to BY farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tanks 241-BY-103 through -108 and 241-BY-110 through -112. These tasks must be conducted with Level B PPE (supplied-air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for BY farm are shown on Figure J-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.
2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual tanks, groups of tanks, and point source emissions to deal with specific hazards.

- The zones around breather filters on tanks 241-BY-104, -107 and -108 are controlled with Level B PPE or OVM/NH_3/N_2O monitoring; tank 241-BY-110 does require OVM/NH_3 monitoring.

- The zones around liquid level reels on tanks 241-BY-102, -104 and -110 are controlled with OVM/NH_3 monitoring or Level B PPE.

- In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure J-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at BY farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.
4. Support Zone

This zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to BY farm is to occur only through the CRZ/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for BY farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of BY farm as follows.

- Level D PPE is required inside the perimeter fenceline and also inside exclusion zones with OVM/NH$_3$/N$_2$O monitoring. Required Level D PPE consists of anti-C protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hardhat, or safety glasses.

- Level B PPE is required (1) inside the interior barricaded area around tanks 241-BY-104, -107, -108 and -110 if OVM/NH$_3$/N$_2$O monitoring is not available, (2) inside the barricades at liquid level reels on tanks 241-BY-102, -104, and -110 OVM/NH$_3$/N$_2$O is not available.
PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health Representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the *Tank Farm HASP*, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the contamination reduction zone (CRZ)/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into the interior barricaded areas on tanks 241-BY-102, -104, -107, -108 and -110, OVM and NH$_3$/N$_2$O monitoring are required unless supplied-air respiratory protection is used. In addition to general area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on any BY farm tanks other those listed in the previous paragraph, See the *Tank Farm HASP*, Section 2.9, "Safe Work Practice," and Section 6.0.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling is conducted for oxygen, explosivity, organic vapors, ammonia, HCN, and other hazards specified on work permits. See the confined space entry permit for requirements.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches on tanks 241-BY-102, -104, and -110, and for workers performing intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. There are five area radiation detectors in BY farm. The nearest continuous air monitor for airborne radiological monitoring is located north of BX/BY farms at the intersection of 12th and Baltimore.
Any task-based monitoring requirements in addition to those specified above are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently at BY farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to BY farm. For additional information regarding emergency response, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at B farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-BX receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 244-BX Building
- The 244-BX vessel vent exhauster
- Air sampling and stack monitor
- Instrument process air.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the *Tank Farm HASP*, Section 9.0. Should evacuation of BY farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area on the south side of the parking lot below AP farm located at Canton Avenue just above First Street, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT BY FARM

The BY Tank Farm Fire Plan is posted on the wall of the change trailer. The following equipment is available:

- First aid and bloodborne pathogen kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of the change trailer)
- Wind sock (located just outside the change trailer)
- Panic button and fire alarm (located just outside the 244-BX Control Room; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparatuses (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
Table J-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-BY</td>
<td>LLW-B</td>
<td>Active</td>
<td>Piping</td>
<td>Water service pit</td>
<td>Metal cover/3 ft dia. open x 3 ft deep</td>
<td>Y</td>
<td>Hinged lid</td>
<td>NP F. Zak</td>
<td>Outside fence, SE corner</td>
</tr>
<tr>
<td>241-BY</td>
<td>Active</td>
<td>Pit</td>
<td>Cover block</td>
<td>N</td>
<td>P F. Zak</td>
<td>South of pit 101-BY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>101-BY thru 112-BY</td>
<td>Active</td>
<td>Saltwell pump pit</td>
<td>Cover block</td>
<td>N</td>
<td>P F. Zak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>105-BY</td>
<td>Active</td>
<td>Water pipe</td>
<td>4 ft dia. open x 5 ft deep</td>
<td>Y</td>
<td>NP F. Zak</td>
<td>~15 ft W of evaporator steps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>106-BY</td>
<td>Active</td>
<td>Pipe/valves</td>
<td>Steam line trap pit</td>
<td>Metal cover/3 ft dia. open x 4 ft 7 in. deep</td>
<td>Y</td>
<td>P F. Zak</td>
<td>NE corner of BY farm. Pit cover is damaged and should be replaced.</td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>Active</td>
<td>Evaporator pit</td>
<td>N</td>
<td>P F. Zak</td>
<td>Above ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>Active</td>
<td>WFT caisson</td>
<td>Steel cover block</td>
<td>N</td>
<td>P F. Zak</td>
<td>NW corner in 112-BY area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-BY</td>
<td>Active</td>
<td>Piping</td>
<td>Steam trap pit</td>
<td>Metal cover/5 ft dia. open x 8 ft deep</td>
<td>Y</td>
<td>P F. Zak</td>
<td>SE corner of 107-BY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
J-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/15/95 \(^* \) **DATE OF REPORT:** 3/8/95
IS AND IH REPRESENTATIVES: ED PONN/FRED ZAK/ ROGER MITCHELL

ASSESSMENT NUMBER:
AREA: 200E **FACILITY:** 241-BY **OTHER EMPLOYEES:** STACE BAKER LISA HARTLEY

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Deteriorating/damaged asbestos</td>
<td>Abatement</td>
<td>Y</td>
<td>.1001</td>
<td>Alld</td>
<td>2B</td>
</tr>
<tr>
<td>ENRAFS</td>
<td>Wiring installation creates tripping hazards</td>
<td>Install per NEC</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>All</td>
<td>Electrical cords/cables damaged, improper use and distribution</td>
<td>Repair/replace/protect</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>1A</td>
</tr>
<tr>
<td>BY-107/110</td>
<td>Open shed with open/unsecured electrical panels</td>
<td>Close and secure panel and door</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>1A</td>
</tr>
<tr>
<td></td>
<td>Improper storage of ladders and scaffolds</td>
<td>Remove and store/housekeeping</td>
<td>Y</td>
<td>.26/.28</td>
<td>BIIm</td>
<td>3A</td>
</tr>
<tr>
<td>BY-254</td>
<td>Damaged portable light stand not tagged out of service open electrical panels/exposed wire blocked egress inner door with damaged crash bar MCC panel inaccessible/door damaged</td>
<td>Tag out and dispose or repair secure panels remove obstructions repair or replace</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>BY-254</td>
<td>Lead-lined hallway displays signs of oxidation with possible exposure to airborne particulate</td>
<td>Reseal and protect surfaces</td>
<td>Y</td>
<td>Allc</td>
<td>1C</td>
<td></td>
</tr>
</tbody>
</table>

LOCATION ROOM/AREA: CBH BY

\(^* \) The symbol (*) indicates a note or reference.
This page intentionally left blank.
APPENDIX K

HEALTH AND SAFETY PLAN
FOR THE C TANK FARM
This page intentionally left blank.
APPENDIX K

HEALTH AND SAFETY PLAN
FOR THE C TANK FARM

I. TANK FARM DESCRIPTION

A. DESCRIPTION

The C farm contains 12 single-shell tanks, numbered 241-C-101 through -112, with a capacity of 1,892,706 L (500,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. Also present are four smaller tanks, numbered 241-C-201 through -204, with volumes of 208,198 L (55,000 gal) each. Tanks 241-C-108, -109, -111, and -112 are on the Ferrocyanide Watch List and therefore have a possible, although unlikely, hydrogen cyanide (HCN) occupational exposure potential. Ferrocyanide serves as a scavenger of radiocesium and other soluble radionuclides and as such was added to tanks to reduce the volume of radioactively contaminated liquids in the tanks. In the presence of oxidizing agents such as nitrates/nitrites and high temperatures (> 285°C), ferrocyanides have the potential to explode. Additionally, under special conditions such as high radiation and pH < 10.5, ferrocyanide may be converted to HCN. Other tanks cascade with the four Ferrocyanide Watch List tanks and therefore also have a possible, but even less likely, HCN exposure potential. Tanks 241-C-102 and -103 have been placed on the Organic Watch List and also have been restricted because of a common breather arrangement. Tank 241-C-106 is included on the High-Heat Watch List.

Passive ventilation is used on all tanks in C farm except for High-Heat Watch List tanks 241-C-105 and -106 which have active ventilation.

All C farm tanks contain high-level radioactive waste and various chemical constituents. In addition to the tanks, a double-contained receiver tank (241-C-244) is present in C farm, serving the farm for saltwell pumping activities. The C farm is classified as a surface contamination area (SCA) (radiological contamination).

Tank 241-C-110 may be leaking and therefore poses a hazard for any subsurface activities because of radiological and chemical agents. Controlled areas are established for both radiological and chemical hazards.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-822) and adjacent gate located at the southwest corner of C farm along 7th Street. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.

C. WIND INDICATION

Wind socks located at the southwest and northeast corners of C farm indicate wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-0132
Shift manager: 373-2689
Site safety representative or officer: TWRS Industrial Hygiene and Safety: 372-3242
East Area TWRS IH&S satellite office: 373-7200
Health Physics supervisor: 373-2973
Emergency point-of-contact: Call shift manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASp), Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by Industrial Hygiene Services.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Ferrocyanide Watch List tanks include 241-C-108, -109, -111 and -112. The possible, but as yet unconfirmed hazard, is exposure to HCN gas. To date, no detectable HCN exposures or area concentrations have been found. Removal of the HCN controls is under consideration. Nevertheless, exposure control requirements to protect against possible exposures are currently in place.

2. Vapor/Gas

Venting of various vapors/gases to the atmosphere from sources other than the breather filter on tanks 241-C-102 and -103 has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are normally localized to the proximity of the breather filter vent. Tank 241-C-102 and -103 are venting vapor/gas at locations (pits) adjacent to the filters. Controls around vapor/gas sources include:

- Vapor/gas venting from breather filters and other locations around 241-C-102 and -103 make it necessary to use supplied air and barricades when working on these tanks.

- Vapor/gas venting within the farm makes OVM/NH₃ monitoring a requirement in 241-C-101, C-104, C-105, C-106. If monitoring is not available, supplied air must be used.

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.
3. High Heat

High-heat emitting tank 241-C-106 has heat loading >40,000 Btu/hour. High-heat tanks have the potential to release high-level nuclear waste because of the overheating and structural degradation of the waste tank concrete. Tank 241-C-106 requires more than active ventilation to keep the temperature below the 148.9 °C (300 °F) limit. Water is added periodically to maintain a liquid cover (supernate) over the sludge for enhanced thermal conductivity and evaporative cooling.

4. High-Level Radioactive Waste

All C farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

5. Surface Contamination

The entire C farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radioactive Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present in C tank farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on C farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.
3. Confined Spaces

A listing of confined spaces for C Tank Farm can be found in Table K-1 of this appendix. See Section 10.0 of HASP.

4. Asbestos

Warning signs at C farm alert workers that asbestos materials are present. Asbestos can be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permit(s) developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to C farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on all C farm tanks. These tasks must be conducted in accordance with the Tank Farm HASP, Section 2.9, "Safe Work Practice."
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for C tank farm are shown on Figure K-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

Supplied air is a requirement for the interior exclusion zone comprised of tanks 241-C-102 and -103.

In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 6.1 m (20 ft) into the tank farm (see Figure K-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff personal protective equipment (PPE), scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at C farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.
4. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and also the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to C tank farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 East Area shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

No specific communications or buddy system requirements have been identified for C farm beyond those specified in the Tank Farm HASP, Section 8.0. Any task-based requirements will be shown on task-based permits or work packages.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in C farm:

- Level D PPE is required inside the C farm fenceline to the barricaded sections around specific tanks (not included as part of the exclusion zone). Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves must be taped to coveralls to seal seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.

- Level B PPE is required inside interior barricaded areas, at tanks 241-C-102 and C-103. All other tanks in C farm require central OVM/NH, monitoring. Level B PPE consists of the same protective clothing/equipment as Level D, plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.
PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

For specific tasks, PPE requirements are to be listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the contamination reduction zone (CRZ)/CRC, inside the fenceline or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into the interior barricaded areas around C farm tanks, OVM/NH₃ monitoring or supplied-air respiratory protection is required. In addition to general area monitoring within the barricades, OVM/NH₃ monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources unless supplied air is being worn.

For any containment breach on C farm tanks, OVM/NH₃ monitoring is required even though supplied-air respirators must be used. In addition to other area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

Before entry and possibly periodically or continuously during entry into confined spaces, sampling is conducted for oxygen, explosivity, organic vapors, ammonia, HCN, and other hazards specified on work permits. See confined space entry permit for requirements.

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.
No permanent area monitors are in place for vapors/gases. There are five area radiation detectors in C farm. The nearest continuous air monitor for airborne radiological monitoring is located at the southeast fenceline of C farm.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. DECONTAMINATION PROCEDURES

Currently at C farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

VIII. EMERGENCY RESPONSE

This section summarizes emergency information specific to C farm. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992) and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the C farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-C receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 271-CR Building
- The 244-C vessel vent exhausted
- Air sampling and stack monitor
- Instrument process air.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the *Tank Farm HASP*, Section 9.0. Should evacuation of C farm be required, personnel should assemble either at the 200 East Area Tank Farm staging area, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT C FARM

The C Tank Farm Fire Plan is posted on the wall of the change trailer.

The following equipment is available:

- First aid and bloodborne pathogens kits
- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of the change trailer)
- Wind sock (located just outside the change trailer)
- Two self-contained breathing apparatuses (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
Table K-1. East Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-C</td>
<td>102-C</td>
<td>Active</td>
<td></td>
<td>Saltwell</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td>P</td>
<td>Fixed ladder/8 ft x 4 ft dia. opening</td>
</tr>
<tr>
<td></td>
<td>103-C</td>
<td></td>
<td></td>
<td>pump pit</td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>107-C</td>
<td>Active</td>
<td></td>
<td>Saltwell</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110-C</td>
<td></td>
<td></td>
<td>pump pit</td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>112-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>107-C</td>
<td>Active</td>
<td>Heater/water</td>
<td>LLW-A</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>Fixed ladder/W of 107-C saltwell pump pit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td>6 ft x 5 ft dia. opening/note: change label</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td>(reads: 241-AN service pit)</td>
</tr>
<tr>
<td>241-C</td>
<td>107-C</td>
<td>Active</td>
<td>Heater/water</td>
<td>LLW-B</td>
<td>Metal cover</td>
<td>Y</td>
<td>Hinged lid</td>
<td>P</td>
<td>Fixed ladder/W of 107-C saltwell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td>pump pit/8 ft x 4 ft dia. opening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>CR Vault</td>
<td>Active</td>
<td>Receiver tanks</td>
<td>Cover block/metal cover</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td>HI radiation safety concerns/SW end behind</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td>271 CR control bldg.</td>
</tr>
<tr>
<td>241-C</td>
<td>Active</td>
<td></td>
<td>Exhauster</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td>South of CR vaults</td>
</tr>
<tr>
<td></td>
<td>filter pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>Active</td>
<td></td>
<td>Old filter pit</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td>10 ft E of new filter pit</td>
</tr>
<tr>
<td>241-C</td>
<td>Active</td>
<td></td>
<td>Exhauster</td>
<td>Metal cover</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td>18 ft S of old filter pit</td>
</tr>
<tr>
<td></td>
<td>filter pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>Active</td>
<td></td>
<td>Valve pit</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td>ID as 241-C West of 103-C</td>
</tr>
<tr>
<td>241-C</td>
<td>106-C</td>
<td>Active</td>
<td>Pump pit</td>
<td>Cover block</td>
<td>N</td>
<td></td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. ZAK</td>
<td></td>
</tr>
<tr>
<td>241-C</td>
<td>Active</td>
<td></td>
<td>105/106</td>
<td>Metal cover</td>
<td>Y</td>
<td></td>
<td></td>
<td>P</td>
<td>5.5 ft x 4 ft dia. opening</td>
</tr>
<tr>
<td></td>
<td>exhauster pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F. Zak</td>
<td></td>
</tr>
</tbody>
</table>

Note: ID No. 241-AN service pit is incorrectly labeled as 241-C service pit.

Location ID No. + Active/Inactive: 208x150 + 210x390 + 'P' + 'F.' + 'Zak'
K-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/14/95
DATE OF REPORT: 3/8/95
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 241-C
IS AND IH REPRESENTATIVES: FRED ZAK/Roger Mitchell
OTHER EMPLOYEES: Del Spaulding

LOCATION/ROOM/AREA

<table>
<thead>
<tr>
<th>LOCATION/ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG TRLR</td>
<td>HAZCOM: obsolete HASP/SWP</td>
<td>Provide HASP/SWP</td>
<td>Y</td>
<td>.1200</td>
<td>Allb</td>
<td>2A</td>
</tr>
<tr>
<td>C-105</td>
<td>Tripping: cable and trash accumulated</td>
<td>Housekeeping/remote and dispose</td>
<td>Y</td>
<td>.22</td>
<td>Bilz</td>
<td>4B</td>
</tr>
<tr>
<td>C-Vault</td>
<td>Improperly stored scaffolding</td>
<td>Housekeeping/remote and store</td>
<td>Y</td>
<td>.28</td>
<td>Bilz</td>
<td>3B</td>
</tr>
<tr>
<td>Portable exhaustor</td>
<td>Deteriorating asbestos from outdoor storage</td>
<td>Asbestos abatement or dispose</td>
<td>Y</td>
<td>.1001</td>
<td>Alld</td>
<td>2C</td>
</tr>
<tr>
<td>CBHC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX L

HEALTH AND SAFETY PLAN
FOR THE S TANK FARM
This page intentionally left blank.
APPENDIX L
HEALTH AND SAFETY PLAN
FOR THE S TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The S farm contains 12 single-shell tanks with a capacity of 2,839,059 L (750,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. The tanks are numbered 241-S-101 through -112. The S farm was built from 1950 to 1951 and the tanks are similar to the original design but are deeper. Tanks 241-S-101 and -104 are interim stabilized. The S Tank Farm originally received salt waste and first-cycle condensate from the Reduction Oxidation (REDOX) plant. They also received 242-S evaporator waste.

Tanks 241-S-102, -111, and -112 are on the Hydrogen/Flammable Gas Watch List because of their potential to contain concentrations of flammable gases that exceed the lower flammability limit. These tanks have a possible, although unlikely, explosive potential. The gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential for explosion, extreme caution must be exercised to avoid any ignition source near the tanks.

241-S-102 has been shown to be a source of organic vapor/ammonia venting to the atmosphere. This tank vents vapor/gas from breather filter and has a confirmed vapor exposure hazard from organics and/or ammonia and possibly other gases/vapors.

Passive ventilation is used on all tanks in the S farm.

All S farm tanks contain high-level radioactive waste and various chemical constituents. The chemical contents include but are not limited to nitrates, nitrites, ammonium fluoride, potassium permanganate, sodium carbonate, acid gases, phosphates, organics, and ammonia. A tank waste characterization program has been developed to provide a more comprehensive evaluation of the tank contents. The S farm is classified as a surface contamination area (SCA) and Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA).

Tank 241-S-104 tank may be leaking and therefore poses a hazard for any subsurface activities because of radiological and chemical agents. Controlled areas are established for both radiological and chemical hazards.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the Shift Managers Office and vehicle gate located at the southwest side of SX farm. Personnel enter and exit the farm through the SX or SY Change Trailers.

C. WIND INDICATION

A wind sock, located at the west edge of S farm, indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Shift manager: 373-3475
Site Safety representative or officer: TWRS IH&S: 372-3242
West Area TWRS-IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1365 (back shifts use radio)
Emergency point-of-contact: Call shift manager and 911
DACs trailer (SY farm): 373-4850/4250/2630

B. KEY RESPONSIBILITIES

For detailed responsibilities, see Section 1.0 of the HASP. Key responsibilities include:

- Site access controlled by the shift manager
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Hydrogen/Flammable Gas

Hydrogen/Flammable Gas Watch List tanks include 241-S-102, -111, and -112. Explosive potential exists and all safe work practices must be followed.

2. Vapor/Gas

Venting to the atmosphere of various vapors/gases from the breather filter on tank 241-S-102 has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the proximity of the breather filter vent. Controls around breather filter sources include the use of Level B PPE (supplied-air respirator) for any containment breaches.

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

3. High-Level Radioactive Waste

All S farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

4. Surface Contamination

The entire S tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and an RBA/URMA. Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the
ALARA (as low as reasonably achievable) Management Worksheets.
Reference the current Radiation Maps posted in the Change Trailers.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on S farm. There is a high-noise source on the south side of 242-S. The heating, ventilation, and air-conditioning system runs at 89.4 dB. Hearing protection is required working around this source and should be specified in work packages or permits to control intermittent noise sources. This is also required for any equipment brought into the farm that may generate a high-noise environment.

2. Chemicals

No specific chemicals are used on S farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

Table L-1 lists confined spaces for S farm. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and also the Tank Farm HASP, Section 10.0, for more information.

4. Asbestos

Warning signs at S farm alert workers that asbestos materials are present. Asbestos can be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.
5. Lighting

The illumination of the farm in the evening and night shifts has been determined to be well below the recommended levels. Adequate lighting shall be provided to workers when working in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process. Tasks having additional task-based hazard controls specific to S tank farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tank 241-S-102 must be conducted with Level B PPE (supplied-air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for S farm are shown on Figure L-1 and are listed below.

1. Perimeter Exclusion Zones

A perimeter fenceline has been established and serves as a boundary for both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual areas of high radiation. They include two separately barricaded areas (plywood enclosures) in the "center" of the S farm. These area are easily identified and entered only with an appropriate work package.
3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of a corridor along the north and west edges of the SY farm and an area immediately in front of the SX vehicle gate. In the S farm, there is another area which has been designated a satellite accumulation area and used only for the accumulation of waste. There is a gate associated with this area designated for use with a forklift. The personnel line is through the SY farm RBA/URMA and the SY or SX Change Trailers where personal protective equipment (PPE) can be donned and doffed. The necessary scanning for radiological contamination and any necessary decontamination is performed at an approved decontamination station. The vehicle/equipment line is through the SX vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and may be decontaminated, if necessary.

Currently at S farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the contamination reduction corridor (CRC) and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the SY or SX Change Trailers outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 West Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to S farm is to occur only through the contamination reduction zone (CRZ)/CRC (SY or SX Change Trailer and the SX vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

No specific communications or buddy system requirements have been identified for S farm beyond those specified in the Tank Farm HASP, Section 8.0. Any additional requirements are included in task-based permits or work packages.
V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Vapors have been detected leaking from tanks in C farm. Those areas which have a potential for vapor accumulation should be approached with caution. This would include greenhouses, and other structures such as cabinets located over or near to tank risers. The vapor releases are infrequent and of such a low level that respiratory protection and monitoring are not required.

Personnel are recommended to approach any areas that require opening as though accumulated vapors are present, and to ventilate before entry.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D protective clothing. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For any containment breach on tanks, see the Tank Farm HASP, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)
No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located north of the S and SY farms and east of the SX farm.

Any task-based monitoring requirements in addition to those specified above are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table L-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at S farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for S farm. For additional information regarding emergency response, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the S farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-S receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 244-S building
- The 244-S vessel vent exhauster
Air sampling and stack monitor

Instrument process air.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of S farm be required, personnel should assemble either at the 242-S building on the north side of S farm at the SX change trailer, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT S FARM

The S Tank Farm Fire Plan is posted on the wall of the change rooms.

