A proposed injector for the LCLS linac

PDF Version Also Available for Download.

Description

The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980`s, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, ... continued below

Physical Description

4 p.

Creation Information

Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T. & Woodley, M.D. November 1, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980`s, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible.

Physical Description

4 p.

Notes

INIS; OSTI as DE97008424

Source

  • 17. IEEE particle accelerator conference, Vancouver (Canada), 12-16 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008424
  • Report No.: SLAC-PUB--7362
  • Report No.: CONF-970503--213
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 521621
  • Archival Resource Key: ark:/67531/metadc697386

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 5, 2016, 7:10 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T. & Woodley, M.D. A proposed injector for the LCLS linac, article, November 1, 1996; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc697386/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.