Influence of strain rate and temperature on the mechanical behavior of beryllium

PDF Version Also Available for Download.

Description

The compressive stress-strain response of three grades of beryllium were studied as a function of strain rate and temperature. Grades S2OOD, E, and F represent a historical perspective of beryllium processing from the 1960`s through 1990`s technology. The purpose of this study was to measure the mechanical behavior of beryllium over a range of deformation conditions for constitutive model development and to obtain microstructural evidence for deformation mechanisms. The compressive stress-strain response was found to be independent of grade and strongly dependent on the applied strain rate between 0.001 and 8000. The strain-hardening response displayed a moderate temperature dependence between ... continued below

Physical Description

7 p.

Creation Information

Blumenthal, W.R.; Carpenter, R.W.; Cannon, D.D.; Abeln, S.P. & Gray, G.T. III July 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The compressive stress-strain response of three grades of beryllium were studied as a function of strain rate and temperature. Grades S2OOD, E, and F represent a historical perspective of beryllium processing from the 1960`s through 1990`s technology. The purpose of this study was to measure the mechanical behavior of beryllium over a range of deformation conditions for constitutive model development and to obtain microstructural evidence for deformation mechanisms. The compressive stress-strain response was found to be independent of grade and strongly dependent on the applied strain rate between 0.001 and 8000. The strain-hardening response displayed a moderate temperature dependence between 77 K and 873 K Because distinct yield was not observed, the intercept-stress from linear strain-hardening fits was analyzed and was found to be only weakly dependent on strain rate and temperature above ambient. Microstructural examination of SHPB specimens revealed that twinning was extensive at strains between 7-22%. A SHPB sample deformed to over 20% strain contained both extensive twinning and grain boundary microcracking.

Physical Description

7 p.

Notes

OSTI as DE98000826

Source

  • Meeting of the topical group on shock compression of condensed matter of the American Physical Society, Amherst, MA (United States), 27 Jul - 1 Aug 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98000826
  • Report No.: LA-UR--97-2796
  • Report No.: CONF-970707--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 626468
  • Archival Resource Key: ark:/67531/metadc697446

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 29, 2016, 3:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Blumenthal, W.R.; Carpenter, R.W.; Cannon, D.D.; Abeln, S.P. & Gray, G.T. III. Influence of strain rate and temperature on the mechanical behavior of beryllium, article, July 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc697446/: accessed August 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.