The following equipment is available:

- First Aid Kit and Bloodborne Pathogen kit (located on the wall near the main entrance of the change trailer)
- Wind sock (located on the west side of S farm)
- Panic button and fire alarm (located just outside 242-S Control Room; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparati (located in the change room)
- Ladder
- Protective clothing (available in the change room)
- Radiological monitoring equipment (located in the change room)

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>101-01A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>101</td>
<td>Inactive, PI, weather covered</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-21787, H-2-73181</td>
</tr>
<tr>
<td>241-S</td>
<td>101</td>
<td>Inactive, PI, weather covered</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>101-01B</td>
<td></td>
<td>Saltwell pump pit</td>
<td></td>
<td>Y</td>
<td>Hinged cover</td>
<td>Permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>east of 101-S</td>
<td>Cut, capped & filled</td>
<td>Caisson</td>
<td>8 ft dia</td>
<td>None</td>
<td>Y</td>
<td>None</td>
<td>NA</td>
<td>Cut 12 in. below grade filled w/rock</td>
</tr>
<tr>
<td>241-S</td>
<td>102-02A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>7 ft, 6 in. SQ x 7.71 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List</td>
</tr>
<tr>
<td>241-S</td>
<td>102-02B</td>
<td>Inactive, PI</td>
<td>Distributor pit</td>
<td>6 ft W x 7 ft L x 5.75 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-46521</td>
</tr>
<tr>
<td>241-S</td>
<td>101-02B</td>
<td>Inactive</td>
<td>Saltwell pump pit</td>
<td>6-ft dia</td>
<td></td>
<td></td>
<td>Hinged cover</td>
<td>Permit</td>
<td>H-2-46149</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-S</td>
<td>102</td>
<td>Inactive, PI</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>102</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>N. of 102-S</td>
<td>Inactive</td>
<td>Flush pit</td>
<td>4 ft dia x 5 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Filled w/rock</td>
</tr>
<tr>
<td>241-S</td>
<td>NW of 102-S</td>
<td>Inactive</td>
<td>Caisson & steam trap</td>
<td>4 ft dia x 5 ft deep</td>
<td>Aluminum plate 4 ft, 4 in. x 3/16 in. deep</td>
<td>Y</td>
<td>Permit</td>
<td>H-2-46194</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>SW of 102-S</td>
<td>Inactive</td>
<td>Utility station</td>
<td>4 ft dia x 5 ft deep</td>
<td>Aluminum plate 4 ft, 4 in. x 3/16 in. deep</td>
<td>Y</td>
<td>Permit</td>
<td>H-2-46194</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>103-03A</td>
<td>Inactive, PI</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>103</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-S</td>
<td>101-03B</td>
<td>Inactive</td>
<td>Saltwell pump pit</td>
<td>6 ft dia</td>
<td>N</td>
<td>Hinged cover</td>
<td>Permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>104-04A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Saltwell pump pit</td>
<td>6 ft dia</td>
<td>N</td>
<td>Hinged cover</td>
<td>Permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>104</td>
<td>Inactive, IS/II, weather covered</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>104</td>
<td>Inactive, IS/II, weather covered</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>105-05A</td>
<td>Inactive, IS/II</td>
<td>Saltwell pump pit, weather covered</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>N</td>
<td>Hinged cover?</td>
<td>Permit</td>
<td></td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>105</td>
<td>Inactive, IS/II</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>105</td>
<td>Inactive, IS/II</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia. pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>106-06A</td>
<td>Inactive, PI, weather covered</td>
<td>Saltwell pump pit</td>
<td>14 ft W x 8 ft L x 4.7 ft deep</td>
<td></td>
<td>N</td>
<td>Hinged cover?</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>106</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia. pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>107-07A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 6 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>107</td>
<td>Inactive, PI</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia. pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>107</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia. pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>108-08A</td>
<td>Inactive, PI</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>108</td>
<td>Inactive, PI</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° bend, −12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>108</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, −12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>NW of 108-S</td>
<td>Inactive</td>
<td>Caisson and steam trap</td>
<td>4 ft dia x 5 ft deep</td>
<td>Aluminum plate 4 ft, 4 in. x 3/16 in. deep</td>
<td>N</td>
<td></td>
<td></td>
<td>H-2-46194</td>
</tr>
<tr>
<td>241-S</td>
<td>S of 109-S</td>
<td>Inactive</td>
<td>Utility station</td>
<td>4 ft dia x 5 ft deep</td>
<td>Aluminum plate 4 ft, 4 in. x 3/16 in. deep</td>
<td>N</td>
<td></td>
<td></td>
<td>H-2-46194</td>
</tr>
<tr>
<td>241-S</td>
<td>109-09A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>109</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, −12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>110-10A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>110</td>
<td>Inactive, PI</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>110</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>SW of 110-S</td>
<td>Inactive</td>
<td>Meter pit</td>
<td>Manhole?</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>None</td>
<td>Filled with sand</td>
</tr>
<tr>
<td>241-S</td>
<td>SW of 110-S</td>
<td>Inactive, cut & cap</td>
<td>Utility station</td>
<td>4 ft dia. x 5 in. deep</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>None</td>
<td>Hydrogen Watch List, H-2-3403, H-2-46148</td>
</tr>
<tr>
<td>241-S</td>
<td>111-11A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>111</td>
<td>Inactive, PI</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-1787</td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space Contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Type of cover</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>111</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td></td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-1787</td>
</tr>
<tr>
<td>241-S</td>
<td>112-12A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>14 ft W x 8 ft L x 5 ft, 9 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
</tr>
<tr>
<td>241-S</td>
<td>112</td>
<td>Inactive, PI</td>
<td>South condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 12 ft deep open into a 2-ft dia pipe with 90° Bend, ~12 ft L, open to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
</tr>
<tr>
<td>241-S</td>
<td>151</td>
<td>Diversion box, nozzle pit</td>
<td>6 ft W x 41 ft L x 17.25 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-5350, H-2-5330, H-2-2338-25</td>
</tr>
<tr>
<td>241-S</td>
<td>151</td>
<td>Diversion box, jumper storage</td>
<td>6 ft W x 9 ft, 10.5 in. L x 17.25 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-5350, H-2-5330, H-2-2338-25</td>
</tr>
<tr>
<td>241-S</td>
<td>151</td>
<td>Active</td>
<td>Diversion box, pipe pit</td>
<td>12 ft, 2 in. W x 42 ft, 4 in. L x 9.75 in. deep</td>
<td>None, underground</td>
<td>N</td>
<td>None</td>
<td>NA</td>
</tr>
<tr>
<td>241-S</td>
<td>304</td>
<td>Active</td>
<td>tank/annulus</td>
<td>16 ft dia x D</td>
<td>Y</td>
<td>Ladder</td>
<td>Permit</td>
<td>H-2-46151</td>
</tr>
<tr>
<td>241-S</td>
<td>304</td>
<td>Active</td>
<td>Pump pit</td>
<td>10 ft, 10 in. SQ. x 8 ft, 9 in. deep</td>
<td>Cover blocks</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>S-302-A</td>
<td>Isolated</td>
<td>Catch tank</td>
<td>9 ft dia. x 39 ft, 9.5 in. L</td>
<td>Access Pit 5 ft dia x 5 ft, 3 in. deep</td>
<td>N</td>
<td>Ladder</td>
<td>Permit H-2-2338-50, H-2-71664, H-2-1796</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>301-A</td>
<td>Inactive, abandoned</td>
<td>Catch tank</td>
<td>20 ft dia x 15 ft deep</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-1795</td>
</tr>
<tr>
<td>241-S</td>
<td>302-B</td>
<td>Inactive</td>
<td>Catch tank</td>
<td>9 ft dia x 33 ft L</td>
<td>None</td>
<td>N</td>
<td>No access pit</td>
<td>NA</td>
<td>H-2-1820, NE of 101-S, drains encasement</td>
</tr>
<tr>
<td>241-S</td>
<td>152</td>
<td></td>
<td>Diversion box</td>
<td>6 ft W x 8 ft L x .7 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit H-2-37318, H-2-2338-62</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>A</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>A</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~4 ft deep</td>
<td>Hinged cover</td>
<td>N</td>
<td>Permit</td>
<td>H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>B</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>B</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~4 ft deep</td>
<td>Hinged cover</td>
<td>Y</td>
<td>Permit</td>
<td>H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>C</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>C</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~4 ft deep</td>
<td>Hinged cover</td>
<td>Y</td>
<td>Permit</td>
<td>H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>D</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td>D</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~4 ft deep</td>
<td>Hinged cover</td>
<td>Y</td>
<td>Permit</td>
<td>H-2-46151</td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td></td>
<td>Service pit</td>
<td></td>
<td></td>
<td>Hinged cover</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-S</td>
<td></td>
<td>Service pit east of 241-S</td>
<td></td>
<td></td>
<td>Hinged cover</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table L-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-S</td>
<td>702</td>
<td>Active</td>
<td>Turbine pipe/equip. pit</td>
<td>2.5 ft W x 5 ft, 6 in. L x 5 ft deep</td>
<td>Grating</td>
<td>Y</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46268</td>
</tr>
<tr>
<td>241-S</td>
<td>244-S</td>
<td>Active</td>
<td>DCRT, pump pit</td>
<td>20 ft SQ X 11 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46151</td>
</tr>
<tr>
<td>241-S</td>
<td>244-S</td>
<td>Active</td>
<td>DCRT, flush pit</td>
<td>5 ft dia x 7 ft deep</td>
<td>Metal grateing</td>
<td>Y</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46151</td>
</tr>
<tr>
<td>241-S</td>
<td>244-S</td>
<td>Active</td>
<td>DCRT, tank vault (annulus)</td>
<td>Caisson 20 ft dia x ~21 ft, 3 in. deep</td>
<td>Coverblocks to first level, metal grate to lower level</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46151</td>
</tr>
<tr>
<td>244-S</td>
<td>244-S</td>
<td>Active</td>
<td>Filter pit</td>
<td>11 ft SQ x 11 ft deep</td>
<td>Coverblock(s)</td>
<td>Y</td>
<td>Ladder</td>
<td>Permit</td>
<td>H-2-46151</td>
</tr>
</tbody>
</table>

Notes:

PI = Partially Interim Isolated
II = Interim Isolated
IS = Interim Stabilized—valve boxes on individual tanks are 18 in. x 22 in. x 40 in. D H-2-1788
Table L-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/12/95
DATE OF REPORT: 3/2/95
IS AND IH REPRESENTATIVES: MATTHEW E. NOLEN, GARY D. MICKLE, DAVID CARLS
ASSESSMENT NUMBER:
AREA: 200W
FACILITY: S
OTHER EMPLOYEES: INEX AUSTIN

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2712/2711 Bldg.</td>
<td>Wires of unknown type enter ground.</td>
<td>Determine type of signal/current. Remove if not needed.</td>
<td>Y</td>
<td>1910.303</td>
<td>Alib</td>
<td>3C</td>
</tr>
<tr>
<td>Exhauster (Boarded up)</td>
<td>Old exhauster is boarded up without any type of hazard notification posted.</td>
<td>Post appropriate hazard signs.</td>
<td>Y</td>
<td>.1200</td>
<td>Alib</td>
<td>4D</td>
</tr>
<tr>
<td>90 Day Pad</td>
<td>Emergency Equipment: Spill Control Station not secured off of the ground.</td>
<td>Secure unit off of the ground.</td>
<td>Y</td>
<td>.120</td>
<td>Alli</td>
<td>2C</td>
</tr>
<tr>
<td></td>
<td>Evening Illumination: The illumination of the farm falls between 0.1 to .9 ft candles. (1 to 9 LUX)</td>
<td>Provide workers with illumination when actions must be performed in low light situations.</td>
<td>Y</td>
<td>.120(m)</td>
<td>Blq</td>
<td>3B</td>
</tr>
</tbody>
</table>
APPENDIX M

HEALTH AND SAFETY PLAN
FOR THE SX TANK FARM
This page intentionally left blank.
APPENDIX M

HEALTH AND SAFETY PLAN
FOR THE SX TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The SX farm consists of 15 single shell-tanks with a capacity of 3,785,412 L (1,000,000 gal) each. The tanks are numbered 241-SX-101 through -115. The tanks are ventilated through an underground duct header that connects tanks 241-SX-101 to -106 to -109. Above-ground ducts connect tanks 241-SX-107 to -112 and tank 241-SX-114 to the exhausted unit (296-S-15). Tanks 241-SX-113 and -115 have passive ventilation.

Tanks 241-SX-101, -102, -103, -104, -105, -106, and -109 are on the Hydrogen/Flammable Gas Watch List because of their potential to contain concentrations of flammable gases that exceed the lower flammability limit. These tanks have a possible, although unlikely, explosive potential. The gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential for explosion, extreme caution must be exercised to avoid any ignition source near the tanks.

Tank 241-SX-106 is on the organic watch list. This tank vents vapor/gas to the atmosphere from its breather filter and has a confirmed vapor exposure hazard from organics and/or ammonia and possibly other gases/vapors.

All SX farm tanks contain high-level radioactive waste and various chemical constituents. Other materials may be defined by the waste characterization program. The SX tank farm is classified as a surface contamination area (SCA) (radiological contamination).

Various SX farm tanks may be leaking and therefore pose a hazard for any subsurface activities as a result of radiological and chemical agents.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-819) and adjacent gate located on the west side of SX farm along Cooper Avenue. Personnel enter and exit the farm through the SX or SY support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate along Cooper Avenue adjacent to the trailer.

C. WIND INDICATION

Wind socks are located near the south end of SX farm on the east and west fenceline and also near the north end of SX farm on the west fenceline. These wind socks indicate wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-3475
Shift supervisor: 373-3475
Site safety representative or officer: TWRS IH&S at 372-3242
West Area TWRS IH&S Satellite Office: 327-1779
Health Physics supervisor: 373-2557
Emergency point-of-contact: Call shift supervisor and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm HASP, Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by Industrial Hygiene Field Services (IHFS)
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. High-Level Radioactive Waste

All SX tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

2. Surface Contamination

The entire SX farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Work sheets.

3. Organic Waste and Oxidizing Agents

Tank 241-SX-106 is on the Organic Watch List because of the relative high concentration of organic waste and oxidizing agents present in the tank. Under the appropriate conditions, the organic waste materials and oxidizing agents (e.g. sodium nitrate and sodium nitrite) may result in a potentially hazardous exothermic reaction.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present at SX farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.
2. Chemicals

No specific chemicals are used at SX farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the *Tank Farm HASP*, Section 2.0.

3. Confined Spaces

Table M-1 lists confined spaces for SX farm. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and also the *Tank Farm HASP*, Section 10.0, for more information.

4. Asbestos

Warning signs at SX farm alert workers that asbestos materials are present. Asbestos can be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm in the evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations must be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to SX farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tanks 241-SX-113 and -115. These tasks must be conducted with Level B personal protective equipment (PPE) (supplied-
air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for SX tank farm are shown on Figure M-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.2 m (40 ft) into the tank farm (see Figure M-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at SX farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.
This map is to be used for reference purposes only.

Westinghouse Hanford Company

Title: 241-S Tank Farm Complex

Customer: 241SCOMP

Date: 2-02-95

Drawn by: NICK BARILO

APVD by: ____________________________

Personnel monitoring or respiratory protection zone.

241-S Area

SWP-REV 13
3. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 West Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to SX farm is to occur only thorough the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area Tank Farm shift manager.

C. COMMUNICATIONS/BUDDY SYSTEM

No specific communications or buddy system requirements have been identified for SX farm beyond those specified in the Tank Farm HASP, Section 8.0. Any additional requirements are included in task-based permits or work packages.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. PERIMETER EXCLUSION ZONE

Level D PPE is required inside the perimeter fenceline. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe cover, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as head cover, double coveralls, hard hat, or safety glasses.

Required Level B PPE is specified within a 3-m (10 ft) radius of breach of containment when intrusive work (work within the tank dome that penetrates into the waste) is being performed. Level B PPE is also specified when a containment breach is performed on a nonventilated tank (i.e., tanks 241-SX-113 and -115). Level B PPE is not required for containment breaches on ventilated tanks when the work is considered nonintrusive. Level B PPE consists of the same protective clothing/equipment as Level D described above plus head cover and supplied-air respiratory protection with a 5-minute escape bottle.
PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE.

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For any containment breach on any SX tank, organic vapor meter (OVM) monitoring is required even though supplied-air respirators may also be required. In addition to other area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on any SX tanks, see the Tank Farm HASP, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing all SX tank containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. Continuous air monitors and samplers monitor the ventilation system.
Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table M-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at SX farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for SX farm. For additional information regarding emergency response issues, consult the Tank Farm Facility building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats.

In the event of loss of power to SX farm, a red light and horn will be activated in the 200 West Area Powerhouse.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of SX farm be required, personnel should assemble at the 242-S staging area 61 m (200 ft) west of the 242-S main entrance.
B. EMERGENCY EQUIPMENT AVAILABLE AT SX FARM

The SX Tank Farm Fire Plan is posted on the wall of the change trailer. The following equipment is available:

- Panic button and fire alarm (located just outside the SX farm gate on the southeast corner of 2707-SX)
- Two self-contained breathing apparati (located in the change trailer)
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).
- First Aid and Bloodborne Pathogen Kits

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between 241-SX and S Service pit</td>
<td>241-SX 701</td>
<td>Inactive</td>
<td>Compressor house, condensate pit</td>
<td>3 ft W x 4 ft, 8 in. L x 5 ft deep</td>
<td>Wooden cover</td>
<td>Y</td>
<td>Ladder</td>
<td>Non-Permit</td>
<td>H-2-39955</td>
</tr>
<tr>
<td>South of 2707-SX</td>
<td>TK-2901-SX-1</td>
<td>Inactive</td>
<td>Water service pit/steam trap</td>
<td>5 ft dia x 5 ft deep</td>
<td>Manhole cover</td>
<td>y</td>
<td>Fixed ladder</td>
<td>Permit</td>
<td>ENE of 241-SX, H-2-93618, H-2-46192</td>
</tr>
<tr>
<td>South of 2707-SX</td>
<td>TK-2901-SX-2</td>
<td>Inactive</td>
<td>Emergency water tanks</td>
<td>24 ft H x 30 ft dia</td>
<td>Manhole w/ cover at top of ladder</td>
<td>Y</td>
<td>Fixed ladder</td>
<td>Permit</td>
<td>H-2-39930, H-2-39934</td>
</tr>
<tr>
<td>241-SX 101-01A</td>
<td>Inactive, Pl, weather covered</td>
<td>West pump pit (saltwell pump pit)</td>
<td>7 ft W x 12 ft, 3 in. L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, P, RW, P, H-2-46248</td>
<td></td>
</tr>
<tr>
<td>241-SX 101</td>
<td>Inactive, Pl, weather covered</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-39514, H-2-70609</td>
<td></td>
</tr>
<tr>
<td>241-SX 101</td>
<td>Inactive, Pl, Self concentrator</td>
<td>Water service pit, Northwest of 101-SX</td>
<td>8 ft W x 8 ft L Pad Only</td>
<td>None</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
<td>Hydrogen Watch List, H-2-39599</td>
<td></td>
</tr>
<tr>
<td>241-SX Utility Station</td>
<td>Inactive</td>
<td>Water service pit, Northwest of 101-SX</td>
<td>4 ft dia x 6 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Ladder</td>
<td>Permit</td>
<td>H-2-46242, H-2-46194</td>
<td></td>
</tr>
</tbody>
</table>
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>102-02A</td>
<td>Inactive, PI, weather covered</td>
<td>East pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>102-02B</td>
<td>Inactive, PI, weather covered</td>
<td>West pump pit (saltwell pump pit)</td>
<td>12 ft, 3 in. W x 7 ft L x 7.5 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, P, RW, P, H-2-46248, H-2-46150</td>
</tr>
<tr>
<td>241-SX</td>
<td>102</td>
<td>Inactive, PI, weather covered</td>
<td>North condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L, Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514, Hydrogen Watch List</td>
</tr>
<tr>
<td>241-SX</td>
<td>Flush pit, between 102 and 103</td>
<td>Inactive</td>
<td>Water flush pit/caisson and trap assy.</td>
<td>4 ft dia x 4 ft deep</td>
<td>Hinged lid</td>
<td>N</td>
<td>None</td>
<td>Non-Permit</td>
<td>H-2-46188/89</td>
</tr>
<tr>
<td>241-SX</td>
<td>103-03A</td>
<td>Inactive, PI, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>103-03B</td>
<td>Inactive</td>
<td>Saltwell pump pit</td>
<td>12 ft, 3 in. W x 7 ft L x 5.2 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46248, H-2-46150</td>
</tr>
<tr>
<td>241-SX</td>
<td>103</td>
<td>Inactive, PI,</td>
<td>Distributor pit</td>
<td>5 ft, 8 in. W x 6 ft, 6 in. L x 8 ft, 1 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>241-SX</td>
<td>103</td>
<td>Inactive, PI, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ -18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514, Hydrogen Watch List</td>
</tr>
<tr>
<td>241-SX</td>
<td>Utility Station SE. of 103-SX</td>
<td>Inactive</td>
<td>Water service pit</td>
<td>4 ft dia x 6 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Ladder</td>
<td>Non- Permit</td>
<td>H-2-46242, H-2-46194</td>
</tr>
<tr>
<td>241-SX</td>
<td>104-04A</td>
<td>Inactive, PI,</td>
<td>Saltwell pump pit</td>
<td>7 ft W x 12 ft, 3 in. L x 5.2 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-46248, H-2-46150</td>
</tr>
<tr>
<td>241-SX</td>
<td>104</td>
<td>Inactive, PI, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ -18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>105-05A</td>
<td>Inactive, PI,</td>
<td>Sting tank pump pit (saltwell pump pit)</td>
<td>5 ft W x 7 ft L x 7.6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>105-05B</td>
<td>Inactive, PI,</td>
<td>Distributor pit</td>
<td>5 ft, 8 in. W x 5 in. L x 8 ft, 1 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-46150</td>
</tr>
<tr>
<td>241-SX</td>
<td>105</td>
<td>Inactive, PI, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ -18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-39514</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-SX</td>
<td>No. 1</td>
<td>Inactive</td>
<td>Lateral caisson (105/107-SX)</td>
<td>12 ft dia x 66 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Fixed ladder that stops 12 ft from bottom</td>
<td>Permit</td>
<td>Landing platforms made of pipe supports spaced ~22 ft apart</td>
</tr>
<tr>
<td>241-SX</td>
<td>106-06A</td>
<td>Inactive, PI, weather covered</td>
<td>Central pump pit (saltwell pump pit)</td>
<td>7 ft W x 12 ft, 3 in. L x 5.25 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-46248, H-2-46150</td>
</tr>
<tr>
<td>241-SX</td>
<td>106</td>
<td>Inactive, PI, weather covered</td>
<td>Condensate pump pit</td>
<td>4 ft W x 9 ft, 2.5 in. L x 4 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-39588</td>
</tr>
<tr>
<td>241-SX</td>
<td>106</td>
<td>Inactive, PI, weather covered</td>
<td>Condenser pit</td>
<td>5 ft9in. W x 3 ft3in. L x 9 ft deep w/ ~18in. pipe w/90 deg bend halfway 11 ft L direct to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>Hydrogen/High Organic Watch List, H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>NW of 106</td>
<td>Inactive</td>
<td>Filter and stack</td>
<td>7.5 ft W x 7.5 ft L x 10 ft, 9 in. D</td>
<td>Cover block</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39949</td>
</tr>
<tr>
<td>241-SX</td>
<td>106</td>
<td>Inactive</td>
<td>401 Inst. valve pit</td>
<td>5 ft W x 7 ft, 3 in. L x 8 ft, 9 in. deep</td>
<td>Cover blocks</td>
<td>Y</td>
<td>Wooden access hatch</td>
<td>Permit</td>
<td>H-2-39578</td>
</tr>
<tr>
<td>241-SX</td>
<td>106</td>
<td>Inactive</td>
<td>401 Condensate sampler pit</td>
<td>2 ft, 4in. W x 4 ft L x 4 ft deep</td>
<td>Cover block</td>
<td>Y</td>
<td>Wooden access hatch</td>
<td>Non-Permit</td>
<td>H-2-39578</td>
</tr>
<tr>
<td>241-SX</td>
<td>106</td>
<td>Inactive</td>
<td>401 Drywell</td>
<td>28 in. dia x ~10 ft deep</td>
<td>Wooden cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39578</td>
</tr>
<tr>
<td>241-SX</td>
<td>107</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg pit</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>NA</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
</tbody>
</table>
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>107-07B</td>
<td>Inactive, IS/II, weather covered</td>
<td>East pump pit</td>
<td>Pit has been filled with dirt, had dirt floor.</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-3403, H-2-73210</td>
</tr>
<tr>
<td>241-SX</td>
<td>107-07A</td>
<td>Inactive, IS/II, weather covered</td>
<td>West pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 8 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>107</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>108</td>
<td>Inactive, IS/II, weather covered</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>108-08A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>108</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>No. 2</td>
<td>Inactive</td>
<td>Lateral caisson (108/109-SX)</td>
<td>12 ft dia x 66 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Fixed ladder that stops 12 ft from bottom</td>
<td>Permit</td>
<td>Landing platforms made of pipe supports spaced ~22 ft apart</td>
</tr>
<tr>
<td>241-SX</td>
<td>-108</td>
<td>Inactive</td>
<td>Sludge level caisson, SE of tank</td>
<td>10 ft dia x 24 ft deep</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Cut off below grade and filled w/dirt, rocks, H-2-33907, H-2-73211</td>
</tr>
</tbody>
</table>

Location ID No.: ID numbers for each space.

Active/Inactive: Status of the space.

Space contents: Description of the space contents.

Description of CS: Detailed description of the confined space.

Description of personnel entrance: Method of entering the space.

Access: Access type.

Type of access: Type of access required.

Permit/Not permitted: Whether a permit is required.

Comments: Additional comments about the space.
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>109</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Hydrogen Watch List, H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>109-09A</td>
<td>Inactive, IS/II</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft deep</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>Hydrogen Watch List, H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>109</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514, Hydrogen Watch List</td>
</tr>
<tr>
<td>241-SX</td>
<td>110</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>110</td>
<td>Inactive, IS/II</td>
<td>Pump pit</td>
<td>5 ft, W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>110</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-S</td>
<td>Water Meter Box, SW of 110-S</td>
<td></td>
<td>Water meter pit</td>
<td>5 ft dia x ~4 ft deep</td>
<td>Manhole cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-46192</td>
</tr>
<tr>
<td>241-S</td>
<td>Utility Station S of 110-S</td>
<td>Inactive, abandoned</td>
<td>Water service pit</td>
<td>4 ft dia x 6 ft deep</td>
<td>Manhole cover</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Filled with sand, H-2-93618</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-SX</td>
<td>No. 3</td>
<td>Inactive</td>
<td>Lateral caisson</td>
<td>12 ft dia x 66 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Fixed ladder that stops 12 ft from bottom</td>
<td>Permit</td>
<td>Landing platforms made of pipe supports spaced ~22 ft apart</td>
</tr>
<tr>
<td>241-SX</td>
<td>111</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>111-11A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>111</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>112</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>112-12A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>112</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>112</td>
<td>Inactive</td>
<td>Condensate valve pit</td>
<td>7 ft W x 14 ft, 3 in. L x 6 ft, 6 in. deep</td>
<td>Cover blocks over the 5 ft W x 7 ft, 6 in. Opening</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39910</td>
</tr>
</tbody>
</table>

Table M-1. West Tank Farm Confined Spaces.
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>No. 4</td>
<td>Inactive</td>
<td>Lateral caisson (112/114/115-SX)</td>
<td>12 ft dia x 66 ft deep</td>
<td>Manhole cover</td>
<td>Y</td>
<td>Fixed ladder that stops 12 ft from bottom</td>
<td>Permit</td>
<td>Landing platforms made of pipe supports spaced ~22 ft apart</td>
</tr>
<tr>
<td>241-SX</td>
<td>113</td>
<td>Inactive, IS/II, weather covered</td>
<td>Air circulator</td>
<td>42 in. Riser</td>
<td>Cover block(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-SX</td>
<td>113-13A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>113</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>E of 113</td>
<td>Inactive</td>
<td>Caisson</td>
<td>8 ft dia</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Cut off below grade and filled w/dirt, rocks, H-2-73215</td>
</tr>
<tr>
<td>241-SX</td>
<td>W of 113</td>
<td>Inactive</td>
<td>Caisson</td>
<td>8 ft dia</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Cut off below grade and filled w/dirt, rocks, H-2-73215</td>
</tr>
<tr>
<td>241-SX</td>
<td>114</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>114-14A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
</tbody>
</table>
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of cover</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>114</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>W of 114</td>
<td>Inactive</td>
<td>Caisson</td>
<td>10 ft dia??</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Cut off below grade and filled w/dirt, rocks. H-2-33907??</td>
</tr>
<tr>
<td>241-SX</td>
<td>115</td>
<td>Inactive, IS/II</td>
<td>Instrument bldg.</td>
<td>Filled w/concrete</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-39956</td>
</tr>
<tr>
<td>241-SX</td>
<td>115-15A</td>
<td>Inactive, IS/II, weather covered</td>
<td>Pump pit</td>
<td>5 ft W x 6 ft, 6 in. L x 9 ft, 3 in. deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3403</td>
</tr>
<tr>
<td>241-SX</td>
<td>115</td>
<td>Inactive, IS/II, weather covered</td>
<td>Condenser pit</td>
<td>5 ft, 9 in. W x 3 ft, 3 in. L x 9 ft deep w/ ~18 in. Pipe w/90° Bend Halfway 11 ft L Direct to Tank</td>
<td>Hatchway</td>
<td>N</td>
<td>Bolted cover</td>
<td>Permit</td>
<td>H-2-39514</td>
</tr>
<tr>
<td>241-SX</td>
<td>W of 115</td>
<td>Inactive</td>
<td>Caisson</td>
<td>10 ft dia??</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Cut off below grade and filled w/dirt, rocks. H-2-33907??</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-A</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-71639</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-A</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~5 ft deep</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Non Permit</td>
<td>H-2-71639</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-B</td>
<td>Active</td>
<td>Valve pit</td>
<td>10 ft W x 12 ft L x 6 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-71639</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-B</td>
<td>Active</td>
<td>Flush pit</td>
<td>5 ft dia x ~5 ft deep</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Non Permit</td>
<td>H-2-71639</td>
</tr>
</tbody>
</table>
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>241-SX-1 51</td>
<td>Isolated, weather covered</td>
<td>Diversion box, nozzle pit</td>
<td>6 ft W x 52 ft L x 18 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-2338-50, H-2-39446</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-1 51</td>
<td>Isolated, weather covered</td>
<td>Diversion box, jumper storage pit</td>
<td>6 ft W x 12 ft L x 18 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-2338-50, H-2-39446</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-1 51</td>
<td>Isolated, weather covered</td>
<td>Diversion box, pipe pit</td>
<td>39 ft, 6 in. L x 5 ft, 6 in. W x 6 ft, 3 in. deep</td>
<td>None, underground</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>H-2-2338-50, H-2-39546</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-1 52</td>
<td>Isolated, weather covered</td>
<td>Diversion box</td>
<td>10 ft W x 18 ft L x 12 ft deep</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-3404, H-2-2338-53</td>
</tr>
<tr>
<td>241-SX</td>
<td>241-SX-3 04</td>
<td>Isolated</td>
<td>Catch tank (1961)</td>
<td>9 ft dia x 40 ft L</td>
<td>None</td>
<td>N</td>
<td>None</td>
<td>NA</td>
<td>Referenced in 1961 catch tank document, now SD-RE-TI-057</td>
</tr>
<tr>
<td>241-SX</td>
<td>302</td>
<td>Inactive, abandoned</td>
<td>Catch tank (1953)</td>
<td>9 ft dia x 35 ft, Access pit 5 ft dia x 5 ft, 3 in. deep</td>
<td>Hinged cover</td>
<td>Y</td>
<td>Ladder</td>
<td>Permit</td>
<td>H-2-39537, H-2-71653, H-2-2338-53</td>
</tr>
<tr>
<td>241-SX</td>
<td></td>
<td>Pump house</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-SX</td>
<td>SE of 113-SX</td>
<td>Inactive</td>
<td>Caisson</td>
<td>8 ft dia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-SX</td>
<td>401</td>
<td>Inactive</td>
<td>Condenser bldg.</td>
<td>31 ft W x 19 ft L x 24 ft deep</td>
<td>Stairwell and landing</td>
<td>Y</td>
<td>Stairwell</td>
<td>Non Permit</td>
<td>H-2-39580</td>
</tr>
<tr>
<td>241-SX</td>
<td>401</td>
<td>Inactive</td>
<td>Inst. xmr pit</td>
<td>4 ft W x 7 ft, 10 in. L x 7 ft, 4 in. deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39583</td>
</tr>
<tr>
<td>241-SX</td>
<td>401</td>
<td>Inactive</td>
<td>Condensate sampler pit</td>
<td>3 ft W x 3 ft, 8 in. L x 4 ft deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Non- Permit</td>
<td>H-2-39583</td>
</tr>
</tbody>
</table>
Table M-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SX</td>
<td>-401</td>
<td>Inactive</td>
<td>Valve pit</td>
<td>4 ft W x 6 ft L x ~5 ft deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39583</td>
</tr>
<tr>
<td>241-SX</td>
<td>402</td>
<td>Inactive</td>
<td>Condenser bldg.</td>
<td>31 ft W x 19 ft L x 24 ft, 6 in. deep</td>
<td>Stairwell and landing</td>
<td>Y</td>
<td>Stairwell</td>
<td>Non Permit</td>
<td>H-2-39915</td>
</tr>
<tr>
<td>241-SX</td>
<td>402</td>
<td>Inactive</td>
<td>Inst. xmtm pit</td>
<td>4 ft W x 7 ft, 10 in. L x 7 ft, 4 in. deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39915</td>
</tr>
<tr>
<td>241-SX</td>
<td>402</td>
<td>Inactive</td>
<td>Condensate sampler pit</td>
<td>3 ft W x 3 ft, 8 in. L x 4 ft deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Non- Permit</td>
<td>H-2-39915</td>
</tr>
<tr>
<td>241-SX</td>
<td>-402</td>
<td>Inactive</td>
<td>Valve pit</td>
<td>4 ft W x 12 ft, 8 in. L x ~5 ft deep</td>
<td>Metal covered wooden cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-39915</td>
</tr>
<tr>
<td>241-SX</td>
<td>SE of 402</td>
<td>Inactive</td>
<td>Valve pit</td>
<td>7 ft, 6 in. W x 9 ft L x ~15 ft deep</td>
<td>Metal covered wooden cover</td>
<td>Y</td>
<td>2 ft, 6 in. W x 3 ft L Hatchway and Ladder</td>
<td>Permit</td>
<td>H-2-39948, H-2-39952</td>
</tr>
</tbody>
</table>

PI = Partially Interim Isolated
II = Interim Isolated
IS = Interim Stabilized
COB (clean out boxes) have not been included they are 2 ft, 7-1/2 in. W x ~3.9 ft deep.
Table M-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12/12/95

DATE OF REPORT: 3/2/95

IS AND IH REPRESENTATIVES: MATTHEW E. NOLEN, GARY D. MICKLE, DAVID CARLS

ASSESSMENT NUMBER:

AREA: 200W **FACILITY:** SX **OTHER EMPLOYEES:** INEX AUSTIN

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vent. Equipment</td>
<td>Storage: Scaffolding improperly made/maintained. Several sections adrift.</td>
<td>Remove improper scaffolding, secure those that are improperly placed/stored. Hang correct tags.</td>
<td>Y</td>
<td>1910. .28</td>
<td>BIIm</td>
<td>3B</td>
</tr>
<tr>
<td>115 Inst Bldg</td>
<td>Storage: Ladders (2) improperly stored.</td>
<td>Store ladders in approved manner.</td>
<td>Y</td>
<td>.25 and .26</td>
<td>AIIg</td>
<td>3B</td>
</tr>
<tr>
<td>115 Inst Bldg</td>
<td>Storage: Four 5-Gallon buckets improperly stored in building.</td>
<td>Remove unnecessary waste from farm.</td>
<td>Y</td>
<td>.120</td>
<td>AIIo</td>
<td>4D</td>
</tr>
<tr>
<td>111 Inst Bldg</td>
<td>Storage: Radiation Labeled Waste left in building.</td>
<td>Dispose of waste properly.</td>
<td>Y</td>
<td>.120</td>
<td>BIIi</td>
<td>3B</td>
</tr>
<tr>
<td>Buildings Adjacent to S-115</td>
<td>Electrical: Old electrical heaters with cardboard plug covers.</td>
<td>Remove units from farm.</td>
<td>Y</td>
<td>.305 .306</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>114 Inst Bldg</td>
<td>Electrical: Old electrical heaters with cardboard plug covers.</td>
<td>Remove units from farm.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>110 Inst Bldg</td>
<td>Electrical: Old electrical heaters with cardboard plug covers.</td>
<td>Remove units from farm.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
</tbody>
</table>
Table M-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>107 Inst Bldg</td>
<td>Electrical: Old electrical heaters with cardboard plug covers.</td>
<td>Remove units from farm.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>105 Inst Bldg</td>
<td>Electrical: Electrical cord plugged into socket, routed through a ragged hole in metal wall (very sharp edges) connected to nothing. Energized and not in use.</td>
<td>Disconnect and reroute when needed for actual use.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2A</td>
</tr>
<tr>
<td>108 Inst Bldg</td>
<td>Electrical: Bare wiring of unknown type.</td>
<td>Determine need and update or remove.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>3B</td>
</tr>
<tr>
<td>108 Inst Bldg</td>
<td>Electrical: Open electrical light socket.</td>
<td>Fill open socket with bulb or blank or remove.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>3B</td>
</tr>
<tr>
<td>North East corner of SX Farm</td>
<td>Electrical and Tripping: Post with wires in traffic route. No apparent use.</td>
<td></td>
<td>Y</td>
<td>.22 - .30</td>
<td>BIIk</td>
<td>4C</td>
</tr>
<tr>
<td>North East corner of SX Farm</td>
<td>Tripping: Pad with bolts sticking out.</td>
<td>Remove bolts and/or pad.</td>
<td>Y</td>
<td>.22 - .30</td>
<td>BIIk</td>
<td>4C</td>
</tr>
</tbody>
</table>
Table M-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between SX-115 and -114</td>
<td>Tripping: Bent pipe protruding from ground. No apparent use.</td>
<td>Y .22 -.30</td>
<td>BIik 4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjacent to SX-115 (Excavations in several places in farm)</td>
<td>Tripping: Excavations not barricaded or covered.</td>
<td>Fill in or barricade and cover.</td>
<td>Y .22 -.30</td>
<td>BIik 4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 Pump Pit</td>
<td>Misc: Cover sealant/paint flaking/damaged.</td>
<td>Repaint/repair cover sealant.</td>
<td>Y .120 and .1001</td>
<td>AIIx 4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108 Inst Bldg</td>
<td>Misc: Door will not open.</td>
<td>Repair Door.</td>
<td>Y BIlla 4C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North East corner of SX Farm</td>
<td>Fire: Building adjacent to Gantry Crane a moderate fire hazard.</td>
<td>Remove building.</td>
<td>Y DOE BIn 3B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North East Corner of SX Farm</td>
<td>Asbestos: Transite siding damaged.</td>
<td>Remove or seal siding.</td>
<td>Y .1001 AIIId 2D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table M-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhauster</td>
<td>Fire and Unknown: Boarded up Exhaustor.</td>
<td>Moderate fire hazard from wood, Unknown hazards due to lack of signage.</td>
<td>Y</td>
<td>.DOE</td>
<td>Bin</td>
<td>3B</td>
</tr>
<tr>
<td>Saltwell Pump and Valve Pits (multiple)</td>
<td>Vapor Release: Metal tape cracked allowing the possibility of vapor leaks.</td>
<td>Seal or replace tape.</td>
<td>Y</td>
<td>.120</td>
<td>AIIX</td>
<td>3C</td>
</tr>
<tr>
<td>AS-V-3423 Steam Valve</td>
<td>Asbestos: Lagging damaged.</td>
<td>Seal lagging or remove asbestos material.</td>
<td>Y</td>
<td>.1001</td>
<td>ALLd</td>
<td>2D</td>
</tr>
</tbody>
</table>

DATE OF ASSESSMENT: 12/12/95
DATE OF REPORT: 3/2/95
IS AND IH REPRESENTATIVES: MATTHEW E. NOLEN, GARY D. MICKLE, DAVID CARLS

ASSESSMENT NUMBER:
AREA: 200W FACILITY: SX OTHER EMPLOYEES: INEX AUSTIN
This page intentionally left blank.
APPENDIX N

HEALTH AND SAFETY PLAN
FOR THE SY TANK FARM
This page intentionally left blank.
I. TANK FARM DESCRIPTION

A. GENERAL

The SY farm contains three double-shell tanks with a capacity of 3,785,412 L (1,000,000 gal) each. The tanks are all separate (flow arrangement) and are numbered 241-SY-101 through -103. The tanks were originally built from 1974 to 1977. They are similar in design to the 200 East Area double-shell tanks. Tanks 241-SY-101 and -103 are on the Hydrogen/Flammable Gas Watch List and therefore have a possible, although unlikely explosive potential. Ventilation used on SY farm is provided by primary (K1) and secondary (K2) annulus systems.

All SY tanks contain high-level radioactive waste and various chemical constituents. The SY farm is classified as a surface contamination area (SCA) (radiological contamination).

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled through the SY Change Trailer and a vehicle gate located at the southwest corner of SX farm. Personnel enter and exit the farm through the SY Change Trailer. Equipment such as motorized vehicles enter and exit the farm through the SX vehicle gate.

C. WIND INDICATION

A wind sock, located on the DACs trailer, indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.
II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Shift manager: 373-3475
Site safety representative or officer: Tank Waste Remediation System-Industrial Health and Safety (TWRS IH&S) at 372-3242
West Area TWRS IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1365 (Back shifts make radio call)
Emergency point-of-contact: Call shift manager and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include:

- Site access controlled by the shift manager
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Hydrogen/Flammable Gas

Hydrogen/Flammable Gas Watch List tanks include 241-SY-101 and -103. Explosive potential exists and all safe work practices must be followed.
2. High-Level Radioactive Waste

All SY tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

3. Surface Contamination

The entire SY farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA, a radiation area (RA), and as a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

Two stationary high-noise sources are present on SY farm (1) the air compressor outside the DACs trailer (98.8 dB), and (2) the heating, ventilation, and air-conditioning system (89.4 dB) behind the 242-S building. Hearing protection is only required if working near these sources and should be specified in work packages or permits to control intermittent noise sources. This is also required for any equipment brought into the farm that may generate a high-noise environment.

2. Chemicals

The systems in the SY complex require Nitrogen. There is a Cryogenic Nitrogen Dewar outside the farm. Extreme caution is required when working around this enclosure. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.
3. Confined Spaces

Table N-1 lists confined spaces for SY farm. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and also the Tank Farm HASP, Section 10.0, for more information.

4. Asbestos

Warning signs at SY farm alert workers that asbestos materials are present. Asbestos can be present in materials such as pipe lagging, wall panels, transit, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to SY farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers). These tasks must be conducted with Level B personal protective equipment (PPE) (supplied-air respirators) to protect against the confirmed vapor hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for SY tank farm are shown on Figure N-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA outer boundary and a controlled area for nonradiological hazards. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

2. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of a corridor along the east, north, and west edges of the SY farm and an area immediately in front of the SX vehicle gate. There is another area with the RBA/URMA designation located on S farm by the vehicle gate; however, it is a satellite accumulation area and used only as such (used only for removal of materials.) The personnel line is through the SY farm RBA/URMA and the SY Change Trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination at an approved decontamination station. The vehicle/equipment line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and may be decontaminated, if necessary.

Currently at SY farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the contamination reduction corridor (CRC) and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

3. Support Zone

The support zone consists of the SY Change Trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 West Area Tank Farm safety and health requirements are specified in the support zone.
NOTE: THIS MAP IS TO BE USE FOR REFERENCE PURPOSES ONLY.
B. ACCESS CONTROL

Access to SY farm is to occur only through the contamination reduction zone (CRZ)/CRC (SY and SX change trailers and SX farm vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

No specific communications or buddy system requirements have been identified for SY farm beyond those specified in the Tank Farm HASP, Section 8.0. Any additional requirements are shown on task-based permits or work packages.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D PPE. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

B. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)
There are several different types of monitor and alarm systems for the SY farm.

- The standard hydrogen monitoring system (SHMS) uses four separate monitors; two located to the south (6 O'Clock position) and two to the southeast (8 O'Clock position). Each monitor has two colored beacons, red and amber, approximately 2.4 m (8 ft) above the surface.

- An area radiation monitor (five are located throughout the area) is located approximately at the center of tank 241-SY-101. This monitor has a single red beacon 3 m (10 ft) above the surface.

- The tank 241-SY-101 mixer pump running light is located approximately on the center of tank 241-SY-101. It has an amber beacon approximately 7.6 m (25 ft) above the surface.

- A high ammonia alarm will be located on the top of the GMS-2 trailer.

- Airborne radiological monitoring and other tank related systems are located at the 242-S building or the DACs trailer north of the SY farm.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table N-1. See the *Tank Farm HASP*, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at SY farm, radiological contamination is the only significant decontamination issue. See the *Tank Farm HASP*, Section 7.0, for information on decontamination procedures.
IX. EMERGENCY RESPONSE

This section summarizes emergency information specific to SY farm. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. There is a backup generating facility. However, loss of utilities at the SY farm complex may result in loss of the operating capacity of the equipment. Equipment not affected by loss of utility power includes the following:

- All exhaust systems
- All sampling systems
- All systems attached to the Exhaust Pad Electrical Panel A.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of SY farm be required, personnel should assemble either at the 242-S building on the northwest side of the SY farm, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT SY FARM

The SY Tank Farm Fire Plan is posted on the wall of the change room.

The following equipment is available:

- First Aid and Bloodborne Pathogen Kits (located on the wall near the main entrance of the change room)
- Wind sock (located just outside the DACs)
- Fire alarm (located just outside 242-S Control Room; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparatus (SCBA) (located in the SCBA shack adjacent to the 271-SY Control Room. Note: Four additional SCBAs are located in the DACs trailer)
• Ladders (located in several places on the farm)
• Protective clothing (available in the change room)
• Radiological monitoring equipment (located in the 242-S change room)
• Fire extinguishers are located at buildings 244-S, 241-S, 271-S, and 242-S Evaporator.
• Ammonia Specific Air Purifying Respirators (located in the DACS trailer.)

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table N-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SY</td>
<td>01A</td>
<td>Active</td>
<td>8 ft W x 14 ft L x 6 ft, 2 in. D</td>
<td>Pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37783-4, Hydrogen watch tank</td>
</tr>
<tr>
<td>241-SY</td>
<td>01B</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft D</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37710, Hydrogen watch tank</td>
</tr>
<tr>
<td>241-SY</td>
<td>01C</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft, 7 in. D</td>
<td>Leak detection pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37709, Hydrogen watch tank</td>
</tr>
<tr>
<td>241-SY</td>
<td>02A</td>
<td>Active</td>
<td>8 ft W x 14 ft L x 6 ft, 2 in. D</td>
<td>Pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37783-4</td>
</tr>
<tr>
<td>241-SY</td>
<td>02B</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft D</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37710</td>
</tr>
<tr>
<td>241-SY</td>
<td>02C</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft, 7 in. D</td>
<td>Leak detection pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37709</td>
</tr>
<tr>
<td>241-SY</td>
<td>02D</td>
<td>Active</td>
<td>6 ft W x 6 ft L x 8 ft, 9 in. D</td>
<td>Drain pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37713</td>
</tr>
<tr>
<td>241-SY</td>
<td>02E</td>
<td>Active</td>
<td>7 ft Sq x 10 ft, 1 in. D</td>
<td>Feed pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37717</td>
</tr>
<tr>
<td>241-SY</td>
<td>02E</td>
<td>Active</td>
<td>4 ft dia x 8 ft, 7 in. D</td>
<td>Feed pump flush pit</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Non-Permit</td>
<td>H-2-37812-3</td>
</tr>
<tr>
<td>241-SY</td>
<td>03A</td>
<td>Active</td>
<td>8 ft W x 14 ft L x 6 ft, 2 in. D</td>
<td>Pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37783-4, Hydrogen watch tank</td>
</tr>
</tbody>
</table>
Table N-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-SY</td>
<td>03B</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft D</td>
<td>Annulus pump pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37710, Hydrogen watch tank</td>
</tr>
<tr>
<td>241-SY</td>
<td>03C</td>
<td>Active</td>
<td>5 ft Sq. x 10 ft, 7 in. D</td>
<td>Leak detection pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37709, Hydrogen watch tank</td>
</tr>
<tr>
<td>241-SY</td>
<td>SY-A</td>
<td>Active</td>
<td>10 ft W x 12 ft L x 6 ft, 7 in. L</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37712</td>
</tr>
<tr>
<td>241-SY</td>
<td>SY-B</td>
<td>Active</td>
<td>10 ft W x 12 ft L x 6 ft, 7 in. L</td>
<td>Valve pit</td>
<td>Cover block(s)</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37712</td>
</tr>
<tr>
<td>241-SY</td>
<td>SY-A</td>
<td>Active</td>
<td>5 ft dia x 5 ft, 3 in. D</td>
<td>Flush pit</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37793-2</td>
</tr>
<tr>
<td>241-SY</td>
<td>SY-B</td>
<td>Active</td>
<td>5 ft dia x 6 ft, 3 in. D</td>
<td>Flush pit</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37793-2</td>
</tr>
<tr>
<td>241-SY</td>
<td>N of fence</td>
<td>Active</td>
<td>6 ft dia x 4.1 ft D</td>
<td>Service pit</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37778-3</td>
</tr>
<tr>
<td>241-SY</td>
<td>Near 271-SY</td>
<td>Active</td>
<td>4 ft dia x ~4 ft D</td>
<td>Steam trap station</td>
<td>Hinged cover</td>
<td>N</td>
<td>None</td>
<td>Permit</td>
<td>H-2-37775</td>
</tr>
</tbody>
</table>

PI = Partially Interim Isolated
II = Interim Isolated
IS = Interim Stabilized

H-2-37710, Hydrogen watch tank
H-2-37709, Hydrogen watch tank
H-2-37712
H-2-37793-2
H-2-37793-2
H-2-37778-3
H-2-37775
Table N-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire Farm</td>
<td>Tripping: Multiple tripping hazards from cables run between different pieces of equipment.</td>
<td>Cover or remove lines.</td>
<td>Y</td>
<td>1920.22</td>
<td>BIIc</td>
<td>3C</td>
</tr>
<tr>
<td>Area between tanks</td>
<td>Tripping: Old lightning protection system anchor points.</td>
<td>Remove the old attachment points from farm.</td>
<td>Y</td>
<td>.22 - .30</td>
<td>BIIc</td>
<td>3C</td>
</tr>
<tr>
<td>103 SY</td>
<td>Tripping: Excavations open without barricades or coverings for dirt.</td>
<td>Cover and Barricade or fill in.</td>
<td>Y</td>
<td>.22 - .30</td>
<td>BIIc</td>
<td>4C</td>
</tr>
<tr>
<td>271-SY</td>
<td>Noise: Compressor needs to be labeled for noise hazard.</td>
<td>Monitor and determine Personal Protective Equipment / Administrative control levels.</td>
<td>Y</td>
<td>.95</td>
<td>AIIII</td>
<td>3C</td>
</tr>
<tr>
<td>Nitrogen Dewar</td>
<td>Labeling: Dewar unlabeled.</td>
<td>Label Dewar for potential hazard rating and emergency contact information.</td>
<td>Y</td>
<td>.1200</td>
<td>AIIIC</td>
<td>4D</td>
</tr>
</tbody>
</table>

DATE OF ASSESSMENT: 12 December 1995
DATE OF REPORT: 2 March 95
IS & IH REPRESENTATIVES: Matthew E. Nolen, Gary D. Mickle, David R. Carls
ASSESSMENT NUMBER: 103
AREA: 200 W FACILITY: SY
OTHER EMPLOYEES: Inez Austin
Table N-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 12 December 1995
DATE OF REPORT: 2 March 95
IS & IH REPRESENTATIVES: Matthew E. Nolen, Gary D. Mickle,
David R. Carls
ASSESSMENT NUMBER:
AREA: 200 W FACILITY: SY
OTHER EMPLOYEES: Inez Austin

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK-312-C</td>
<td>Labeling: Not labeled.</td>
<td>Label the acid storage tank with appropriate hazard and emergency information.</td>
<td>Y</td>
<td>.1200</td>
<td>AIIIc</td>
<td>4D</td>
</tr>
<tr>
<td></td>
<td>Fire: There is no redundancy to the firewater supply.</td>
<td>Provide a back-up water supply to the 200-W Area.</td>
<td>Y</td>
<td>DOE 6430.1A, DOE 5480.7A, DOE RLIP 5480.7</td>
<td>AId</td>
<td>2C</td>
</tr>
<tr>
<td>242-S</td>
<td>Obsolete Safe Work Practice posted.</td>
<td>Keep safety board current.</td>
<td>Y</td>
<td>.1200</td>
<td>AIIIc</td>
<td>4C</td>
</tr>
</tbody>
</table>
APPENDIX O

HEALTH AND SAFETY PLAN
FOR THE T TANK FARM
This page intentionally left blank.
APPENDIX O

HEALTH AND SAFETY PLAN
FOR THE T TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The T farm contains 12 single-shell tanks with a capacity of 1,892,706 L (500,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. The tanks are numbered 241-T-101 through -112. Tank 241-T-107 is on the Ferrocyanide Watch List and therefore has a possible, although unlikely, hydrogen cyanide (HCN) occupational exposure potential. Two tanks cascade with tank 241-T-107 and therefore also have a possible, but even less likely, HCN exposure potential. Tank 241-T-111 vents organic vapor/ammonia from the breather filter to the atmosphere producing a vapor exposure hazard. Tank 241-T-110 is on the Hydrogen/Flammable Gas Watch List because of the potential to contain concentrations of flammable gases that exceed the lower flammability limit. These gases originate from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of tank 241-T-110, extreme caution must be exercised to avoid any ignition source near the tank.

All T farm tanks contain high-level radioactive waste and various chemical constituents. The T farm is classified as a surface contamination area (SCA) (radiological contamination).

Various T farm tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-821) and adjacent gate located southwest of the trailer along 23rd Street. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.
C. WIND INDICATION

A wind sock, located at the south fenceline of T farm, indicates wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 372-2226
Shift manager: 373-3475
Site safety representative or officer: TWRS IH&S at 372-3242
West Area TWRS IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1765 (backshift make radio call)
Emergency point-of-contact: Call shift manager 373-3475 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm HASP, Section 1.0. Key responsibilities include the following:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and Health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Tank 241-T-107 is on the Ferrocyanide Watch list. There is a remote possibility hydrogen cyanide occupational exposure. The exposure control requirements to protect against possible exposures are stated the Safe Work Practice (SWP) Section 2.9 of this document.

2. Vapor/Gas

Venting of various vapors/gases from the breather filter on tank 241-T-107 to the atmosphere has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the proximity of the breather filter vent. Extreme caution in these areas is recommended. For the specific controls and PPE, reference the SWP.

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

3. Hydrogen/Flammable Gas

Hydrogen/Flammable Gas Watch List Tank 241-T-110 contains a slurry that produces hydrogen gas and other flammable constituents. Other hazards are toxicity of the gas, and surface crust flammability. Hazard control requirements are currently in place and include the following.

- All work in this tank must be in accordance with OSD-T-151-00030.
- Spark-resistant tools and other safeguards are necessary to reduce the chance of fire or explosion.
- Work in and around this tank must be done in accordance with the Tank Farm HASP, Section 2.9, Safe Work Practices.
4. High-Level Radioactive Waste and Chemicals

All T farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

5. Surface Contamination

The entire T tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on T farm. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on T farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

Confined spaces for T farm are listed in Table O-1. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII, and also the Tank Farm HASP, Section 10.0, for more information.
4. Asbestos

Warning signs posted at T farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

6. Engulfment

There are three wooden cribs buried on the west side of the farm. Avoid the posted areas. Engulfment may occur if area is disturbed.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to T farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breaches. (See SWP for specifics)

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for T farm are shown on Figure O-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.
2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual tanks, groups of tanks, and point-source emissions to deal with specific hazards. These areas are specified in the SWP. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure O-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Another RBA/URMA has been established inward from the north fence and is accessed from a gate on the northwest corner of the farm.

Currently at T farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Radiological Buffer Area

A RBA exists around the T-111 pump skid and the support building on the south side of the farm. Hand and foot survey is required to exit this area.

5. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.
NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.

APVD BY: ____________________________ ____________________________ ____________________________

Westinghouse Hanford Co.

TWRS H&S

CAPTAIN: 241TCOMP

CUSTOMER: DAVID CARLS

DATE: 2-03-95

DRAWN BY: NICK BARILLO

TITLE: 241-T TANFARM COMPLEX

RESPIRATORY MONITORING
B. ACCESS CONTROL

Access to T farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for T farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of T farm and include the following:

- Level D PPE is required inside the perimeter fenceline. Level D PPE with OVM and HCN monitoring is required as specified in the SWP of this document. Level D PPE consists of anti-C protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.

- Level B PPE without monitoring is required inside the interior barricaded areas. Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.
B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into the interior barricaded areas around tanks, OVM and HCN monitoring are required unless supplied-air respiratory protection is used. (See SWP) In addition to general area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks, see the Tank Farm HASP, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located at the northeast corner of TY farm along Camden Avenue.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.
VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table O-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at T farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific to T farm. For additional information regarding emergency response, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at T farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 244-TX receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 242-T building
- The 244-TX vessel vent exhauster
- Air sampling and stack monitor and the 244-TX air exhaust sampler
- Instrument process air.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of T farm be required, personnel should assemble either at the 200 West Area Tank Farm staging areas or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT T FARM

The T Tank Farm Fire Plan is posted on the wall of the change trailer. The following equipment is available:

- First Aid and Bloodborne Pathogen kits
- Wind sock (located just outside the change trailer)
- Two self-contained breathing apparati (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
Table O-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-T</td>
<td>101-01B</td>
<td>inactive - PI - weather covered</td>
<td>central heel pit</td>
<td>6 ft W x 9 ft L x 4 ft 1 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42618</td>
</tr>
<tr>
<td>241-T</td>
<td>101-01A</td>
<td>inactive-PI-weather covered</td>
<td>SW. pump pit</td>
<td>11 ft W x 14 ft 6-1/2 in. L x 5 ft 11 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42617</td>
</tr>
<tr>
<td>241-T</td>
<td>101-01C</td>
<td>inactive - PI - weather covered</td>
<td>sluice pit</td>
<td>8 ft 6 in. W x 9 ft L x 9 ft 8 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42619</td>
</tr>
<tr>
<td>241-T</td>
<td>101</td>
<td>inactive - PI - weather covered</td>
<td>North condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-T</td>
<td>102-02A</td>
<td>inactive -IS/II-weather covered</td>
<td>SW pump pit</td>
<td>11 ft W x 14 ft 6-1/2 in. L x 5 ft 11 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42617</td>
</tr>
<tr>
<td>241-T</td>
<td>102-02B</td>
<td>inactive -IS/II-weather covered</td>
<td>central heel pit</td>
<td>6 ft W x 9 ft L x 4 ft 1 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42618</td>
</tr>
<tr>
<td>241-T</td>
<td>102</td>
<td>inactive -IS/II-weather covered</td>
<td>North condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-T</td>
<td>102-02C</td>
<td>inactive -IS/II-weather covered</td>
<td>E. sluice pit</td>
<td>8 ft 6 in. W x 9 ft L x 9 ft 8 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42619</td>
</tr>
<tr>
<td>241-T</td>
<td>103-03B</td>
<td>inactive -IS/II-weather covered</td>
<td>central heel pit</td>
<td>6 ft W x 9 ft L x 4 ft 1 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42618</td>
</tr>
<tr>
<td>241-T</td>
<td>103-03A</td>
<td>inactive -IS/II-weather covered</td>
<td>SW. pump pit</td>
<td>11 ft W x 14 ft 6-1/2 in.L x 5 ft 11 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40191, H-2-42617</td>
</tr>
<tr>
<td>241-T</td>
<td>103-03C</td>
<td>inactive -IS/II-weather covered</td>
<td>E. sluice pit</td>
<td>8 ft6 in. W x 9 ft L x 9 ft 8 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40193, H-2-42619</td>
</tr>
<tr>
<td>241-T</td>
<td>103</td>
<td>inactive -IS/II-weather covered</td>
<td>W. condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743, H-2-73054</td>
</tr>
<tr>
<td>241-T</td>
<td>104</td>
<td>inactive - PI-weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. thick</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
</tbody>
</table>
Table O-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-T</td>
<td>104</td>
<td>inactive - PI - weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-T</td>
<td>105</td>
<td>inactive - IS/II - weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>105</td>
<td>inactive - IS/II - weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-T</td>
<td>106</td>
<td>inactive - IS/II - weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-T</td>
<td>107</td>
<td>inactive - PI - weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>ferrocyanide watch list, H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>108</td>
<td>inactive - IS/II - weather covered</td>
<td>no pits</td>
<td>none</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-73056</td>
</tr>
<tr>
<td>241-T</td>
<td>109</td>
<td>inactive - IS/II - weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-T</td>
<td>110</td>
<td>inactive - P1 - weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>hydrogen watch list, H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>111</td>
<td>inactive - P1 - weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>112</td>
<td>inactive-IS/II - covered</td>
<td>no pits</td>
<td>none</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-72903</td>
</tr>
<tr>
<td>241-T</td>
<td>201</td>
<td>inactive-IS/II - covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>201-T</td>
<td>Inactive-IS/I - weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>201-T</td>
<td>Inactive-IS/I - weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>201</td>
<td>Inactive-IS/II - weather covered</td>
<td>saltwell storage pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>202</td>
<td>inactive-IS/II - covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-T</td>
<td>202-T</td>
<td>Inactive-IS/I I-weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>202-T</td>
<td>Inactive-IS/I I-weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>202</td>
<td>Inactive-IS/II I-weather covered</td>
<td>saltwell storage pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>203</td>
<td>inactive-IS/II I-weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>203-T</td>
<td>Inactive-IS/I I-weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>203-T</td>
<td>Inactive-IS/I I-weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
</tbody>
</table>
Table O-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-T</td>
<td>203</td>
<td>Inactive-IS/II-weather covered</td>
<td>saltwell storage pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>204</td>
<td>Inactive-IS/II-weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>204-T</td>
<td>Inactive-IS/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~ 10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>204-T</td>
<td>Inactive-IS/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe, w/90° bend ~ 10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-T</td>
<td>204</td>
<td>Inactive-IS/II-weather covered</td>
<td>saltwell storage pit</td>
<td>6 ft dia. x 5 ft D</td>
<td>metal plate cover 6 ft 8 in. dia. x 1 in. D</td>
<td>N</td>
<td>no ladder</td>
<td>Permit</td>
<td>H-2-38597</td>
</tr>
<tr>
<td>241-T</td>
<td>-151</td>
<td>Inactive/weather covered</td>
<td>diversion box</td>
<td>6 ft W x 16 ft L x 12 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 sht 1, H-W-72183-1</td>
</tr>
<tr>
<td>241-T</td>
<td>-152</td>
<td>Inactive/weather covered</td>
<td>diversion box</td>
<td>6 ft W x 24 ft L x 14 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 sht 2, H-W-72183-1</td>
</tr>
<tr>
<td>241-T</td>
<td>-153</td>
<td>Inactive/weather covered</td>
<td>diversion box</td>
<td>6 ft W x 30 ft L x 15.4 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 sht 3, H-W-72184</td>
</tr>
<tr>
<td>241-T</td>
<td>-252</td>
<td>Inactive/weather covered</td>
<td>Diversion box for 201 thru 204</td>
<td>6 ft W x 32 ft L x 11.8 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 sht 4</td>
</tr>
</tbody>
</table>
Table O-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-T</td>
<td>-301</td>
<td>abandoned?</td>
<td>catch tank</td>
<td>20 ft dia. x 15 ft D</td>
<td>manhole on top below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-1748, HW-72182</td>
</tr>
<tr>
<td>241-T</td>
<td>-301-B</td>
<td>isolated</td>
<td>catch tank</td>
<td>15 ft6 in. H x 20 ft dia.</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-72903</td>
</tr>
<tr>
<td>241-TR</td>
<td>-152</td>
<td>Inactive/weather covered</td>
<td>Diversion box - nozzle pit</td>
<td>9 ft W x 33 ft L x 8 ft4 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-27, H-2-42383</td>
</tr>
<tr>
<td>241-TR</td>
<td>-152</td>
<td>Inactive/weather covered</td>
<td>Diversion box - pipe pit</td>
<td>13 ft6 in. W x −22 ft L x 10 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-27, H-2-42383/84/85</td>
</tr>
<tr>
<td>241-TR</td>
<td>153</td>
<td>Inactive</td>
<td>Valve pit</td>
<td>3 ft Sq x 4 ft6 in. D</td>
<td>metal cover</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-42748, H-2-42745</td>
</tr>
<tr>
<td>241-TR</td>
<td>F-TR-153</td>
<td>Inactive</td>
<td>Filter pit</td>
<td>5 ft11 in. W x 6 ft 7 in. L x 7 ft 7 in. D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-42744</td>
</tr>
<tr>
<td>241-T</td>
<td>-361</td>
<td>Inactive</td>
<td>settling tank</td>
<td>20 ft dia. x 15 ft D</td>
<td>manhole on top below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-1748,</td>
</tr>
<tr>
<td>241-T-207</td>
<td>caisson N of 361-T</td>
<td>active- Belongs to T-plant</td>
<td>process sewer line access</td>
<td>24 in.</td>
<td>manhole</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>M-2904-W sht 11</td>
</tr>
<tr>
<td>241-T</td>
<td>caisson NE side of 241-T</td>
<td>active-Belongs to T-plant</td>
<td>process sewer line access</td>
<td>24 in.</td>
<td>Manhole</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>M-2904-W sht 11</td>
</tr>
</tbody>
</table>
Table O-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 14 December 1995
DATE OF REPORT: 2 March 95 IS AND IH REPRESENTATIVES: Matthew E. Nolen, David S, Carls
ASSESSMENT NUMBER:
AREA: 200 W FACILITY: T OTHER EMPLOYEES: Inez Austin

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW-T-1 Pole near Change Trailer</td>
<td>Electrical: Temporary ID Tag is nine months old. (Telephone Pole Box)</td>
<td>Properly remove box or reinstate power.</td>
<td>Y</td>
<td>1910. 303</td>
<td>BIIq</td>
<td>3*</td>
</tr>
<tr>
<td>241T-101 Pump Pit</td>
<td>Electrical and Rigging: Power and rigging lines left on Pit Cover.</td>
<td>Remove items from farm. Items unusable.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>3D</td>
</tr>
<tr>
<td>MFN Readout 204T Salt Well Pump</td>
<td>Electrical: Potential electrocution hazard.</td>
<td>Remove line.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2B</td>
</tr>
<tr>
<td></td>
<td>Evening Farm work: The lighting of the farm ranges from 0.0 to 0.4 Foot Candles (0.0 to 40 LUX)</td>
<td>Provide lighting for tasks to be performed in low light situations.</td>
<td>Y</td>
<td>.120(m)</td>
<td>Blg</td>
<td>3B</td>
</tr>
<tr>
<td>Change Trailer</td>
<td>Obsolete Safe Work Practice Posted.</td>
<td>Keep safety board current.</td>
<td>Y</td>
<td>.1200</td>
<td>AI1c</td>
<td>4D</td>
</tr>
<tr>
<td>South Border of Fence Line</td>
<td>Tripping: A metal choker is protruding from ground.</td>
<td>Remove or guard area.</td>
<td>Y</td>
<td>.22 - .30</td>
<td>BIIk</td>
<td>4C</td>
</tr>
<tr>
<td>Location</td>
<td>Issue Description</td>
<td>Corrective Action</td>
<td>Y/N</td>
<td>Percentage</td>
<td>Tag</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----</td>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>South West of T-112</td>
<td>Tripping: Metal wire and railroad track protruding from ground.</td>
<td>Remove or guard area.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk 4C</td>
<td></td>
</tr>
<tr>
<td>154-T Filter Pit</td>
<td>Tripping: Protruding bolts from cement pad.</td>
<td>Cut off bolts or remove pad.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk 4C</td>
<td></td>
</tr>
<tr>
<td>Adjacent to CMCC Station</td>
<td>Asbestos: Green transite box is damaged. Box is unlabeled as Asbestos.</td>
<td>Seal damage or remove cabinet.</td>
<td>Y</td>
<td>.1001</td>
<td>AIx 2D</td>
<td></td>
</tr>
<tr>
<td>CMCC Station</td>
<td>Storage: Ladder improperly stored</td>
<td></td>
<td>Y</td>
<td>.26 and .27</td>
<td>BIII 4C</td>
<td></td>
</tr>
<tr>
<td>South West side of T Farm</td>
<td>Storage: Ladder improperly stored</td>
<td></td>
<td>Y</td>
<td>.26 and .27</td>
<td>BIII 4C</td>
<td></td>
</tr>
<tr>
<td>West Side of T Farm</td>
<td>Cave - In/Fall: Three wooden cribs are buried and covered.</td>
<td>Fill cribs in or place substantial barriers around them and label area as to hazard present.</td>
<td>Y</td>
<td>.1200 and .22 -.30</td>
<td>BIIk AIIc BIk 1C</td>
<td></td>
</tr>
<tr>
<td>Saltwell Pit for T-105</td>
<td>Damage: Pit cover damaged</td>
<td>Replace or repair cover.</td>
<td>Y</td>
<td>.1200</td>
<td>AIx 3D</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX P

HEALTH AND SAFETY PLAN
FOR THE TX TANK FARM
This page intentionally left blank.
APPENDIX P

HEALTH AND SAFETY PLAN
FOR THE TX TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The TX farm contains 18 single-shell tanks with a capacity of 2,839,059 L (750,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with three cascades of four tanks each and two cascades of three tanks each. The tanks are numbered 241-TX-101 through -112 and 241-TX-113 through -118 respectively. Tank 241-TX-118 is on the Ferrocyanide Watch List and contains organic salts. Ferrocyanide serves as a scavenger of radiocesium and other soluble radionuclides and as such was added to tanks to reduce the volume of radioactively contaminated liquids in the tanks. In the presence of oxidizing agents such as nitrates/nitrides and high temperature (> 285 °C), ferrocyanides have the potential to explode. Additionally, under special conditions such as high radiation and pH < 10.5, ferrocyanide may be converted to hydrogen cyanide (HCN). The tank therefore has a possible, although unlikely, HCN occupational exposure potential. Tanks 241-TX-105 and -118 are on the High Organic Watch List because they contain organic salts. Under the appropriate conditions, the organic waste and the oxidizing agents (e.g., sodium nitrate, sodium nitrite, etc.) may result in a potentially hazardous exothermic reaction causing fire or explosion. Passive ventilation is used on all tanks in TX farm.

All TX tanks contain high-level radioactive waste and various chemical constituents. The TX tank farm is classified as a surface contamination area (SCA) (radiological contamination).

Various TX farm tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer MO-817 and adjacent gate located north of the trailer off a gravel access road. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.

C. WIND INDICATION

Wind socks located at the east and west fencelines of TX farm indicate wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 372-2226
Shift manager: 373-3475
Site safety representative or officer: Tank Waste Remediation System-Industrial Health and Safety (TWRS IH&S) at 372-3242
West Area TWRS IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1765 (backshift make radio call)
Emergency point-of-contact: Call shift manager 373-3475 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Tank 241-TX-107 is on the Ferrocyanide Watch List. There is a remote possibility of the possibility of a hydrogen cyanide (HCN) occupational exposure. The control requirements to protect against possible exposures are stated in the Safe Work Practice (SWP) Section 2.9 of this document.

2. Vapor/Gas

The venting of various vapors/gases to the atmosphere from the breather filters on tanks 241-TX-106, -107, -109, -110, and -111 has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, constituents of tank vapors/gases have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0. Elevated area/source concentrations are localized to the proximity of the breather filter vent. Controls have been established around breather filter sources. (See SWP)

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

2. High Concentrations of Organic Compounds and Chemicals

High Organic Watch List tanks 241-TX-105 and -118 contain high concentrations of organic compounds/chemicals. Safety issues of most concern for high-organic tanks are: (1) uncontrolled reactions between air and flammable gases, (2) uncontrolled reactions between a flammable liquid and air (a pool fire) in tanks that have a floating liquid layer or solid waste saturated with liquid at the air/waste interface, and (3) uncontrolled reactions between
organic materials and nitrate/nitrite oxidizers (runaway and propagating reactions) in solid waste. Hazard controls are currently in place.

- All work in this tank must be done in accordance with OSD-T-151-00030, Operating Specifications for Watch List Tanks, and the Tank Farm HASP, Section 2.9, Safe Work Practices
- Spark-resistant tools and other safeguards necessary to reduce the chance of fire or explosion must be used.

3. High-Level Radioactive Waste

All TX tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

4. Surface Contamination

The entire TX farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this Appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on TX farm. Adjacent to the farm is a CONEX box with a compressor inside. Hearing protection is only required if work is to be performed inside while compressor is running. Additional work packages and projects may introduce noise sources to the farm. These packages will specify the required hearing protection.
2. Chemicals

No specific chemicals are used on TX farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the *Tank Farm HASP*, Section 2.0.

3. Confined Spaces

Confined spaces for TX farm are listed in Table P-1. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII, and also the *Tank Farm HASP*, Section 10.0, for more information.

4. Asbestos

Warning signs posted at TX farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when operations are to be performed in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to TX farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tanks 241-TX-118. These tasks must be conducted in accordance with the *Tank Farm HASP*, Section 2.9, Safe Work Practice.
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for TX farm are shown on Figure P-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual tanks, groups of tanks, and point-source emissions to deal with specific hazards. The Safe Work Practice specifies the areas designated as Respiratory Protection Zones. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure P-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at TX farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.
4. Radiological Buffer Area

The area around the T-Evaporator is an RBA. Access is via the personnel gate or the vehicle gate directly adjacent to the evaporator. Exit hand and foot survey is required.

5. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to TX farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for TX tank farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of TX farm.

- Level D PPE is required inside the perimeter fenceline. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.
Level B PPE is required by several different situations by the SWP. Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-minute escape bottle.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

In addition to other area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks, see the Tank Farm HASP, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.
No permanent area monitors are in place for vapors/gases. The nearest continuous air
monitor for airborne radiological monitoring is located at the northeast corner of TY farm
along Camden Avenue.

Any task-based monitoring requirements, in addition to those specified above, are identified
in work packages and work permits by the Site Safety and Health representative or other
designated TWRS IH&S representative for chemical and physical hazards, and by Health
Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table P-1 of this Appendix. See the Tank
Farm HASP, Section 10.0, for information on gaining entry to and conducting work in
confined spaces. Do not enter confined spaces without: (1) verifying that entry
requirements are in place, and (2) obtaining Safety and Health and Operations
oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at TX farm, radiological contamination is the only significant decontamination
issue. See the Tank Farm HASP, Section 7.0, for information on decontamination
procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific to TX farm. For additional
information regarding emergency response issues, consult the Tank Farm Facility Building
Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP,
Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires,
or other sudden threats. Because there is no backup generating facility, loss of utilities at the
TX farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the receiver operation
- All control and instrument systems for saltwells
- The vessel vent exhauster
• Air sampling and stack monitor
• Radiation detectors
• Instrument process air.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of TX farm be required, personnel should assemble either at the 200 West Area Tank Farm staging area or at an alternate location downwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT TX FARM

The TX Tank Farm Fire Plan is posted on the wall of the change trailer.

The following equipment is available:

• First Aid and Bloodborne Pathogen Kits (located in change trailer)
• Wind sock (located just outside the change trailer)
• Two self-contained breathing apparati (located in the change trailer)
• Ladder
• Protective clothing (available in the change trailer)
• Radiological monitoring equipment (located in the change trailer).
• Air Compressor (located in the CONEX box outside the farm).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>216-TY</td>
<td>201</td>
<td>inactive - isolated</td>
<td>flush tank</td>
<td>8 ft W x 25 ft L x 7 ft 6 in. D</td>
<td>2 manholes below grade, one on NW and one on SE corner, ~30 in. dia</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2760</td>
</tr>
<tr>
<td>241-TY</td>
<td>101-01A</td>
<td>Inactive-I S/II weather covered</td>
<td>pump pit</td>
<td>11 ft W x 14 ft 6 in. L x 7 ft 7-3/4 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>hatch 2 ft x 2 ft 6 in.</td>
<td>Permit ferrocyanide watch tank, H-2-2294, H-2-36320, H-2-36271</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>101-A</td>
<td>Inactive-I S/II weather covered</td>
<td>North sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>none</td>
<td>Permit ferrocyanide watch tank, H-2-42619, H-2-2295</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>101-B</td>
<td>Inactive-I S/II weather covered</td>
<td>S. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>none</td>
<td>Permit ferrocyanide watch tank, H-2-42618, H-2-2295</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>101</td>
<td>Inactive-I S/II weather covered</td>
<td>flush pit</td>
<td>5 ft dia. x 4 ft D</td>
<td>Hinged cover</td>
<td>N</td>
<td>none</td>
<td>Non-Permit H-2-36270, H-2-36320, ferrocyanide watch tank</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>101</td>
<td>Inactive-I S/II weather covered</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90° bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit ferrocyanide watch tank, H-2-2248</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>102-02A</td>
<td>Inactive-I S/II weather covered</td>
<td>pump pit</td>
<td>11 ft W x 14 ft 6 in. L x 7 ft 7-3/4 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>hatch 2 ft x 2 ft 6 in.</td>
<td>Permit H-2-2294, H-2-36320, H-2-36271</td>
<td></td>
</tr>
</tbody>
</table>
Table P-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>102-A</td>
<td>Inactive-I S/II-weather covered</td>
<td>North sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-22953, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>102-B</td>
<td>Inactive-I S/II-weather covered</td>
<td>S. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>102</td>
<td>Inactive-I S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90° bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2295, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>102</td>
<td>Inactive-I S/II-filled w/dirt and rock</td>
<td>flush pit</td>
<td>5 ft dia. x 4 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-36270,</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 102-TY</td>
<td>Inactive</td>
<td>valve box</td>
<td>22 in. SQ x 56 in. D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1</td>
</tr>
<tr>
<td>241-TY</td>
<td>E of 102</td>
<td>inactive</td>
<td>steam trap pit</td>
<td>4 ft dia. x 6 ft 2 in. D</td>
<td>3/16 in. metal plate</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-36325</td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-I S/II-weather covered</td>
<td>caisson R13</td>
<td>42 in. riser -6 ft 2 in. D</td>
<td>7 ft 4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36318</td>
</tr>
</tbody>
</table>
Table P-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>103-03A</td>
<td>Inactive-1 S/II-weather covered</td>
<td>pump pit w/ saltwell casing</td>
<td>11 ft W x 14 ft 6 in. L x 8 ft1-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>hatch 2 ft x 2.5 ft</td>
<td>Permit</td>
<td>H-2-36270, H-2-2294, H-2-36318, H-2-36271</td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-1 S/II-weather covered</td>
<td>flush pit</td>
<td>5 ft dia. x 4.5 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36270, H-2-36318</td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-1 S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90° bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2218, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>N of 103-TY</td>
<td>Inactive - isolated, filled with rock</td>
<td>valve box</td>
<td>~2.5 ft SQ x 3.5 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2913, H-2-73088</td>
</tr>
<tr>
<td>241-TY</td>
<td>104-04A</td>
<td>Inactive-1 S/II-weather covered</td>
<td>pump pit</td>
<td>11 ft W x 14 ft 6 in. L x 8 ft 1-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>hatch 2 ft x 2.5 ft</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36270, H-2-2294, H-2-36271</td>
</tr>
<tr>
<td>241-TY</td>
<td>104</td>
<td>Inactive-1 S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90° bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>104</td>
<td>Inactive-1 S/II- cut off below grade</td>
<td>flush pit</td>
<td>5 ft dia. x 4.5 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>ferrocyanide watch tank, H-2-36270</td>
</tr>
</tbody>
</table>
Table P-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>W of 104-TY</td>
<td>Inactive-S/II-weather covered</td>
<td>valve box</td>
<td>22 in. SQ x 56 in. D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive-S/II-weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 4 ft 10 in. D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-34961</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive-S/II-riser is plugged, cut off below grade?</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90° bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive-S/II-riser is plugged, cut off below grade?</td>
<td>Caisson R13</td>
<td>42 in. riser, 6 ft 2 in. D</td>
<td>7 ft 4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2- 2244, H-2-73089</td>
</tr>
<tr>
<td>241-TY</td>
<td>~75 ft E of 105-TY</td>
<td>Inactive</td>
<td>caisson</td>
<td>8 ft dia. x 20 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-35586</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 105-TY</td>
<td>Inactive</td>
<td>valve box</td>
<td>3 ft W x 4 ft L x 4 ft D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1, H-2-2913</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-TY</td>
<td>106</td>
<td>Inactive & S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 106-TY</td>
<td>Inactive</td>
<td>Caisson</td>
<td>8 ft dia. x 8 ft dia.</td>
<td>hinged cover</td>
<td>Permit</td>
<td>H-2-36311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 106-TY</td>
<td>Inactive</td>
<td>valve box - 2 ft below grade</td>
<td>22 in. SQ x 56 in. D</td>
<td>Coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1, H-2-34961</td>
</tr>
<tr>
<td>241-TY</td>
<td>-46 ft SSW of 106</td>
<td>Inactive</td>
<td>Steam trap Assy</td>
<td>6 ft dia. x 7 ft 2 in. D</td>
<td>hinged cover</td>
<td>Permit</td>
<td>H-2-36325 det VIII, H-2-36311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box - nozzle pit</td>
<td>6 ft W x 29 ft L x ~17 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 - 32, H-2-2231</td>
</tr>
<tr>
<td>241-TY</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box - jumper storage</td>
<td>6 ft W x 9 ft 10 1/2 in. L x ~17 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 - 32, H-2-2231</td>
</tr>
<tr>
<td>241-TY</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box - pipe pit</td>
<td>12 ft 2 in. W x 41 ft 4 in. L x ~9.85 ft D</td>
<td>none - underground</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 - 32, H-2-2231</td>
</tr>
</tbody>
</table>
Table P-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>-302-A, aka 241-TY-32 1-A</td>
<td>isolated</td>
<td>catch tank</td>
<td>40 ft L x 9 ft dia.</td>
<td>no access pit</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2733</td>
</tr>
</tbody>
</table>

PI = Partially Interim Isolated
II = Interim Isolated
IS = Interim Stabilized
COBs are isolated and filled with dirt
Table P-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 19 December 1995
DATE OF REPORT: 2 March 95

ASSESSMENT NUMBER:
AREA: 200 W FACILITY: TX & TY
OTHER EMPLOYEES: Inez Austin

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Trailer</td>
<td>Safety Board: Current Safe Work Practice is not posted.</td>
<td>Keep Safety Board current.</td>
<td></td>
<td>1910.1200</td>
<td>AIIc</td>
<td>4C</td>
</tr>
<tr>
<td>TY-103</td>
<td>Asbestos: Green Transite box damaged. Possible exposure. Not labeled.</td>
<td>Seal or remove box. If sealed, then label.</td>
<td>Y</td>
<td>.1001</td>
<td>AIIx</td>
<td>2D</td>
</tr>
<tr>
<td>TY Farm</td>
<td>Evening Illumination: The illumination of the Farm falls between 0.0 to 2.7 Foot Candles. (0.0 to 27 LUX)</td>
<td>Provide workers with illumination when actions must be performed in low light situations.</td>
<td></td>
<td>.120(m)</td>
<td>BIq</td>
<td>3B</td>
</tr>
<tr>
<td>TX Farm</td>
<td>Evening Illumination: The illumination of the Farm falls between 0.0 to 6.1 Foot Candles. (0.0 to 61 LUX)</td>
<td>Provide workers with illumination when actions must be performed in low light situations.</td>
<td></td>
<td>.120(m)</td>
<td>BIq</td>
<td>3B</td>
</tr>
<tr>
<td>CONEX between TX and TY</td>
<td>Noise: The compressor located in the CONEX box has the potential to damage hearing if personnel are to work in the area while compressor is running.</td>
<td>Post a Noise Hazard Warning sign on the door to the CONEX and directly within the CONEX if the sign on the door can be obstructed/hidden when door is open. (See noise survey by D.R. Carls)</td>
<td>Y</td>
<td>.95</td>
<td>AIII</td>
<td>4B</td>
</tr>
</tbody>
</table>
APPENDIX Q

HEALTH AND SAFETY PLAN
FOR THE TY TANK FARM
This page intentionally left blank.
APPENDIX Q

HEALTH AND SAFETY PLAN
FOR THE TY TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The TY farm contains six single-shell tanks with a capacity of 2,839,059 L (750,000 gal) each. The tanks are numbered 241-TY-101 through -106 and are located north of TX farm. All six tanks are interim stabilized and isolated. Tanks 241-TY-101, -103, and -104 are on the Ferrocyanide Watch List because of relative high concentrations of ferrocyanide. Ferrocyanide serves as a scavenger of radiocesium and other soluble radionuclides and as such was added to tanks to reduce the volume of radioactively contaminated liquids in the tanks. In the presence of oxidizing agents such as nitrates/nitrites and high temperatures (> 285 °C), ferrocyanides have the potential to explode. Additionally, under special conditions such as high radiation and pH < 10.5, ferrocyanide may be converted to hydrogen cyanide (HCN). Ferrocyanide Watch List tanks therefore have a possible, although unlikely, HCN occupational exposure potential. Tank 241-TY-104 is on the High Organics Watch List. Under the appropriate conditions, the organic waste and the oxidizing agents (e.g., sodium nitrate, sodium nitrite, etc.) may result in a potentially hazardous exothermic reaction causing fire or explosion. Passive ventilation is used on all tanks in the TY farm. The ferrocyanide and high organic tanks are identified below.

All TY tanks contain low-level radioactive waste and various chemical constituents. The TY tank farm is classified as a surface contamination area (SCA) (radiological contamination).

Various TY tanks may be leaking and therefore pose a hazard for any subsurface activities because of radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.
B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-817) and adjacent gate located north of the trailer off a gravel access road. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate adjacent to the trailer.

C. WIND INDICATION

Wind socks located at the west fence of TY farm indicate wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 372-2226
Shift manager: 373-3475
Site Safety representative or officer: Tank Waste Remediation System-Industrial Health and Safety (TWRS IH&S) at 372-3242
West Area TWRS IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1765 (backshift make radio call)
Emergency point-of-contact: call shift manager 373-3475 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Ferrocyanide

Tanks 241-TY-101, -103, and -104 are on the Ferrocyanide Watch list. There is a remote possibility of hydrogen cyanide (HCN) occupational exposure. The respiratory control requirements to protect against possible exposures are stipulated in the SWP.

- All work in the tanks must be conducted in accordance with OSD-T-151-00030.

- Spark-resistant tools and other safeguards shall be employed as necessary to reduce the chance of fire or explosion.

2. Low-Level Radioactive Waste

All TY tanks store low-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

3. Surface Contamination

The entire TY tank farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP) and the ALARA (as low as reasonably achievable) Management Worksheets.
B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on TY farm. There is a CONEX box with a compressor inside adjacent to the farm. If work is to be performed inside while compressor is running, hearing protection is required. Work packages or projects may introduce other noise sources into the farm area. The hearing protection requirements will be as stipulated in their packages.

2. Chemicals

No specific chemicals are used on TY farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

Confined spaces for TY farm are listed in Table Q-1. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and also the Tank Farm HASP, Section 10.0, for more information.

4. Asbestos

Warning signs at TY farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended level. Adequate light shall be provided if work is to be performed during low light situations.
C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the *Tank Farm HASP*, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to TY farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of risers) on tanks in TY farm. These tasks must be conducted in accordance with the *Tank Farm HASP*, Section 2.9, Safe Work Practice.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for TY farm are shown on Figure Q-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zones

Interior barricaded exclusion zones have been established around individual tanks, groups of tanks, and point-source emissions to deal with specific hazards. These interior exclusions zones are identified and controlled as written in the SWP. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.
NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.
3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure Q-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at TY farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

4. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMA and the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to TY farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the 200 West Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for TY farm beyond those specified in the Tank Farm HASP, Section 8.0.
V. PERSONAL PROTECTIVE EQUIPMENT

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of TY tank farm and include the following:

1. Perimeter Exclusion Zone

Level D PPE is required inside the perimeter fenceline. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.

2. Interior Exclusion Zones

Level B PPE is required for different situations in the SWP. Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-minute escape bottle. PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional PPE such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or on work packages and work permits developed for the task.
VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

In addition to general area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

For any containment breach on tanks, see the Tank Farm HASP, Section 2.9, Safe Work Practice, and Section 6.0.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located at the northeast corner of TY farm along Camden Avenue.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table Q-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at TY farm, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.
IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for TY farm. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at the TY farm complex may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the receiver operation
- All control and instrument systems for saltwells
- All control and instrument systems for the 242-T building
- The 244-TX vessel vent exhauster
- Air sampling and stack monitor
- 244-TX air exhaust sampler
- Instrument process air.
- Air Compressor (located in the CONEX box outside the farm)

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of TY farm be required, personnel should assemble either at the 200 West Area Tank Farm staging area, or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT TY FARM

The TY Tank Farm Fire Plan is posted on the wall of the change trailer.
The following equipment is available:

- First Aid and Bloodborne Pathogen Kit (located in the change trailer)
- Wind sock (located just outside the change trailer)
- Two self-contained breathing apparati (located in the change trailer)
- Ladder
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>216-TY</td>
<td>201</td>
<td>Inactive, isolated</td>
<td>Flush tank</td>
<td>8 ft W x 25 ft L x 7 ft 6 in. D</td>
<td>2 manholes below grade, one on NW and one on SE corner, ~ 30 in. dia.</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2760</td>
</tr>
<tr>
<td>241-TY</td>
<td>101-01A</td>
<td>Inactive-I S/II weather covered</td>
<td>pump pit w/saltwell</td>
<td>11 ft W x 14 ft 6 in. L x 7 ft 7-3/4 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>hatch 2 ft x 2 ft 6 in.</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2294, H-2-36320, H-2-36271</td>
</tr>
<tr>
<td>241-TY</td>
<td>101-A</td>
<td>Inactive-I S/II weather covered</td>
<td>N. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-42619, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>101-B</td>
<td>Inactive-I S/II weather covered</td>
<td>S. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-42618, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>101</td>
<td>Inactive-I S/II</td>
<td>flush pit</td>
<td>5 ft dia. x 4 ft D</td>
<td>Hinged cover</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-36270, H-2-36320, ferrocyanide watch tank</td>
</tr>
<tr>
<td>241-TY</td>
<td>101</td>
<td>Inactive-I S/II weather covered</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>102-02A</td>
<td>Inactive-I S/II weather covered</td>
<td>pump pit</td>
<td>11 ft W x 14 ft 6 in. L x 7 ft 3/4 in. D</td>
<td>Coverblock(s)</td>
<td>N</td>
<td>hatch 2 ft x 2 ft 6 in.</td>
<td>Permit</td>
<td>H-2-2294, H-2-36320, H-2-36271</td>
</tr>
</tbody>
</table>
Table Q-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>102-A</td>
<td>Inactive-I S/II-weather covered</td>
<td>N. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-22953, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>102-B</td>
<td>Inactive-I S/II-weather covered</td>
<td>S. sluice pit</td>
<td>9 ft W x 10 ft 10 in. L x 8 ft 5-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248, H-2-2295</td>
</tr>
<tr>
<td>241-TY</td>
<td>102</td>
<td>Inactive-I S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft 9 in. W x 3 ft 3 in. L x 12 ft D w/24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2295, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>102</td>
<td>Inactive-I S/II-filled w/dirt and rock</td>
<td>flush pit</td>
<td>5 ft dia. x 4 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-36270,</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 102-TY</td>
<td>Inactive valve box</td>
<td>22 in. SQ x 56 in. D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>E of 102</td>
<td>Inactive steam trap pit</td>
<td>4 ft dia. x 6 ft 2 in. D</td>
<td>3/16 in. metal plate</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-36325</td>
<td></td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-I S/II-weather covered</td>
<td>caisson R13</td>
<td>42 in. riser ~6 ft 2 in. D</td>
<td>7 ft4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36318</td>
</tr>
</tbody>
</table>
Table Q-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>103-03A</td>
<td>Inactive-I S/II-weather covered</td>
<td>pump pit w/ saltwell casing</td>
<td>11 ft W x 14 ft6 in. L x 8 ft1-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>hatch 2 ft x 2.5 ft</td>
<td>Permit</td>
<td>H-2-36270, H-2-2294, H-2-36318, H-2-36271</td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-I S/II-weather covered</td>
<td>flush pit</td>
<td>5 ft dia. x 4.5 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36270, H-2-36318</td>
</tr>
<tr>
<td>241-TY</td>
<td>103</td>
<td>Inactive-I S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2218, H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>N of 103-TY</td>
<td>Inactive -isolated, filled with rock</td>
<td>valve box</td>
<td>~2.5 ft SQ x 3.5 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2913, H-2-73088</td>
</tr>
<tr>
<td>241-TY</td>
<td>104-04A</td>
<td>Inactive-I S/II-weather covered</td>
<td>pump pit</td>
<td>11 ft W x 14 ft6 in. L x 8 ft1-1/2 in. D</td>
<td>Coverblocks</td>
<td>N</td>
<td>hatch 2 ft x 2.5 ft</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-36270, H-2-2294, H-2-36271</td>
</tr>
<tr>
<td>241-TY</td>
<td>104</td>
<td>Inactive-I S/II-weather covered</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>ferrocyanide watch tank, H-2-2248</td>
</tr>
</tbody>
</table>
Table Q-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>104</td>
<td>Inactive</td>
<td>flush pit</td>
<td>5 ft dia. x 4.5 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>ferrocyanide watch tank, H-2-36270</td>
</tr>
<tr>
<td>241-TY</td>
<td>104, below grade?</td>
<td>Inactive</td>
<td>caisson R13</td>
<td>42 in. riser</td>
<td>7 ft4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2244, H-2-73089</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 104-TY</td>
<td>Inactive</td>
<td>valve box</td>
<td>22 in. SQ x 56 in. D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive</td>
<td>saltwell pump pit</td>
<td>6 ft dia. x 4 ft 10 in. D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-34961</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>105</td>
<td>Inactive</td>
<td>Caisson R13</td>
<td>42 in. riser, 6 ft2 in. D</td>
<td>7 ft4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2244, H-2-73089</td>
</tr>
<tr>
<td>241-TY</td>
<td>~75 ft E of 105-TY</td>
<td>Inactive</td>
<td>caisson</td>
<td>8 ft dia. x 20 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-35586</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/ Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 105-TY</td>
<td>Inactive</td>
<td>valve box</td>
<td>3 ft W x 4 ft L x 4 ft D</td>
<td>coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1, H-2-2913</td>
</tr>
<tr>
<td>241-TY</td>
<td>106</td>
<td>Inactive - S/II- weather covered</td>
<td>condenser pit</td>
<td>5 ft9 in. W x 3 ft3 in. L x 12 ft D w/ 24 in. pipe w/90 deg bend halfway 12 ft L direct to tank</td>
<td>Hatchway</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2248</td>
</tr>
<tr>
<td>241-TY</td>
<td>106</td>
<td>Inactive - S/II- weather covered</td>
<td>caisson R13</td>
<td>42 in. riser 6 ft2 in. D</td>
<td>7 ft4 in. SQ concrete cap</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 106 -TY</td>
<td>Inactive</td>
<td>Caisson</td>
<td>8 ft dia. x</td>
<td>hinged cover</td>
<td></td>
<td></td>
<td>Permit</td>
<td>H-2-</td>
</tr>
<tr>
<td>241-TY</td>
<td>W of 106-TY</td>
<td>Inactive</td>
<td>valve box - 2 ft below grade</td>
<td>22 in. SQ x 56 in. D</td>
<td>Coverblock</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-2249-1, H-2-34961</td>
</tr>
<tr>
<td>241-TY</td>
<td>~ 46 ft SSW of 106</td>
<td>Inactive</td>
<td>Steam trap assy</td>
<td>6 ft dia. x 7 ft2 in. D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-36325 det VIII, H-2-36311</td>
</tr>
<tr>
<td>241-TY</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box - nozzle pit</td>
<td>6 ft W x 29 ft L x ~17 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 - 32, H-2-2231</td>
</tr>
<tr>
<td>241-TY</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box - jumper storage</td>
<td>6 ft W x 9 ft- 10 1/2 in. L x ~17 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338 - 32, H-2-2231</td>
</tr>
</tbody>
</table>
Table Q-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-TY</td>
<td>-302-A, aka 241-TY-32 1-A</td>
<td>isolated</td>
<td>catch tank</td>
<td>40 ft L x 9 ft dia.</td>
<td>no access pit</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-2733</td>
</tr>
</tbody>
</table>
Table Q-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Trailer</td>
<td>Safety Board: Current Safe Work Practice is not posted.</td>
<td>Keep Safety Board current.</td>
<td></td>
<td>1910. 1200</td>
<td>AIIC</td>
<td>4C</td>
</tr>
<tr>
<td>TY-103</td>
<td>Asbestos: Green Transite box damaged. Possible exposure. Not labeled.</td>
<td>Seal or remove box. If sealed, then label.</td>
<td>Y</td>
<td>.1001</td>
<td>AIIX</td>
<td>2D</td>
</tr>
<tr>
<td>TY Farm</td>
<td>Evening Illumination: The illumination of the Farm falls between 0.0 to 2.7 Foot Candles. (0.0 to 27 LUX)</td>
<td>Provide workers with illumination when actions must be performed in low light situations.</td>
<td></td>
<td>.120(m)</td>
<td>BLq</td>
<td>3B</td>
</tr>
<tr>
<td>TX Farm</td>
<td>Evening Illumination: The illumination of the Farm falls between 0.0 to 6.1 Foot Candles. (0.0 to 61 LUX)</td>
<td>Provide workers with illumination when actions must be performed in low light situations.</td>
<td></td>
<td>.120(m)</td>
<td>BLq</td>
<td>3B</td>
</tr>
<tr>
<td>CONEX between TX and TY</td>
<td>Noise: The compressor located in the CONEX box has the potential to damage hearing if personnel are to work in the area while compressor is running.</td>
<td>Post a Noise Hazard Warning sign on the door to the CONEX and directly within the CONEX if the sign on the door can be obstructed/hidden when door is open. (See noise survey by D.R. Carls)</td>
<td>Y</td>
<td>.95</td>
<td>AIII</td>
<td>4B</td>
</tr>
</tbody>
</table>
APPENDIX R

HEALTH AND SAFETY PLAN
FOR THE U TANK FARM
This page intentionally left blank.
APPENDIX R

HEALTH AND SAFETY PLAN
FOR THE U TANK FARM

I. TANK FARM DESCRIPTION

A. GENERAL

The U farm consists of twelve (12) single-shell tanks with a capacity of 1,892,706 L (500,000 gal) each. The tanks are arranged in a cascade fashion (flow arrangement) with four cascades of three tanks each. The tanks are numbered 241-U-101 through -112. Four smaller tanks, 241-U-201 through -204, are also present and will hold 208,198 L (55,000 gal) each. Tanks 241-U-103, -105, -107, -108, and -109 are on the Hydrogen/Flammable Gas Watch List. Tanks 241-U-103, -105, -106, -107, -111, -203, and -204 are on the High Organics Watch List because of the volume of suspect organics within the tanks. Tank 241-U-106 vents vapor/gas around the distributor pit, and is a confirmed vapor hazard from organics and/or ammonia and possibly other gases/vapors. Several tanks have been shown to vent organic vapors to the atmosphere from several penetrations including both breather and nonbreather penetrations. Passive ventilation is used on all tanks in U farm.

All U farm tanks contain high-level radioactive waste and various chemical constituents. Other materials may be defined by the waste characterization program. The U tank farm is classified as a surface contamination area (SCA) (radiological contamination).

Various U farm tanks may be leaking and therefore pose a hazard for any subsurface activities due to radiological and chemical agents.

Controlled areas are established for both radiological and chemical hazards.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter is secured by a chain-link fence with access controlled at the support trailer (MO-823) and adjacent gate(s) located on the east side of U farm along Camden Avenue. Personnel enter and exit the farm through the support trailer. Equipment such as motorized vehicles enter and exit the farm through the gate(s), along Camden Avenue, adjacent to the trailer.
C. WIND INDICATION

Wind socks located midway along the west and east fenceline of U farm indicating wind direction to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Shift manager: 373-3475
Site safety representative or officer: Tank Waste Remediation System-Industrial Health and Safety (TWRS IH&S) at 372-3242
TWRS IH&S West Turnaround Office: 372-1799
Health Physics supervisor: 373-2557
Emergency point-of-contact: call shift supervisor and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm HASP, Section 1.0. Key responsibilities include:

- Site access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.
III. HAZARD EVALUATION AND CONTROLS

A. TANK CHARACTERISTICS

1. Vapor/Gas

Vapor/gas emitting tanks has been narrowed to 241-U-106 by sealing of source emission points. Venting of various vapors/gases to the atmosphere from the distributor pits on tank 241-U-106 has been documented. Possible gas/vapor constituents include organic vapors such as petroleum hydrocarbons and inorganic gases/vapors such as ammonia. However, vapor/gas constituents of the tanks have not been fully characterized. Area, source, and personal exposure monitoring have been conducted in accordance with the Tank Farm HASP, Section 6.0.

To date, all personal exposures to gases and vapors have been well within established standards; however, strict adherence to the controls listed is mandatory.

2. Organic Waste

Tanks 241-U-103, -105, -106, -107, -111, -203, and -204 are on the High Organics Watch List because of the relative high concentration of organic waste and oxidizing agents present in the tanks. Under the appropriate conditions, the organic waste materials and oxidizing agents (e.g. sodium nitrites and sodium nitrates) may result in a potentially exothermic reaction.

3. Hydrogen/Flammable Gas

Tanks 241-U-103, -105, -107, -108, and -109 are on the Hydrogen/Flammable Gas Watch List because of the potential to contain concentrations of flammable gases that exceed the lower flammability limit. These gases originated from the waste or are generated as a byproduct of the waste. As a result of the potential flammable nature of these tanks, extreme caution must be exercised to avoid an ignition source near the tanks.
4. High-Level Radioactive Waste and Chemicals

All U farm tanks store high-level radioactive waste and contain various chemical constituents that are not yet fully characterized. Activities involving containment breaches and intrusive work must be handled in accordance with specific operating and safe work practice procedures and work permit processes.

5. Surface Contamination

The majority of U farm, as defined by the perimeter exclusion zone of the tank farm, is classified as an SCA and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). The South West corner is a Radiological Buffer Area. Entry and Exit can be accomplished with only hand and foot survey. Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present on U farm. There is a compressor in the 701-U building. Hearing protection is required when working in the building and the compressor is running. Hearing protection is may be required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.

2. Chemicals

No specific chemicals are used on U farm that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.
3. Confined Spaces

Confined spaces for U farm are listed in Table R-1. These spaces are labelled in the tank farm, and include such areas as utility vaults, flush and valve pits, and saltwells. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII and the Tank Farm HASP, Section 10.0, for more information.

4. Asbestos

Warning signs at U farm alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Lighting

The illumination of the farm during evening and night shifts is below the recommended levels. Adequate lighting shall be provided when working in low light situations.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to U tank farm include replacement of breather filters, changeout of seal loop fluid, and any other containment breach (e.g., opining of risers) on all U farm tanks. These tasks must be conducted in accordance with the Tank Farm HASP, Section 2.9, Safe Work Practice.
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for U farm are shown on Figure R-1 and are listed below.

1. Perimeter Exclusion Zone

A perimeter fenceline has been established and serves as both an RBA/URMA and a controlled area for nonradiological hazards.

2. Interior Exclusion Zone

Any interior barricades/exclusion zones established in farm are specified in the SWP. In addition to the RBA/URMA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the support trailer, the landing and stairway outside the trailer leading into the tank farm, and the immediately adjacent graveled area from the vehicle entry gate to approximately 12.19 m (40 ft) into the tank farm (see Figure R-1). Two decontamination lines exist within the contamination reduction corridor (CRC): (1) the personnel decontamination line is through the RBA/URMA portion of the trailer where workers don and doff PPE, scan for radiological contamination, and perform any necessary decontamination; (2) the vehicle/equipment decontamination line is through the vehicle gate, where motorized vehicles or other equipment are scanned for radiological contamination and decontaminated, if necessary.

Currently at U farm, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support trailer are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.
Figure R-1. U Tank Farm Site Plan.

241-U AREA

SWP-REV 13

APVD BY: _________________________

APVD BY: _________________________

APVD BY: _________________________

NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY. Westinghouse Hanford Co. TANKFARM COMPLEX

DATE: 2-03-95

CUSTOMER: DAVID CARLS

DESIGN: NICK BARLO

RESPIRATORY MONITORING
4. Support Zone

The support zone consists of the portion of the trailer outside the RBA/URMAS well as the area outside the perimeter fenceline. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 West Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to U farm is to occur only through the contamination reduction zone (CRZ)/CRC (change trailer and adjacent vehicle gate(s) unless otherwise specified in an approved work package. Authorization for entry/access must be obtained from the West Area Shift Operations Manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for U farm beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of U farm.

- Level D PPE is required inside the perimeter fenceline, excluding the RBA. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.

- Level B PPE is required within barricades established or if OVM monitoring is not available or if containment on any of the U farm tanks is breached. (See SWP for specifics) Required Level B PPE consists of the same protective clothing/equipment as Level D described above plus headcover and supplied-air respiratory protection with a 5-minute escape bottle. PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.
B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. RADIOLOGICAL BUFFER AREA

There is an RBA on the south east corner of the farm. This area requires only hand and foot survey to exit.

D. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed or the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the fenceline, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

For entry into interior exclusion zones, the SWP will stipulate monitoring and required respiratory protection to be used.

For information on containment breached, see the Tank Farms HASP, section 2.9, and Section 6.0. In addition to other area monitoring, OVM monitoring must be conducted in all greenhouses and structures near breather filters, risers, or other potential emission sources.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

No permanent area monitors are in place for vapors/gases. The nearest continuous air monitor for airborne radiological monitoring is located north of the farms at the intersection of 12th and Baltimore.
Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table R-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. Do not enter confined spaces without: (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Radiological contamination is the only significant decontamination issue at tank farms at this time. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for U farm. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats.

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of U farm be required, personnel should assemble at the nearest upwind staging area.
B. EMERGENCY EQUIPMENT AVAILABLE AT U FARM

The U Tank Farm Fire Plan is posted on the wall of the change trailer.

The following equipment is available:

- First Aid and Bloodborne Pathogen Kits (located in the change trailer)
- Panic button and fire alarm (located just outside the 244-U Control Room on the southeast corner of U Farm; the yellow flashing light indicates that tank pumps are operating)
- Fire extinguishes
- Two self-contained breathing apparati (located in the change trailer)
- Protective clothing (available in the change trailer)
- Radiological monitoring equipment (located in the change trailer)
- Wind socks (located midway along the east and west fencelines).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>101-UR-01 B</td>
<td>Inactive-IS/Ill-weather covered</td>
<td>distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade heel pit) H-2-40192</td>
</tr>
<tr>
<td>241-U</td>
<td>101-UR-01 A</td>
<td>Inactive-IS/Ill-weather covered</td>
<td>sludge pump pit</td>
<td>16 ft W x 11 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade pump pit) H-2-40191</td>
</tr>
<tr>
<td>241-U</td>
<td>101-UR-01 C</td>
<td>Inactive-IS/Ill-weather covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade sluice pit) H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>101-UR</td>
<td>Inactive-IS/Ill-weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in dia. pipe with 90° bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-2-581</td>
</tr>
<tr>
<td>241-U</td>
<td>W of 101-U</td>
<td>Inactive - cut/capped</td>
<td>caisson</td>
<td>8 ft dia.</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>N/A</td>
<td>cut off ~12" below grade and filled with dirt/rock. H-2-35588</td>
</tr>
<tr>
<td>241-U</td>
<td>SE of 101-U</td>
<td>Inactive</td>
<td>caisson</td>
<td>8 ft dia.</td>
<td>hinged cover</td>
<td>Y</td>
<td>ladder</td>
<td></td>
<td>may be cut off ~12" below grade and filled with dirt/rock.</td>
</tr>
<tr>
<td>241-U</td>
<td>102-UR-02 B</td>
<td>Inactive-PI may be covered with plywood</td>
<td>distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade heel pit) H-2-40192</td>
</tr>
<tr>
<td>241-U</td>
<td>102-UR-02 A</td>
<td>Inactive-PI may be covered with plywood</td>
<td>sludge pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade pump pit) H-2-40191</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>102-UR-02 C</td>
<td>Inactive- PI - weath covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>(cascade sluice pit), H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>102-U</td>
<td>Inactive- PI - weath covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, -10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-U</td>
<td>102</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>103-UR-03 B</td>
<td>Inactive- PI - distributor pit</td>
<td>distributer pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list, (cascade heel pit), H-2-40192</td>
</tr>
<tr>
<td>241-U</td>
<td>103-UR-03 A</td>
<td>Inactive- PI - weath covered</td>
<td>sludge pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list, (cascade pump pit), H-2-40191</td>
</tr>
<tr>
<td>241-U</td>
<td>103-UR-03 C</td>
<td>Inactive- PI - weath covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list, (cascade sluice pit), H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U-SP</td>
<td>between 103-U and 106-U</td>
<td>Inactive</td>
<td>service pit</td>
<td>5 ft dia. x 5 ft6 in. D</td>
<td>hinged cover</td>
<td>Y</td>
<td>ladder</td>
<td>Non-Permit</td>
<td>H-2-37364</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>103-U</td>
<td>Inactive-PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>hydrogen watch list, HW 72743</td>
</tr>
<tr>
<td>241-U</td>
<td>SW of 103-U</td>
<td>Inactive-PI weather covered?</td>
<td>service pit</td>
<td>5 ft dia. x 5 ft6 in. D</td>
<td>hinged cover</td>
<td>Y</td>
<td>none</td>
<td></td>
<td>steam has been isolated, H-2-37364</td>
</tr>
<tr>
<td>241-U</td>
<td>103</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>104-UR-04 B</td>
<td>Inactive-IS/II-weather covered</td>
<td>heel pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40193</td>
</tr>
<tr>
<td>241-U</td>
<td>104-UR-04 A</td>
<td>Inactive-IS/II-weather covered</td>
<td>sluice pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40193</td>
</tr>
<tr>
<td>241-U</td>
<td>104-UR-04 C</td>
<td>Inactive-IS/II-</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>104-U</td>
<td>Inactive-IS/II-</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743, H-2-581</td>
</tr>
<tr>
<td>241-U</td>
<td>W of 104-U</td>
<td>Inactive - cut/capped</td>
<td>caisson</td>
<td>8 ft dia.</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>N/A</td>
<td>cut off ~ 12 in. below grade and filled with dirt. H-2-35589</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>241-U</td>
<td>SE of 104-U</td>
<td>Inactive</td>
<td>caisson</td>
<td>8 ft dia.</td>
<td>hinged cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit hydrogen watch list, H-2-40192</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>105-UR-05 B</td>
<td>Inactive- PI</td>
<td>distributor pit</td>
<td>6 ft W x 9 ft L x ~4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit hydrogen watch list H-2-40191</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>105-UR-05 A</td>
<td>Inactive- PI</td>
<td>sludge pump pit</td>
<td>9 ft W x 8 ft-6 in. L x ~7 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit hydrogen watch list H-2-40193, H-2-2338-89</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>105-UR-05 C</td>
<td>Inactive- PI</td>
<td>pump pit (modified</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit hydrogen watch list H-2-40193, H-2-2338-89</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>105-U</td>
<td>Inactive- PI</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft-9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit hydrogen watch list, H-W-72743</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>105</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit H-2-73722/ H-2-73050</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>106-UR-06 B</td>
<td>Inactive- PI</td>
<td>Distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit high organic watch list H-2-40192</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>106-UR-06 A</td>
<td>Inactive- PI</td>
<td>sludge pump pit</td>
<td>9 ft W x 8 ft-6 in. L x ~7 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit high organic watch list H-2-40191</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>106-UR-06 C</td>
<td>Inactive- PI</td>
<td>pump pit (modified</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit high organic watch list H-2-40193, H-2-2338-89</td>
<td></td>
</tr>
</tbody>
</table>

Table R-1. West Tank Farm Confined Spaces.
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>106-U</td>
<td>Inactive- PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>high organic watch list, H-W-72743</td>
</tr>
<tr>
<td>241-U</td>
<td>106</td>
<td>Inactive</td>
<td>Service pit</td>
<td>5 ft dia. x 6 ft D</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Non-Permit</td>
<td>H-2-37364</td>
</tr>
<tr>
<td>241-U</td>
<td>107-UR-07 B</td>
<td>Inactive- PI weather covered</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>107-UR-07 A</td>
<td>Inactive- PI weather covered</td>
<td>distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>high organic watch list H-2-40192</td>
</tr>
<tr>
<td>241-U</td>
<td>107-UR-07 C</td>
<td>Inactive- PI weather covered</td>
<td>sludge pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>high organic watch list H-2-40191</td>
</tr>
<tr>
<td>241-U</td>
<td>107-U</td>
<td>Inactive- PI weather covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>high organic watch list H-2-40193,H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>107-U</td>
<td>Inactive- PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>high organic watch list, H-W-72743</td>
</tr>
<tr>
<td>241-U</td>
<td>107</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>108-UR-8B</td>
<td>Inactive- PI</td>
<td>Distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40192</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>108-UR-08 A</td>
<td>Inactive- PI weather covered</td>
<td>sludge pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40191</td>
</tr>
<tr>
<td>241-U</td>
<td>108-UR-08 C</td>
<td>Inactive- PI weather covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>108-U</td>
<td>Inactive- PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~ 10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>hydrogen watch list, H-W-72743</td>
</tr>
<tr>
<td>241-U</td>
<td>108</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>109-UR-09 B</td>
<td>Inactive- PI weather covered</td>
<td>Distributor pit</td>
<td>6 ft W x 9 ft L x 4 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40192</td>
</tr>
<tr>
<td>241-U</td>
<td>109-UR-09 A</td>
<td>Inactive- PI weather covered</td>
<td>sludge pump pit</td>
<td>11 ft W x 16 ft L x 8 ft-5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40191</td>
</tr>
<tr>
<td>241-U</td>
<td>109-UR-09 C</td>
<td>Inactive- PI weather covered</td>
<td>sluice pit</td>
<td>8 ft-6 in. W x 9 ft L x 9 ft-9 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>hydrogen watch list H-2-40193, H-2-2338-89</td>
</tr>
<tr>
<td>241-U</td>
<td>109-U</td>
<td>Inactive- PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~ 10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>hydrogen watch list, H-W-72743</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>109</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x 6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>110-U-10B</td>
<td>Inactive-IS/PI</td>
<td>Distributor pit</td>
<td>6 ft-6 in. W x 6 ft L x ~4.5 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-37319</td>
</tr>
<tr>
<td>241-U</td>
<td>110-U-10A</td>
<td>Inactive-IS/PI weather covered</td>
<td>pump pit</td>
<td>6 ft W x 6 ft L x ~6 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-37319</td>
</tr>
<tr>
<td>241-U</td>
<td>110-U</td>
<td>Inactive-IS/PI weather covered</td>
<td>condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72743</td>
</tr>
<tr>
<td>241-U</td>
<td>NE of 110-U</td>
<td>Inactive</td>
<td>Shielded vault w/ steam condenser</td>
<td>6 ft W x 15 ft L x 7 ft6 in. D, w 3 ft dia. x 11 ft6 in. L tank</td>
<td>2 ea. coverblocks</td>
<td>N</td>
<td>each coverblock is 6 ft W x 7 ft10 in. L</td>
<td>Permit</td>
<td>H-2-44076, H-2-44002</td>
</tr>
<tr>
<td>241-U</td>
<td>S side of 110-U</td>
<td>Inactive</td>
<td>caisson</td>
<td>6 ft dia.</td>
<td>hinged cover</td>
<td>Y</td>
<td>ladder</td>
<td>N/A</td>
<td>may be cut off ~12 in. below grade and filled with dirt/rock. H-2-37344</td>
</tr>
<tr>
<td>241-U</td>
<td>110</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x 6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>111-U-11B</td>
<td>Inactive-IS/PI</td>
<td>Distributor pit</td>
<td>6 ft-6 in. W x 6 ft L x ~4.5 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>high organic watch list</td>
</tr>
<tr>
<td>241-U</td>
<td>111-U-11A</td>
<td>Inactive-IS/PI weather covered</td>
<td>pump pit</td>
<td>6 ft W x 8 ft L x 5 ft-7.5 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>high organic watch list</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>111</td>
<td>Inactive</td>
<td>CMP pit</td>
<td>4 ft dia. x ~6 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-73722/ H-2-73050</td>
</tr>
<tr>
<td>241-U</td>
<td>112-U</td>
<td>Inactive-III/II weather covered</td>
<td>saltwell pump pit</td>
<td>6 ft dia.</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-34961</td>
</tr>
<tr>
<td>241-U</td>
<td>NW of 112-U</td>
<td>Inactive</td>
<td>steam trap station</td>
<td>4 ft dia. x 6.5 ft D</td>
<td>metal cover</td>
<td>Y</td>
<td>ladder</td>
<td>Permit</td>
<td>H-2-37344, H-2-37353</td>
</tr>
<tr>
<td>241-U</td>
<td>E of 112-U, cut and capped</td>
<td>Inactive</td>
<td>caisson</td>
<td>8 ft dia.</td>
<td>hinged cover</td>
<td>N</td>
<td>none</td>
<td>N/A</td>
<td>cut and capped</td>
</tr>
<tr>
<td>241-U</td>
<td>201-U</td>
<td>Inactive-III/II weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>201-U</td>
<td>Inactive-III/II weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>201-U</td>
<td>Inactive-III/II weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>202-U</td>
<td>Inactive-III/II weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>202-U</td>
<td>Inactive-IS/II-weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>202-U</td>
<td>Inactive-IS/II-weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>203-U</td>
<td>Inactive-IS/II-weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D 20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>203-U</td>
<td>Inactive-ISIII-weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>203-U</td>
<td>Inactive-ISIII-weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>204-U</td>
<td>Inactive-ISIII-weather covered</td>
<td>receiver tank</td>
<td>20 ft dia. x 25 ft D 20 ft dia. x 25 ft D</td>
<td>manhole below grade</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>204-U</td>
<td>Inactive-ISIII-weather covered</td>
<td>E condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>204-U</td>
<td>Inactive-LS/II-weather covered</td>
<td>W condenser pit</td>
<td>5 ft-9 in. W x 3 ft-3 in. L x 7 ft D opening into a 1 ft 9 in. dia. pipe with 90 deg. bend, ~10 ft L, open to tank</td>
<td>hatchway</td>
<td>N</td>
<td>bolted cover</td>
<td>Permit</td>
<td>H-W-72742</td>
</tr>
<tr>
<td>241-U</td>
<td>UA</td>
<td>inactive</td>
<td>valve pit</td>
<td>12 ft W x 10 ft L x 6 ft D</td>
<td>coverblocks</td>
<td>Y</td>
<td>2-2 ft SQ manholes</td>
<td>Permit</td>
<td>H-2-37320</td>
</tr>
<tr>
<td>241-U</td>
<td>UA</td>
<td>inactive - sealed</td>
<td>flush pit</td>
<td>5 ft dia. x 5 ft D</td>
<td>hinged metal cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-37365</td>
</tr>
<tr>
<td>241-U</td>
<td>UB</td>
<td>inactive</td>
<td>valve pit</td>
<td>12 ft W x 10 ft L x 6 ft D</td>
<td>coverblocks</td>
<td>Y</td>
<td>2-2 ft SQ manholes</td>
<td>Permit</td>
<td>H-2-37320</td>
</tr>
<tr>
<td>241-U</td>
<td>UB</td>
<td>inactive - sealed</td>
<td>flush pit</td>
<td>5 ft dia. x 5 ft D</td>
<td>hinged metal cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-37365</td>
</tr>
<tr>
<td>241-U</td>
<td>UC</td>
<td>inactive</td>
<td>valve pits</td>
<td>12 ft W x 10 ft L x 6 ft D</td>
<td>coverblocks</td>
<td>Y</td>
<td>2-2 ft SQ manholes</td>
<td>Permit</td>
<td>H-2-37320</td>
</tr>
<tr>
<td>241-U</td>
<td>UC</td>
<td>inactive</td>
<td>flush pit</td>
<td>5 ft dia. x 5 ft D</td>
<td>hinged metal cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-37365</td>
</tr>
<tr>
<td>241-U</td>
<td>UD</td>
<td>inactive</td>
<td>valve pits</td>
<td>12 ft W x 10 ft L x 6 ft D</td>
<td>coverblocks</td>
<td>Y</td>
<td>2-2 ft SQ manholes</td>
<td>Permit</td>
<td>H-2-37320</td>
</tr>
<tr>
<td>241-U</td>
<td>UD</td>
<td>inactive</td>
<td>flush pit</td>
<td>5 ft dia. x 5 ft D</td>
<td>hinged metal cover</td>
<td>N</td>
<td>none</td>
<td>permit</td>
<td>H-2-37365</td>
</tr>
<tr>
<td>241-U</td>
<td>151</td>
<td>Active</td>
<td>Diversion box</td>
<td>6 ft W x 16 ft L x 15.62 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-8, H-W-72183</td>
</tr>
<tr>
<td>241-U</td>
<td>152</td>
<td>Active</td>
<td>Diversion Box</td>
<td>6 ft W x 24 ft L x 15.63 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-9</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>241-U</td>
<td>153</td>
<td>Inactive - weather covered</td>
<td>Diversion Box</td>
<td>6 ft W x 30 ft L x 20.61 ft D</td>
<td>Coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-10, H-W-72184, H-2-34554</td>
</tr>
<tr>
<td>241-U</td>
<td>252</td>
<td>Inactive - weather covered</td>
<td>Diversion box for 201-204 tanks</td>
<td>6 ft W x 32 ft L x 13.04 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-11, H-W-72184</td>
</tr>
<tr>
<td>241-U</td>
<td>301-U (aka U-301-B)</td>
<td>active</td>
<td>catch tank</td>
<td>20 ft dia. x 15 ft D</td>
<td>pump pit 5 ft dia. x 5 ft3 in. D</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-1748/9, H-2-71653, also shows manhole on top, below grade</td>
</tr>
<tr>
<td>241-UR</td>
<td>151</td>
<td>inactive - weather covered</td>
<td>master diversion box - uranium recovery - nozzle pit</td>
<td>9 ft W x 50 ft L w/ ~4 ft wall 10 ft from east end. x 13 ft3 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-33, H-2-40165</td>
</tr>
<tr>
<td>241-UR</td>
<td>151</td>
<td>inactive - weather covered</td>
<td>master diversion box - uranium recovery - pipe pit</td>
<td>13 ft11 in. W x 52 ft L x 6 ft9 in. D</td>
<td>none-underground</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-33, H-2-40165</td>
</tr>
<tr>
<td>241-UR</td>
<td>152</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - nozzle pit</td>
<td>9 ft W x 33 ft L x 8 ft2 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-34, H-2-40140</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-UR</td>
<td>152</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>13 ft 6 in. W x 22 ft L x D</td>
<td>precast cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-34, H-2-40140</td>
</tr>
<tr>
<td>241-UR</td>
<td>152</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>6 ft 6 in. x 16 ft x D</td>
<td>precast cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-34, H-2-40140</td>
</tr>
<tr>
<td>241-UR</td>
<td>153</td>
<td>Inactive and weather covered</td>
<td>Cascade diversion box - nozzle pit</td>
<td>9 ft W x 33 ft L x 8 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-35, H-2-40565</td>
</tr>
<tr>
<td>241-UR</td>
<td>153</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>6 ft6 in. x 16 ft x 8 ft D</td>
<td>precast covers</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-35, H-2-40565</td>
</tr>
<tr>
<td>241-UR</td>
<td>153</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>13 ft6 in. W x 22 ft L x 8 ft D</td>
<td>precast covers</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-2338-35, H-2-40565</td>
</tr>
<tr>
<td>241-UR</td>
<td>154</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - nozzle pit</td>
<td>9 ft W x 33 ft L x 8 ft D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40566</td>
</tr>
<tr>
<td>241-UR</td>
<td>154</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>6 ft6 in. x 16 ft x 8 ft D</td>
<td>precast covers</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40566</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-UR</td>
<td>154</td>
<td>Inactive and weather covered</td>
<td>cascade diversion box - pipe pit</td>
<td>13 ft 6 in. W x 22 ft L x 8 ft D</td>
<td>precast covers N none</td>
<td>Permit</td>
<td>H-2-40566</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>244-U</td>
<td>inactive</td>
<td>DCRT - pump pit</td>
<td>17 ft W x 19 ft L x 10 ft D</td>
<td>coverblocks</td>
<td>N none</td>
<td>Permit</td>
<td>H-2-73786</td>
</tr>
<tr>
<td>241-U</td>
<td>244-U</td>
<td>inactive</td>
<td>DCRT - filter pit</td>
<td>17 ft W x 19 ft L x 10 ft D</td>
<td>coverblocks</td>
<td>N none</td>
<td>Permit</td>
<td>H-2-73786</td>
</tr>
<tr>
<td>241-U</td>
<td>244-U</td>
<td>inactive</td>
<td>DCRT - flush pit</td>
<td>~4.5 ft dia. x 4 ft D</td>
<td>hinged cover Y none</td>
<td>Permit</td>
<td>H-2-76616, H-2-73910</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>244-U</td>
<td>inactive</td>
<td>DCRT - instrument pit</td>
<td>4 ft dia. x 8 ft D</td>
<td>manhole Y ladder</td>
<td>Permit</td>
<td>H-2-73793</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>244-U</td>
<td>inactive</td>
<td>DCRT - tank vault (annulus)</td>
<td>~16 ft - 4 in. W x 44 ft - 2 in. L x 26 in. D (10 in. + 16 ft)</td>
<td>coverblocks</td>
<td>N none</td>
<td>Permit</td>
<td>H-2-73786</td>
</tr>
<tr>
<td>241-UR</td>
<td>244-UR</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - jumper pit</td>
<td>3 ft W x 6 ft L x 5 ft D</td>
<td>metal cover N none</td>
<td>Permit</td>
<td>H-2-40218</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-001</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - pump pit</td>
<td>9.5 ft W x 42 ft L x 13 ft-6 in. D</td>
<td>coverblocks</td>
<td>N none</td>
<td>Permit</td>
<td>H-2-40218, pump pit runs the length the vault except for 004.</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space Contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>244-UR-001</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - tank vault</td>
<td>13 ft W x 16 ft L x 29 ft-6 in. D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218, 40 in. duct work along the N side of vault underground (plenum chamber), 30 in. ductwork along S side of vault underground (to 291-UR), both sealed with a concrete plug</td>
</tr>
<tr>
<td>244-UR</td>
<td>-001</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - abandoned tank</td>
<td>20 ft dia. x 20 ft D</td>
<td>~3 ft manhole opening into pump pit</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-002</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - jumper pit</td>
<td>~1.75 ft W x 5 ft L x 4 ft-6 in. D</td>
<td>metal cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-002</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - pump pit</td>
<td>9.5 ft W x 42 ft L x 13 ft-6 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218, pump pit runs the length the vault except for 004.</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-002</td>
<td>inactive - weather covered</td>
<td>uranium recovery tank vault</td>
<td>9.5 ft W x 12 ft L x 19 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-002</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - abandoned tank</td>
<td>14 ft dia. x 12 ft D</td>
<td>~3 ft manhole opening into pump pit</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U</td>
<td>244-UR-00 3</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - jumper pit</td>
<td>~1.75 ft W x 5 ft L x 4 ft-6 in. D</td>
<td>metal cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 3</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - pump pit</td>
<td>9.5 ft W x 42 ft L x 13 ft-6 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218, pump pit runs the length the vault except for 004.</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 3</td>
<td>inactive - weather covered</td>
<td>uranium recovery tank vault</td>
<td>9.5 ft W x 12 ft L x 19 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 3</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - abandoned tank</td>
<td>14 ft dia. x 12 ft D</td>
<td>~3 ft manhole opening into pump pit</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 4</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - pump pit</td>
<td>9.5 ft W x 8.5 ftL x 13 ft6 in. D</td>
<td>coverblocks</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 4</td>
<td>inactive - weather covered</td>
<td>uranium recovery tank vault</td>
<td>9.5 ft W x 8.5 ftL x 18 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
<tr>
<td>241-U</td>
<td>244-UR-00 4</td>
<td>inactive - weather covered</td>
<td>uranium recovery vault - abandoned tank</td>
<td>10 ft dia. x 14 ft D</td>
<td>~3 ft manhole opening into pump pit</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40218</td>
</tr>
</tbody>
</table>
Table R-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>241-U-361</td>
<td>Inactive</td>
<td>settling tank</td>
<td>20 ft dia. x 15 ft D</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-951, H-2-1748/9</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>Inactive</td>
<td>septic tank</td>
<td>700 gal, no other dimensions</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td>H-2-40241</td>
<td></td>
</tr>
<tr>
<td>241-U</td>
<td>Inactive</td>
<td>french drain</td>
<td>54 in. dia x ?</td>
<td>wooden cover</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-40241</td>
<td></td>
</tr>
</tbody>
</table>
Table R-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>271-U</td>
<td>Access: Unlocked door allows uncontrolled direct access to farm</td>
<td>Keep door locked and control key(s)</td>
<td>1910, 120</td>
<td>AIIIf</td>
<td>4D</td>
<td></td>
</tr>
<tr>
<td>U-701</td>
<td>Noise: No PPE for posted eye/hearing protection area</td>
<td>Survey area for noise levels and post as required</td>
<td>Y, .95</td>
<td>AIII</td>
<td>3A</td>
<td></td>
</tr>
<tr>
<td>CHNG TRLR</td>
<td>Obsolete SWP posted</td>
<td>Keep board current</td>
<td>.1200</td>
<td>AIIIc</td>
<td>4D</td>
<td></td>
</tr>
<tr>
<td>244-UR Vault</td>
<td>Labeling: Valve pit confined space unlabeled</td>
<td>Level space</td>
<td>Y, .1200</td>
<td>AIIIc</td>
<td>3C</td>
<td></td>
</tr>
<tr>
<td>241-U-A Valve pit</td>
<td>Cutting: Greenhouse has sharp metal strips protruding</td>
<td>File down burrs/edges or remove from farm</td>
<td>Y</td>
<td>AIIx</td>
<td>3B</td>
<td></td>
</tr>
<tr>
<td>U-B Flush PIT and U-A Valve pits</td>
<td>Contamination: Pit cover openings unsealed</td>
<td>Seal to protect from vapor exposure</td>
<td>Y, .120</td>
<td>AIIx</td>
<td>3B</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>Tripping: Numerous low level trip hazards unflagged</td>
<td>Remove those possible</td>
<td>Y, .22 - .30</td>
<td>BIIk</td>
<td>4C</td>
<td></td>
</tr>
<tr>
<td>271-UR</td>
<td>Carcinogen: C854 substation transformers unlabeled for PCB</td>
<td>Sample and label as "PCB Containing" or "PCB Free"</td>
<td>Y, .120</td>
<td>AIIx</td>
<td>2D</td>
<td></td>
</tr>
</tbody>
</table>

DATE OF ASSESSMENT: 12/14/95
DATE OF REPORT: 2/15/95
IS AND IH REPRESENTATIVES: ME NOLAN, GD MICKLE, DC CARLS
OTHER EMPLOYEES: INEZ AUSTIN
<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-106</td>
<td>Labeling: Respiratory signs not present</td>
<td>Label respiratory protection zone</td>
<td>Y</td>
<td>.1200</td>
<td>AIIC</td>
<td>3B</td>
</tr>
<tr>
<td>Flush pit U-B</td>
<td>Contamination: Open holes in pit cover</td>
<td>Seal holes</td>
<td>Y</td>
<td>.120</td>
<td>AIIX</td>
<td>4C</td>
</tr>
<tr>
<td></td>
<td>Fire plan is dated 1981</td>
<td>Contact Hanford Fire Department and schedule a pre-fire plan for this facility</td>
<td>Y</td>
<td>.1200 and DOE</td>
<td>BIIa</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>Evening illumination: Light levels are between 0.0 To 1.1 foot candles (0.0 To 11 LUX)</td>
<td>Workers required to perform duties at night or in low light situations will require additional lighting.</td>
<td></td>
<td>.120(m)</td>
<td>Blq</td>
<td>3B</td>
</tr>
</tbody>
</table>
APPENDIX S

HEALTH AND SAFETY PLAN
FOR THE 242-A EVAPORATOR
This page intentionally left blank.
APPENDIX S

HEALTH AND SAFETY PLAN
FOR THE 242-A EVAPORATOR

I. TANK FARM FACILITY DESCRIPTION

A. DESCRIPTION

The 242-A Evaporator is the fourth evaporator to be constructed at Hanford. The first three evaporators (B, T, and S) have been removed from service. The 242-A Evaporator was built in 1973 with operations starting in 1977. In 1989, the evaporator was shut down due to environmental concerns and modified to ensure that the 242-A Evaporator could be operational through the year 2000. This modification included a new control room and monitoring equipment, raw water service building, and other support equipment. Also included in the modification is the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility. These facilities will be used to process the process condensate from the 242-A Evaporator before it is released to the environment.

Liquid wastes with a high water content are blended together in a double shell underground storage tank (TK-102-AW). Tk-102-AW is called the evaporator feed tank. When the liquid feed has been blended, it is sampled and analyzed to establish the parameters (temperature and specific gravity) that will be used to process it.

Evaporator feed is processed in the evaporator recirculation loop. The recirculation loop includes the reboiler, the vapor/liquid separator, the recirculation pump, and the 28-inch piping that ties the components together. There are also several other components that support the operation of the recirculation loop.

The vapor for the vapor/liquid separator is drawn through the deentrainer pads into the 42-inch vapor header. The vapors pass through the vapor header to the primary condenser. In the primary condenser, the vapors pass around water cooled tubes. As the vapors contact the cool surfaces of the tubes, they condense and return to liquid. The liquids cooled in the primary condenser drain to the condensate collection tank (C-100). The remaining vapors then pass onto the inter-condenser and then to the after-condenser.
The vessel vent system draws the condensable gases from the after-condenser through a deentrainment pad and pre-filter to remove moisture and large particles. After the pre-filter, the gases pass through an electric heater to further reduce moisture. A two stage High Efficiency Particulate Filter Assembly (HEPA filter) removes any remaining fine particles. From the HEPA filters, the gases are discharged to the atmosphere by the vessel vent exhauster through the vessel vent stack.

The condensate collection tank (TK-C-100) is a 17,800 gallon stainless steel tank that receives liquids from the three condensers. When enough condensate has been collected in TK-C-100, the condensate is pumped from TK-C-100 through the condensate filter. Any particles larger than five one-thousandth of a millimeter are removed from the condensate stream and held in the filter. This prevents any particles in the condensate stream from clogging the ion exchange column (IX column) if used.

The IX column is used to remove additional Cesium 137 and Strontium 90 that may be present in the condensate stream. As condensate passes through the ion exchange medium, Cesium and Strontium will chemically bond with the medium material and remain in the resin bed. After passing through the IX column the condensate stream is sampled by a continuous monitoring system for radioactivity and hazardous material. The IX column is often bypassed due to the non-contaminated nature of the process condensate stream.

In the past, evaporator process condensate was sent to retention basins where is was sampled for radiological and chemical analysis. If the analysis met the guidelines for safe disposal, the condensate was released to the soil. Process condensate has been listed as a potentially hazardous substance. Consequently, the condensate stream has been rerouted and after passing through the monitoring system, the condensate stream is routed from the evaporator in specially designed pipes to LERF.

B. PERIMETER AND SUPPORT FACILITIES

The perimeter of the 242-A Evaporator is the structure of the building, which is located on the corner of 4th St and Buffalo Ave.
II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility Manager: Call 373-4565
Shift Manager: Call 373-2689 or 373-0104
Site Safety Representative or Officer: Call TWRS IH&S at 372-9427
Health Physics Supervisor: Call 373-2526
Emergency Point of Contact: Call Shift Manager 373-2689 and 911

B. KEY RESPONSIBILITIES

For detailed responsibilities, see Section 1.0 of the HASP. Key responsibilities include:

- Site access controlled by Shift Manager
- Work authorized and controlled by Facility Manager or delegate
- Safety and health oversight/support provided by WTSS
- Exposure/area monitoring specified by WTSS
- Exposure/area monitoring conducted by IH Services.

III. HAZARD EVALUATION AND CONTROLS

A. BUILDING CHARACTERISTICS:

The majority of the 242-A Evaporator Building, as defined by the perimeter exclusion zone of the tank farm, is classified as a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific areas that can be entered in level D work clothes/street clothes: AMU and HVAC, common areas accessible. Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the HASP and this Appendix, the Radiological Work Permits (RWP), and the ALARA Management Worksheets (AMW).
B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Stationary high noise sources are present in the 242-A Evaporator AMU room, HVAC room, and condenser room. Hearing protection is required as indicated by the posting located at the entrances to these areas.

2. A specific chemical that may pose a health hazard in the 242-A Evaporator is mercury. Mercury has been detected in the condenser room and a "Mercury Control Program" has been established. Chemical use is limited and is discussed in Section 2.0 of the HASP.

3. A listing of confined spaces for the 242-A Evaporator is in Table 1 of this Appendix. These spaces are labelled in the evaporator, and include such areas as utility vaults rooms, flush and valve pits, and tanks. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place prior to entry. See Section 10.0 of the HASP as well as Section VII of this document for more information.

4. Signs at the 242-A Evaporator warn that asbestos materials are present, including pipe lagging, wall panels, transite, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during facility activities unless specifically directed.

5. Safety hazards common to all tank farms and facilities are found in Section 2.0 of the HASP.

6. Falling hazards are located throughout the 242-A Evaporator. Access to all these areas are controlled in some manner. Areas in the condenser room contain physical barriers to protect personnel from fall hazards. Areas in the pump room will be controlled administratively by the use of pre-job briefings and fall hazard awareness prior to entry to that area. Entries to this area are few and average approximately 2 time/year. Installation of physical fall protection barriers in this area is not practical nor ALARA considering the administrative barriers currently in place, such as work control, access control, pre-job briefings and entry permit requirements.

C. TASK-BASED HAZARDS

Task based hazards will be identified in each work package.
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for the 242-A Evaporator are shown on the site map attached to this Appendix and are listed below.

1. **Exclusion zones** The exclusion zone (hot zone) includes the condenser room, evaporator room, pump storage room, truck loadout room, and IX column room. The hot zone is supplied with ventilation from an intake fan and in-leakage at the loading dock. Negative pressure in the hot zone is normally maintained by operation of the electric exhaust fan.

2. **A contamination reduction zone/corridor** (CRZ/CRC) or "cold zone" consists of the HVAC room, AMU room, survey area and corridor, soiled clothes area, and change area.

3. The **support zone** consists of the office area, control room, rest rooms, lunchroom, and corridor.

B. ACCESS CONTROL

Access to the 242-A Evaporator Building is to occur through the main entrance. Access to the 242-A Evaporator exclusion zones can be performed at the 272-AW WRAM station and the control room operator. All personnel who enter the 242-A Evaporator must notify the control room operator. Authorization for early morning or late evening entries can be done by using the phone by the main door.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements beyond those specified in Section 8.0 of the HASP have been identified for the 242-A Evaporator.
V. PERSONAL PROTECTIVE EQUIPMENT (PPE)

A. PPE REQUIREMENTS FOR EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of the 242-A Evaporator and include the following:

Level D PPE that is specified for designated 242-A Evaporator exclusion zone(s) consists of street clothes. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, safety glasses, or others.

Level B PPE that is specified for designated 242-A Evaporator exclusion zone(s) consists of the same protective clothing/equipment as Level D described above plus Anti-C clothing, headcover and supplied air respiratory protection with 5-minute escape bottle.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. PPE REQUIREMENTS FOR CONTAMINATION REDUCTION ZONE (CRZ)

Level D PPE is required, which for the CRZ/CRC consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health Representative (SSHR) and/or Health Physics Technician (HPT).

C. PPE REQUIREMENTS FOR TASK SPECIFIC HAZARDS

For specific tasks, PPE requirements are to be listed in Sections 2.0 and 4.0 of the HASP and/or work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

Entry into the CRZ/CRC or into an RBA/URMA - External dosimetry may be required as specified in the RWP.
Entry into confined spaces - Oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide, and others as specified on work permits are conducted prior to entry and possibly periodically or continuously during entry. See confined space entry permit for requirements.

An ammonia area monitor is in place for vapors/gases. There are six area radiation detectors in the 242-A Evaporator. The monitors are located (Figure S-1) in the following rooms: AMU room, HVAC room, evaporator room, loadout room, and condenser room basement and fourth level. There are also continuous air monitors (CAMS) located in the 242-A Evaporator. The CAM locations (Figure S-1) are: AMU room, HPT corridor, and the condenser room (on the fourth level).

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the SSHR or other designated TWRS IH&S representative for chemical and physical hazards, and by health physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this tank farm are shown on Table 1 of this Appendix. See Section 10.0 of the HASP for information on how to gain entry to and conduct work in confined spaces. DO NOT ENTER CONFINED SPACES WITHOUT:
1) VERIFYING THAT ENTRY REQUIREMENTS ARE IN PLACE, AND 2) OBTAINING SAFETY AND HEALTH AND OPERATIONS OVERSIGHT/SUPPORT.

VIII. DECONTAMINATION PROCEDURES

Radiological contamination is the only significant decontamination issue at tank farms at this time. See Section 7.0 of the HASP for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes 242-A Evaporator specific emergency information. Consult the WHC Building Emergency Plan, Appendix D, WHC-IP-0263-TF, for more details, as well as Section 9.0 of the HASP that applies to all tank farms and facilities.
Figure S-1. 242-A Evaporator Site Plan.

NOTE: THIS MAP IS TO BE USED FOR REFERENCE PURPOSES ONLY.

Westinghouse Hanford Co.

242A

DATE: 3-07-95

DRAWN BY: NF BARilo

CUSTOMER: DAVID CARLs
A. EVACUATION, ASSEMBLY AND ACCOUNTABILITY

Situations requiring evacuation are described in Section 9.0 of the HASP. Should evacuation of the 242-A Evaporator be necessary, the general staging area is located approximately 600 feet south of the building. In the event of an evacuation, proceed to the staging area for a head count.

B. EMERGENCY EQUIPMENT AVAILABLE AT THE 242-A EVAPORATOR

The 242-A Evaporator has a variety of fixed and portable emergency equipment. They are summarized below.

Fixed Emergency Equipment

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Control System</td>
<td>242-A</td>
<td>Assist in the control of a fire</td>
</tr>
<tr>
<td>Wet Pipe Sprinkler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyewash/Shower Stations</td>
<td></td>
<td>Assist in flushing unwanted chemical material</td>
</tr>
</tbody>
</table>

Portable Emergency Equipment

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Extinguishers</td>
<td></td>
<td>Use on Class A, B, & C fires</td>
</tr>
<tr>
<td>Dry Chemical</td>
<td></td>
<td>Use on Class A or B fires</td>
</tr>
</tbody>
</table>

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, VAPOR RELEASES

See Section 9.0 of the HASP for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>242-A AMU room</td>
<td>A1</td>
<td>Active</td>
<td>NaNO₃</td>
<td>TK E-101 Eluant tank</td>
<td>46 in. bolt on flange</td>
<td>Y</td>
<td>ladder</td>
<td>P</td>
<td>J. Harvey</td>
</tr>
<tr>
<td>242-A condenser room</td>
<td>A2</td>
<td>Active</td>
<td>Water</td>
<td>TK C-100 condensate tank</td>
<td>16 in. bolt on flange</td>
<td>N</td>
<td>P</td>
<td>J. Harvey</td>
<td>O₂ Deficiency Heat Stress RBA/URMA</td>
</tr>
<tr>
<td>242-A CONDENSOR ROOM</td>
<td>A3</td>
<td>Active</td>
<td>ION exchange column</td>
<td>IX column room</td>
<td>2 ft x 2 ft door</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>Heat Stress SCA</td>
</tr>
<tr>
<td>242-A evaporator room</td>
<td>A4</td>
<td>Active</td>
<td>Evaporator Pot</td>
<td>Evaporator room</td>
<td>Door</td>
<td>Y</td>
<td>Door</td>
<td>NP</td>
<td>J. Harvey</td>
</tr>
<tr>
<td>242-A PUMP ROOM</td>
<td>A5</td>
<td>Active</td>
<td>Pump Jumpers</td>
<td>Pump room</td>
<td>Door</td>
<td>Y</td>
<td>Door</td>
<td>NP</td>
<td>J. Harvey</td>
</tr>
<tr>
<td>242-A condensor room</td>
<td>A6</td>
<td>Active</td>
<td>Water</td>
<td>C-103 Weir box</td>
<td>Lid on Box</td>
<td>N</td>
<td>NP</td>
<td>J. Harvey</td>
<td>Mechanical hazards Heat Stress RBA/URMA</td>
</tr>
<tr>
<td>242-A Condensor room</td>
<td>A7</td>
<td>Active</td>
<td>Air</td>
<td>Space under tank C-100</td>
<td>Cutouts in shell support</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>O₂ Deficiency Heat Stress RBA/URMA Insects Illumination</td>
</tr>
<tr>
<td>242-A/207-A Valve pit</td>
<td>A8</td>
<td>Active</td>
<td>Empty</td>
<td>207-A valve pit</td>
<td>Hatch on pit cover</td>
<td>Y</td>
<td>NP</td>
<td>J. Harvey</td>
<td>Heat Stress SCA</td>
</tr>
<tr>
<td>242-A Hot equipment room</td>
<td>A9</td>
<td>Active</td>
<td>Empty</td>
<td>Hot equipment room sumps</td>
<td>Cover in floor opening</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>Heat Stress SCA</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>242-A Condensor room</td>
<td>A10</td>
<td>Active</td>
<td>Air</td>
<td>Exhaust duct wall opening</td>
<td>Duct opening</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>Heat Stress SCA</td>
</tr>
<tr>
<td>242-A HVAC room</td>
<td>A11</td>
<td>Active</td>
<td>Air</td>
<td>K1/K2 plenum doors</td>
<td>14 in. x 72 in. door</td>
<td>Y</td>
<td>NP</td>
<td>J. Harvey</td>
<td>Heat Stress Insects</td>
</tr>
<tr>
<td>242-A HVAC/right of K2-5-1 fan</td>
<td>A12</td>
<td>Active</td>
<td>Air</td>
<td>K2 Plenum door/right side</td>
<td>14 in. x 72 in. door</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>Mechanical hazard Heat Stress RBA/URMA</td>
</tr>
<tr>
<td>242-A Turbine building</td>
<td>A13</td>
<td>Active</td>
<td>Air</td>
<td>Steam condensate pit</td>
<td>Grating</td>
<td>Y</td>
<td>ladder</td>
<td>NP</td>
<td>Steam lines insects</td>
</tr>
<tr>
<td>South of 242-A back-up generator</td>
<td>A14</td>
<td>Active</td>
<td>Air</td>
<td>Diesel fuel storage tank</td>
<td>22 in. bolt on flange</td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>Vapors illumination small opening</td>
</tr>
<tr>
<td>242-A AMU room</td>
<td></td>
<td>Active</td>
<td>Air/Water</td>
<td>TK E-104 decon tank</td>
<td></td>
<td>Y</td>
<td>P</td>
<td>J. Harvey</td>
<td>O₂ Deficiency Heat Stress RBA/URMA</td>
</tr>
</tbody>
</table>
S-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/1/95
DATE OF REPORT: 3/13/95
IS AND IH REPRESENTATIVES: _FRED ZAK_/ _ROGER MITCHELL_
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 242-A
OTHER EMPLOYEES: _STEVE BURT_

### Location Room/Area	Description of Task/Hazard	Hazard Controls or Recommended Abatement	Abatement Required	Relevant Standard	Keyword	RAC
Pump Room | Floor grating not labeled for load. | Label. | Y | .22 | AIIIc | 3C
Pump Room | Crane inspection out of date. | Inspect and record. | Y | .179 | BIIw | 2B
HVAC Room | Temporary scaffolding has been in place several months. | Replace or remove. | Y | .28 | BIIIm | 1B
HVAC Room | Area behind blowers dark. | Lighting survey. | Y | .120 | BIIg | 3B
HVAC | Head bump hazard on A-6 vent line. | Pad and post sign. | Y | .22 | AIIIc | 3A
Roof | Air inlets close to sewer drain could lead to introduction of effluent gasses into building. | Ventilation assessment. | Y | ASHRAE 62-1989 | Alh | 3b
Roof of HVAC | Ladder exits near edge, handrail may be needed. | Extend ladder height and/or add hand rail. | Y | .23 and .27 | BIII | 1A
HVAC Room | K1 fan has sharp edges on housing. | Pad and post. | Y | .22 | AIIIc | 3A
AMU Room | General housekeeping. | housekeeping. | Y | .141 | BIIz | 4B
Pump Room and HVAC | Large valve wheels present ergonomic hazard. | Re-engineer. | Y | Gen. Duty Clause | Alli | 4C
S-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 2/1/95
DATE OF REPORT: 3/13/95
IS AND IH REPRESENTATIVES: FRED ZAK/ROGER MITCHELL
ASSESSMENT NUMBER:
AREA: 200E
FACILITY: 242-A
OTHER EMPLOYEES: STEVE BURT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser Room</td>
<td>Mercury contamination needs to be remediated.</td>
<td>Continue cleanup and reassess</td>
<td>Y</td>
<td>.1000</td>
<td>AIIx</td>
<td>1B</td>
</tr>
<tr>
<td>AMU</td>
<td>Carcinogens located in flammable cabinets, no carcinogen use justifications. Chemical inventory needs to be revised and updated.</td>
<td>Remove carcinogens</td>
<td>Y</td>
<td>.1200</td>
<td>AIlz</td>
<td>2C</td>
</tr>
<tr>
<td>AMU</td>
<td>Water running down east wall of AMU room and behind electrical panels.</td>
<td>Locate/seal water leak.</td>
<td>Y</td>
<td>.333</td>
<td>BI1q</td>
<td>1A</td>
</tr>
<tr>
<td>Condenser Room - 3rd floor</td>
<td>VV inlet bleed line tripping hazard.</td>
<td>Redesign or stripe as hazard.</td>
<td>Y</td>
<td>.22</td>
<td>BI1k</td>
<td>3B</td>
</tr>
<tr>
<td>Condenser Room - 2nd floor</td>
<td>Conduit and bracket sticking into aisle way.</td>
<td>Re-engineer or pad.</td>
<td>Y</td>
<td>.22</td>
<td>AIIIc</td>
<td>3A</td>
</tr>
<tr>
<td>Condenser Room - 1st level</td>
<td>Head bump hazards (several).</td>
<td>Pad and post.</td>
<td>Y</td>
<td>.22</td>
<td>AIIIc</td>
<td>3A</td>
</tr>
<tr>
<td>Condenser Room - Main floor</td>
<td>Exit door difficult to open.</td>
<td>Repair.</td>
<td>Y</td>
<td>.37</td>
<td>AIIIi</td>
<td>1B</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
APPENDIX T

HEALTH AND SAFETY PLAN FOR THE
242-S EVAPORATOR BUILDING
This page intentionally left blank.
APPENDIX T

HEALTH AND SAFETY PLAN FOR THE
242-S EVAPORATOR BUILDING

I. BUILDING DESCRIPTION

A. GENERAL

The 242-S Evaporator Building is a five-story building which is no longer in use as an evaporator. The building is now used as a monitoring station for S and SY farms.

As a result of activities originally performed in the building, many areas are highly contaminated. Specific areas require different levels of protection.

The 242-S building is located adjacent to SY, S, and SX farms, which have tanks that vent organic vapor/ammonia to the atmosphere and tanks that produce high heat and hydrogen/flammable gas.

Controlled areas are established for both radiological and chemical hazards.

B. WIND INDICATION

Wind socks located at the north side of S farm adjacent to the Data Acquisition and Control System (DACS) trailer and on the west side of S farm indicate wind direction and to aid in locating onsite work activities, positioning structures and equipment, and planning approach routes.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Control room: 373-5528
Shift manager: 373-3475
Site safety representative or officer: TWRS IH&S at 372-3242
West Area TWRS IH&S Satellite Office: 372-1779
Health Physics supervisor: 373-1765 (back shift make radio call)
Emergency point-of-contact: call shift manager and 911 DACs trailer (SY farm): 373-4854/2630/4250

B. KEY RESPONSIBILITIES

For detailed responsibilities, see the Tank Farm Health and Safety Plan (HASP), Section 1.0.

- Site access controlled by the shift manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. BUILDING CHARACTERISTICS

The majority of the 242-S Evaporator Building, as defined by the perimeter exclusion zone of the tank farm, is classified as a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific areas that can be entered with Level D personal protective equipment (PPE) include Aqueous Makeup Room (AMU); heating, ventilation, and air-conditioning (HVAC) (via north service entrance); and common areas accessible via the main entrance. Specific controls for activities within the perimeter exclusion zone (also the RBA/URMA) are specified in the Tank Farm HASP, this Appendix, the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

Stationary high-noise sources are present near the 242-S Evaporator Building. The HVAC and compressor on the south east edge of the evaporator require protective measures when in operation. Hearing protection is also required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the farm.
2. Chemicals

No specific chemicals are used on the 242-S Evaporator Building that are atypical of operations at other tank farms. Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

Confined spaces for the 242-S Evaporator Building are listed in Table T-1. Some of these spaces are labelled in the building. Hazard controls must be specified in a confined space entry permit, and controls must be verified as in place before entry. See Section VII, and the Tank Farm HASP, Section 10.0, for more information.

4. Asbestos

Warning signs posted at the 242-S Evaporator Building alert workers that asbestos materials are present. Asbestos may be present in materials such as pipe lagging, wall panels, transit, flange gaskets, and roof felt. Anything painted pink must be assumed to contain asbestos. Such materials must not be disturbed during tank farm activities unless specifically directed.

5. Fall Hazards

The roofs of the evaporator require caution when working near the edge. (See Fall Protection Program, WHC-CM-4-3) The area adjacent to the ladder head on the intermediate roof poses an immediate hazard to the worker. The entire intermediate roof and main roof edges of the evaporator where there is no railing require caution and protective measures.

C. TASK-BASED HAZARDS

The proximity of the 242-S building makes the tasks performed in the tank farms potentially hazardous to building occupants. Tasks common to all or many tank farms and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.
IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for the 242-S Evaporator Building are clearly marked in the building. Because of the size of the building and the infrequency of entry to most of it, specific areas will not be addressed.

1. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the RBA/URMA portion of the change room and the air lock leading into the hot side of the building. Currently at the 242-S Evaporator, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the CRC and support room are equipped and designed to address the radiological contamination hazards in accordance with the Hanford Site Radiological Control Manual.

2. Support Zone

The support zone consists of the portion of the change room outside the RBA/URMA and the remaining common areas of the building. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 West Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to the 242-S Evaporator Building is to occur through the main entrance. There are two other doors that open to the support zone portions of the building, but they are not to be used for normal entrance. A separate entry for the AMU room can be used by personnel who have duties requiring them to be there. All personnel who enter must notify the Control Room Operator. The change room will be used for entry into the 242-S only.
Figure T-1. 242-S Evaporator Site Plan.
C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for the 242-S Evaporator Building beyond those specified in the Tank Farm HASP, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of the 242-S Evaporator Building and include the following:

- Normal street clothing or coveralls can be worn in the common, AMU and HVAC areas within the building (i.e., lunch room, offices, control room, and a portion of the change room).

- Level D PPE is required inside the "contaminated" portion of the change room and beyond to the tank farms or other surface contamination area (SCA) portions of the building. Required Level D PPE consists of anti-contamination (anti-C) protective clothing. RWP s may specify additional Level D PPE requirements as necessary.

PPE for any interior areas controlled for radiological hazards will be identified on the RWP s.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Anything else which may require other PPE will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

Required task-specific PPE are listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.
VI. MONITORING REQUIREMENTS

For entry into the contamination reduction zone (CRZ)/CRC, or into an RBA/URMA, external dosimetry is required as specified in the RWP.

Monitoring is conducted before entry into confined spaces. The Confined Space Entry Permit shall specify the frequency and the hazard(s) to be monitored. (i.e. oxygen, explosivity, organic vapors, ammonia, hydrogen cyanide.)

As determined by TWRS IH&S, personal exposure monitoring will be conducted for representative workers performing tank farm containment breaches, intrusive work on any tank, asbestos work, and other activities with credible exposures.

The nearest continuous air monitor for airborne radiological monitoring is located on the building exhaust system.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.

VII. CONFINED SPACE ENTRY

Confined spaces for this building are shown on Table T-1. See the Tank Farm HASP, Section 10.0, for information on gaining entry to and conducting work in confined spaces. **Do not enter confined spaces without:** (1) verifying that entry requirements are in place, and (2) obtaining Safety and Health and Operations oversight/support.

VIII. DECONTAMINATION PROCEDURES

Currently at the 242-S Evaporator Building, radiological contamination is the only significant decontamination issue. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.
IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for the 242-S Evaporator Building. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll 1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires or other sudden threats. Because there is no backup generating facility, loss of utilities at the 242-S Evaporator Building may result in loss of the operating capacity except for the following equipment:

- Control and instrument systems for SY farm (DACs backup monitoring).

A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the Tank Farm HASP, Section 9.0. Should evacuation of the 242-S Evaporator Building be required, personnel should assemble either at a point 182.88 m (200 yd) west of the 242-S building or at an alternate location upwind.

B. EMERGENCY EQUIPMENT AVAILABLE AT 242-S EVAPORATOR BUILDING

The 242-S Evaporator Building Fire Plan is posted on the wall of the change room.

The following equipment is available:

- First Aid and Bloodborne Pathogen kits (located on the wall near the main entrance of the change area)
- Wind sock (located just outside the SY DACs trailer)
- Panic button and fire alarm (located just outside 242-S Control Room; yellow flashing light indicates that tank pumps are operating)
- Two self-contained breathing apparatus (located in the change room)
- Ladder (located in adjacent CONEX)
- Protective clothing (available in the change room)
Radiological monitoring equipment (located in the change trailer)

Fire extinguishers are located at
- The hallway adjacent to the lunchroom
- Control Room
- AMU
- HVAC
- 3rd and 5th Floor Condenser rooms
- 4th Floor Condenser room (on catwalk)
- Buildings 271-SY, 244-S, and 271-A (tank farms)
- Turbine building (outside).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID,ALARMS, VAPOR RELEASES

See the Tank Farm HASP, Section 9.0, for information on these and other emergency response issues.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>242-S</td>
<td>active</td>
<td>acid storage tank</td>
<td>20 ft H x 15 ft dia.</td>
<td></td>
<td></td>
<td></td>
<td>Permit</td>
<td>currently used for water storage</td>
<td></td>
</tr>
<tr>
<td>242-S</td>
<td>active</td>
<td>acid storage berm</td>
<td></td>
<td>ladder</td>
<td></td>
<td>Y</td>
<td>Non-Permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242-S</td>
<td>Inactive</td>
<td>loading dock room</td>
<td>12 ft W x 23 ft 10 in. L x 21 ft 6 in. H</td>
<td>door to AMU</td>
<td></td>
<td>Y</td>
<td>door</td>
<td>NA</td>
<td>H-2-46269, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td>Inactive</td>
<td>loadout and hot equip. room</td>
<td>12 ft W x 22 ft 2 in. L x 32 ft H</td>
<td>hatch in ceiling</td>
<td></td>
<td>N</td>
<td>none</td>
<td>Non-permit</td>
<td>H-2-46269, H-2-46272, H-2-46270</td>
</tr>
<tr>
<td>242-S</td>
<td>Inactive</td>
<td>Hot equipment room sump</td>
<td>35.5 in. dia. x 53 in. D</td>
<td>none</td>
<td></td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-46366</td>
</tr>
<tr>
<td>242-S</td>
<td>Inactive</td>
<td>pump room</td>
<td>18 ft W x 22 ft 2 in. x 21 ft 6 in. H</td>
<td>door from evap room</td>
<td></td>
<td>Y</td>
<td>ladder to bottom level</td>
<td>Non-permit</td>
<td>H-2-46269, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td>Inactive</td>
<td>evaporator room</td>
<td>22 ft 2 in. W x 25 ft 4 in. L x 71 ft 5.5 in. H (10 ft below grade, 61 ft 5.5 in. above grade)</td>
<td>4 levels - enter at ground level via door on S side outside 242-S, door to outside at 40 ft6 in. level w/ catwalk and ladder</td>
<td></td>
<td>Y</td>
<td>ladders w/platforms to all levels</td>
<td>Non-permit</td>
<td>H-2-46269, H-2-46272, H-2-46270, H-2-46271, H-2-46272</td>
</tr>
<tr>
<td>Location</td>
<td>ID No.</td>
<td>Active/Inactive</td>
<td>Space Contents</td>
<td>Description of CS</td>
<td>Description of personnel entrance</td>
<td>Access</td>
<td>Type of access</td>
<td>Permit/Not permitted</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>242-S</td>
<td>CA-1</td>
<td>Inactive</td>
<td>evaporator vessel</td>
<td>12 ft 5 in. dia., 14 ft OD liquid section, 11 ft 6 in. OD vapor section, 41 ft 1-3/4 in. OA height, 100 ft-42.8 in. bottoms circ. loop.</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>Struthers Wells Corp. DWG No. 71-05-101-32 F1</td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>AMU</td>
<td>24 ft W x 44 ft 10 in. L x 21 ft H</td>
<td>2 levels - access via dbl doors from N side 242-S, and to SWP lobby</td>
<td>Y</td>
<td>stairs to mezzanine on second floor (elev. 12 ft 8 in.)</td>
<td>NA</td>
<td>H-2-46269, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>cleanout box</td>
<td>4 ft dia. x ? D</td>
<td>1/4 in. manhole cover</td>
<td>N</td>
<td>none</td>
<td>Non-permit</td>
<td>H-2-46269, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>crane Service platform access to loadout and hot equip. room</td>
<td>12 ft W x 24 ft 5 in. L platform open to 22 ft 2 in. x 31 ft 10 ft x 32 ft H room over loadout and hot equip. room</td>
<td>door from HVAC room</td>
<td>Y</td>
<td>door</td>
<td>Non-Permit</td>
<td>H-2-46269, H-2-46272, H-2-46270</td>
</tr>
<tr>
<td>242-S</td>
<td>E-C-1</td>
<td>Inactive</td>
<td>Primary condenser tank</td>
<td>85 in. ID x 17 ft 5-1/8 in. OA length.</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>Struthers Wells Corp. Dwg. No. 71-04-30917 D11</td>
</tr>
<tr>
<td>242-S</td>
<td>E-C-2</td>
<td>Inactive</td>
<td>Inter-Condenser tank</td>
<td>16 in. ID x 87 in. OA length</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>Schuttle and Koerting Co. Dwg. No. 72-X-E-001-J</td>
</tr>
<tr>
<td>242-S</td>
<td>E-C-3</td>
<td>Inactive</td>
<td>After Condenser tank</td>
<td>8 in. ID x 93-7/8 in. OA length</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>Schuttle and Koerting Co. Dwg. No. 72-X-E-001-J</td>
</tr>
</tbody>
</table>
Table T-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Spacing contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>242-S</td>
<td>E-A-1</td>
<td>Inactive</td>
<td>Reboiler</td>
<td>40.5 in. OD x 15 ft OA length</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>Struthers Wells Copr., Drwg. No. 71-04-3I000 D1</td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>condenser room</td>
<td>24 ft W x 27 ft L x 66 ft 5.5 in. H</td>
<td>door to SWP lobby, door to outside at 40 ft6 in. level w/ catwalk and ladder, door to outside at 50 ft6 in. level.</td>
<td>Y</td>
<td>stairs to other levels.</td>
<td>Non-Permit</td>
<td>H-2-46269, H-2-46272, H-2-46270, H-2-46271, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td>C-100</td>
<td>Inactive</td>
<td>condensate collection tank</td>
<td>21 ft H x 14 ft dia.</td>
<td>36 in. agitator port</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-46357</td>
</tr>
<tr>
<td>242-S</td>
<td>C-103</td>
<td>Inactive</td>
<td>Flow measurement tank</td>
<td>42 in. W x 72 in. L x 36 in. H</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-46370</td>
</tr>
<tr>
<td>242-S</td>
<td>TK E-101</td>
<td>Inactive</td>
<td>eluent tank</td>
<td>9 ft H x 9 ft dia.</td>
<td>36 in. agitator port</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-46355</td>
</tr>
<tr>
<td>242-S</td>
<td>RE-1</td>
<td>Inactive</td>
<td>air receiver tank</td>
<td>3-4 ft dia.??</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>ion exchange room</td>
<td>9 ft W x 6 ft L x 18 ft9 in. H</td>
<td>hatch on top, door at grade into condenser room</td>
<td>Y</td>
<td>ladder to top hatch on outside of 242-S</td>
<td>Permit</td>
<td>H-2-46269, H-2-46272</td>
</tr>
<tr>
<td>242-S</td>
<td>IX-D-1</td>
<td>Inactive</td>
<td>Ion exchange column</td>
<td>4 ft dia. x 13.5 ft H</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>Permit</td>
<td>H-2-46359</td>
</tr>
<tr>
<td>242-S</td>
<td></td>
<td>Inactive</td>
<td>HVAC room</td>
<td>23 ft 6 in. x 34 ft 10 in. x 8 ft H</td>
<td>door to AMU, door to outside at 1st floor roof level</td>
<td>Y</td>
<td>doors</td>
<td>NA</td>
<td>H-2-46270</td>
</tr>
</tbody>
</table>
Table T-1. West Tank Farm Confined Spaces.

<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>242-S AMU</td>
<td>TK E-104</td>
<td>Inactive</td>
<td>decon tank</td>
<td>4 ft 6 in. dia. x 5 ft3 in. H</td>
<td>10 in. chemical cleanout</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-46365, H-2-74637</td>
</tr>
<tr>
<td>242-S</td>
<td>E-102</td>
<td>Inactive</td>
<td>Anti-foam tank</td>
<td>2.5 ft x 2.5 ft</td>
<td>none</td>
<td>N</td>
<td>none</td>
<td>NA</td>
<td>H-2-46365</td>
</tr>
<tr>
<td>272-S</td>
<td>2607-WC</td>
<td>active</td>
<td>siphon chamber</td>
<td>5 ft W x 6 ft L x 3 ft D via 2 ft pipe from manhole</td>
<td>2 ft manhole</td>
<td>Y</td>
<td>1/4 in. thk manhole cover w/bail</td>
<td>Permit</td>
<td>H-2-74637</td>
</tr>
<tr>
<td>272-S</td>
<td>2607-WC</td>
<td>active</td>
<td>septic tank</td>
<td>5 ft W x 14 ft 4 in. L x 7 ft D via 2 ft pipe from manhole</td>
<td>2 ft manhole</td>
<td>Y</td>
<td>1/4 in. thk manhole cover w/bail, ladder</td>
<td>Permit</td>
<td>H-2-74637</td>
</tr>
</tbody>
</table>
Table T-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Room</td>
<td>Current Safe Work Practice not posted.</td>
<td>Keep Safety Board current.</td>
<td>Y</td>
<td>1910, 1200</td>
<td>AIIIc</td>
<td>4C</td>
</tr>
<tr>
<td>Change Room /Step Off Pad</td>
<td>Electrical: Two electrical extension cords running around wall. One use for radio, one for nothing.</td>
<td>Remove extension cords and hardwired radio.</td>
<td>Y</td>
<td>.303</td>
<td>Blq</td>
<td>3B</td>
</tr>
<tr>
<td>AMU Room</td>
<td>Labeling: Safety Shower not posted as Out Of Service.</td>
<td>Post shower or remove.</td>
<td>Y</td>
<td>.1200 and .147</td>
<td>AIIIc</td>
<td>4D</td>
</tr>
<tr>
<td>AMU Room</td>
<td>Fire: Flammable cabinet is being used for storage of miscellaneous materials.</td>
<td>Storage not authorized in this area. Remove cabinet and Spill Kit.</td>
<td>Y</td>
<td>.120</td>
<td>Blc</td>
<td>2C</td>
</tr>
<tr>
<td>AMU Room/Second Floor</td>
<td>Slipping: Water on floors</td>
<td>Mop up regularly and seal leak.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk</td>
<td>3D</td>
</tr>
<tr>
<td>AMU Room/Second Floor</td>
<td>Fire: Exit blocked by scaffolding.</td>
<td>Remove Scaffolding.</td>
<td>Y</td>
<td>LIFE SAFETY CODE</td>
<td>Blf</td>
<td>3D</td>
</tr>
<tr>
<td>AMU Room/Second Floor</td>
<td>Tripping / Falling: Scaffolding floor not wired down.</td>
<td>Wire floor boards or remove scaffolding.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk</td>
<td>4C</td>
</tr>
<tr>
<td>LOCATION ROOM/AREA</td>
<td>DESCRIPTION OF TASK/HAZARD</td>
<td>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</td>
<td>ABATEMENT REQUIRED</td>
<td>RELEVANT STANDARD</td>
<td>KEYWORD</td>
<td>RAC</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Roof (intermediate)</td>
<td>Falling: Area adjacent to header of ladder is not guarded properly.</td>
<td>A rope is used to guard open roof edge. Provide proper railing or fall protection when working near edge of roof.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk</td>
<td>2C</td>
</tr>
<tr>
<td>Roof (Top)</td>
<td>Falling: Roof edges not all guarded.</td>
<td>Provide proper railing or fall protection when working on edge of roof.</td>
<td>Y</td>
<td>.22 -.30</td>
<td>BIIk</td>
<td>1C</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
APPENDIX U

HEALTH AND SAFETY PLAN
FOR THE 204-AR FACILITY
This page intentionally left blank.
I. FACILITY DESCRIPTION

A. DESCRIPTION

The 204-AR facility serves as a railcar and tanker trailer unloading facility for tank farms. The 204-AR facility is located near the northwest corner of 4th Street and Buffalo Avenue. Liquid radioactive wastes from Hanford Site facilities are delivered to 204-AR via 75,708.24-L (20,000-gal) railcars and tanker trailers. The tanker liquids are pumped to tank farm storage tanks for later processing. The facility is fully enclosed, heated, and has an active ventilation system. The electric ventilation system is backed up by a diesel-powered emergency generator. Railcars are specifically designed for unloading in this facility and for decontamination after the unloading process.

B. SUPPORT FACILITIES

The only support facility is a shed attached to the 204-AR facility that houses a compressor which provides process and instrument air.

C. WIND INDICATION

No wind indication is required for the operation of this facility.

II. ORGANIZATION AND POINTS OF CONTACT

A. KEY POINTS OF CONTACT

Facility manager: 373-2689
Shift supervisor: 373-2820
Site safety representative or officer: 372-2681
Health Physics supervisor: 373-2526
Emergency point-of-contact: call shift supervisor and 911
B. KEY RESPONSIBILITIES

For detailed responsibilities, see the *Tank Farm Health and Safety Plan* (HASP), Section 1.0. Key responsibilities include:

- Building access controlled by the shift supervisor
- Work authorized and controlled by the facility manager
- Safety and health oversight/support provided by TWRS IH&S
- Exposure/area monitoring specified by TWRS IH&S
- Exposure/area monitoring conducted by IHFS.

III. HAZARD EVALUATION AND CONTROLS

A. FACILITY CHARACTERISTICS

Railcars and tanker cars enter the facility on the west end through an outer rollup door and inner double doors. The car is positioned in the unloading room by alignment marks on the floor. A walkway platform is attached from the mezzanine level to the copula at the top of the car. This permits operator access to the copula and facilitates connection of the pumping and flushing jumper nozzles to the car.

The 204-AR unloading room is classified as a surface contamination area (SCA) and is a Radiological Buffer Area/Underground Radioactive Material Area (RBA/URMA). Specific controls for activities within the unloading room are specified in the *Tank Farm HASP*, this appendix, in the Radiation Work Procedures (RWP), and the ALARA (as low as reasonably achievable) Management Worksheets.

B. SPECIFIC PHYSICAL, CHEMICAL, AND SAFETY HAZARDS

1. Noise

No stationary high-noise sources are present in 204-AR. Hearing protection is only required if specified in work packages or permits to control intermittent noise sources from any equipment brought into the facility.
2. Chemicals

The following chemicals are used in 204-AR operations.

- Sodium nitrite (NaNO₂) is added to the liquid waste to bring the waste from the tank cars up to double-shell tank corrosion specifications using an in-line mixer as the waste is pumped to the double-shell tanks.

- Sodium hydroxide (NaOH), in addition to sodium nitrite, is added to the liquid waste to bring the waste from the tank cars up to double-shell tank corrosion specifications using an in-line mixer as the waste is pumped to the double-shell tanks.

- Orthophosphate (Na₂HPO₄) is used at the 204-AR facility to calibrate pH probes. The compound is disposed of in the double-shell tanks.

Material safety data sheets (MSDS) are available in the facility.

Chemical use is limited and is discussed in the Tank Farm HASP, Section 2.0.

3. Confined Spaces

There are no confined spaces within 204-AR.

4. Asbestos

There are no asbestos materials present in 204-AR.

C. TASK-BASED HAZARDS

Tasks common to all or many tank farms and related facilities and their associated hazard evaluations are listed in the Tank Farm HASP, Section 2.0. Hazards and controls for specific tasks can also be found in the work packages and work permits developed for the specific task as part of the work control process.

Tasks having additional task-based hazard controls specific to 204-AR include replacement of high-efficiency particulate air (HEPA) filters, changeout of seal loop fluid, and any other containment breach (e.g., opening of railcars). These tasks must
be conducted with Level C PPE (air respirators) to protect against the confirmed radiological hazard. This level of protection shall not be reduced for containment breaches on these tanks regardless of monitoring results.

- Fall protection is required when extending the walking platform from the mezzanine to the copula of the railcar.
- Closing of the inner doors with the railcar in place presents a hazard for personnel in the vicinity.

IV. SITE CONTROLS

A. WORK ZONES

Work zones and controlled areas for 204-AR are listed below:

1. Perimeter Exclusion Zone

There is no perimeter exclusion zone at 204-AR.

2. Interior Exclusion Zones

The unloading room and mezzanine has been established and serves as both a surface contamination area (SCA) and a controlled area for nonradiological hazards.

In addition to the SCA, any interior areas of radiological controls are posted onsite, with controls specified in RWPs.

3. Contamination Reduction Zone/Contamination Reduction Corridor

This zone consists of the SCA portion of the stairway from the clean laundry room down to the entrance to the unloading room. The decontamination line is through the SCA portion of the airlock outside the clean laundry room where workers doff PPE, scan for radiological contamination, and perform any necessary decontamination.
Currently at 204-AR, the only significant skin or clothing contamination potential is for radiological contamination; therefore, procedures are implemented and the contamination reduction corridor (CRC) and support areas are equipped and designed to address the radiological contamination hazards in accordance with the *Hanford Site Radiological Control Manual*.

4. Support Zone

The support zone consists of the portion of the clean laundry room outside the SCA and the area between the laundry room and control room. No controls other than normal Westinghouse Hanford Company Hanford Site and 200 East Area Tank Farm safety and health requirements are specified in the support zone.

B. ACCESS CONTROL

Access to 204-AR is to occur only through the contamination reduction zone (CRZ)/CRC (east door of the facility and the control room) unless otherwise specified in an approved work package. Access through the north door is permitted for entry into the mechanical equipment room for chemical makeup activities. Authorization for entry/access must be obtained from the 200 East Area Tank Farm shift operations manager.

C. COMMUNICATIONS/BUDDY SYSTEM

Unless shown on task-based permits or work packages, no specific communications or buddy system requirements have been identified for 204-AR beyond those specified in the *Tank Farm HASP*, Section 8.0.

V. PERSONAL PROTECTIVE EQUIPMENT REQUIREMENTS

A. EXCLUSION ZONES

Two levels of PPE are required in designated exclusion zones of 204-AR.

- Level D PPE is required inside the unloading room. Required Level D PPE consists of anti-contamination (anti-C) protective clothing to include shoe covers, rubber overshoes, coveralls, and inner and outer gloves. Inner gloves and shoe covers must be taped to coveralls to seal
the seams. RWPs may specify additional Level D PPE requirements such as headcover, double coveralls, hard hat, or safety glasses.

- Level C PPE is required inside the unloading room when railcar containment is breached. Required Level C PPE consists of the same protective clothing/equipment as Level D described above plus headcover and air respiratory protection.

PPE for any interior areas controlled for radiological hazards will be identified on the RWPs.

B. CONTAMINATION REDUCTION ZONE

Required Level D PPE consists only of general work clothes. Specific tasks, such as decontamination of equipment, may require additional Level D protective clothing such as that worn in the exclusion zone. If so, these requirements will be specified in the RWP or by the Site Safety and Health representative and/or Health Physics technician.

C. TASK-SPECIFIC HAZARDS

For specific tasks, PPE requirements are to be listed in the Tank Farm HASP, Sections 2.0 and 4.0, and/or in work packages and work permits developed for the task.

VI. MONITORING REQUIREMENTS

For entry into the CRZ/CRC, inside the facility, or into an SCA, external dosimetry is required as specified in the RWP.

There are four continuous air monitors for airborne radiological monitoring and two radiation monitors in the facility. A continuous air monitor provides facility stack ventilation effluent monitoring.

Any task-based monitoring requirements, in addition to those specified above, are identified in work packages and work permits by the Site Safety and Health representative or other designated TWRS IH&S representative for chemical and physical hazards, and by Health Physics for radiological hazards.
VII. CONFINED SPACE ENTRY

There are no confined spaces in 204-AR.

VIII. DECONTAMINATION PROCEDURES

Radiological contamination is the only significant decontamination issue at tank farms and related facilities at this time. See the Tank Farm HASP, Section 7.0, for information on decontamination procedures.

IX. EMERGENCY RESPONSE

This section summarizes emergency information specific for the 204-AR facility. For additional information regarding emergency response issues, consult the Tank Farm Facility Building Emergency Plan, WHC-IP-0263-TF, Appendix D (Loll'1992), and the Tank Farm HASP, Section 9.0, which applies to all tank farms and associated facilities.

Operational emergencies could include industrial accidents and injuries, loss of utilities, fires, or other sudden threats. Because there is no backup generating facility, loss of utilities at 204-AR may result in loss of the operating capacity of the following equipment:

- All transfer pumps connected with the 204-AR pumping operation
- All control and instrument systems for the 244-AR building
- Instrument process air

An emergency generator activates with loss electrical feed and the following services are retained:

- Building lighting
- Building ventilation and exhaust
- Air sampling and stack monitor.
A. EVACUATION, ASSEMBLY, AND ACCOUNTABILITY

Situations requiring evacuation are described in the *Tank Farm HASP*, Section 9.0. Should evacuation of 204-AR be required, personnel should assemble either at the 200 East Area Tank Farm staging area on the south side of the parking lot below AW farm located at Canton Avenue, just south of 4th Street. The 200 East Area Tank Farm A farm complex staging areas are shown on Figure U-1.

B. EMERGENCY EQUIPMENT AVAILABLE AT 204-AR

Figure U-1 shows the location of fire extinguishers, fire alarms, and eye-wash units at the facility. The 204-AR Fire Plan is posted on the wall of the control room.

The following equipment is available:

- Cardiopulmonary resuscitation (CPR) microshield (located on the wall near the main entrance of the control room)
- Panic button and fire alarm (located inside the east access door)
- Ladders (located in the unloading room, control room, and mechanical equipment room)
- Protective clothing (available in the clean laundry room)
- Radiological monitoring equipment (located in the clean laundry room).

C. NOTIFICATIONS, CHAIN OF COMMAND, MEDICAL EMERGENCIES, PERSONNEL EXPOSURES, MEDICAL TREATMENT AND FIRST AID, ALARMS, AND VAPOR RELEASES

See the *Tank Farm HASP*, Section 9.0, for information on these and other emergency response issues.
Figure U-1. 242-AR Facility Site Plan.
<table>
<thead>
<tr>
<th>Location</th>
<th>ID No.</th>
<th>Active/Inactive</th>
<th>Space contents</th>
<th>Description of CS</th>
<th>Description of personnel entrance</th>
<th>Access</th>
<th>Type of access</th>
<th>Permit/Not permitted</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>204-AR</td>
<td>Active</td>
<td>Diesel tank pit</td>
<td>Metal cover/2 ft dia. open x3 ft deep</td>
<td>Y</td>
<td>P F. Zak</td>
<td>Located N of 204-AR emergency generator diesel tank (back of bldg).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204-Ar</td>
<td>Active</td>
<td>Regulator</td>
<td>Regulator Met</td>
<td>Metal cover/5 ft dia. open x4 ft deep</td>
<td>Y</td>
<td>NP F. Zak</td>
<td>Located in back of 204-AR bldg NW end.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
U-2. COMPREHENSIVE BASELINE HAZARD ASSESSMENT

DATE OF ASSESSMENT: 1/23/95
DATE OF REPORT: 3/13/95
AREA: 200E
FACILITY: 204-AR
OTHER EMPLOYEES: DEL SPAULDING

ASSESSMENT NUMBER:
IS AND IH REPRESENTATIVES: ED PONN/ROGER MITCHELL/P. ZAK

<table>
<thead>
<tr>
<th>LOCATION ROOM/AREA</th>
<th>DESCRIPTION OF TASK/HAZARD</th>
<th>HAZARD CONTROLS OR RECOMMENDED ABATEMENT</th>
<th>ABATEMENT REQUIRED</th>
<th>RELEVANT STANDARD</th>
<th>KEYWORD</th>
<th>RAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x3 foot hole on north side of building.</td>
<td>Fill hole.</td>
<td>Y</td>
<td>.22</td>
<td>BIIk</td>
<td>4B</td>
</tr>
<tr>
<td></td>
<td>Wooden pallet in path of egress from west door of facility.</td>
<td>Housekeeping.</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td>Storage shed on est side of building not labeled. Contains new rad signs ready for posting. Bags of unidentified material, possibly chemicals being stored also.</td>
<td>Housekeeping.</td>
<td>Y</td>
<td>.141</td>
<td>BIIz</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td>No written Hazcom program, chemical inventory, or control of chemicals in flammable cabinet.</td>
<td>Develop/implement Hazcom program.</td>
<td>Y</td>
<td>.1200</td>
<td>AIIb</td>
<td>2B</td>
</tr>
<tr>
<td></td>
<td>Potential noise hazard near CAMs.</td>
<td>Noise test.</td>
<td>Y</td>
<td>.95</td>
<td>AIIl</td>
<td>2B</td>
</tr>
<tr>
<td>Unloading Room</td>
<td>Raw water lines ID#s 30 and 32 have temporary tags dated 9/16/93.</td>
<td>Remove/update tags.</td>
<td>Y</td>
<td>.145</td>
<td>BIIr</td>
<td>3B</td>
</tr>
<tr>
<td>Unloading Room</td>
<td>conduit for DP readings has cap missing at elbow exposing wires.</td>
<td>Repair.</td>
<td>Y</td>
<td>.303</td>
<td>BIIq</td>
<td>2B</td>
</tr>
</tbody>
</table>
This page intentionally left blank.