A dynamical {eta}{prime} - mass from an infrared enhanced gluon exchange

PDF Version Also Available for Download.

Description

The pseudo-scalar flavor-singlet meson mixes with two gluons. A dimensional argument by Kogut and Susskind shows that this can screen the Goldstone pole of the chiral limit in this channel, if the gluon correlations are infrared enhanced. Using a gluon propagator as singular as {sigma}/k{sup 4} for k{sup 2} {yields} 0 we relate the screening mass to the string tension {sigma}. In the Written-Veneziano action to describe the {eta}-{eta}{prime} mixing this relation yields masses of about 810MeV for the {eta}{prime}, 430MeV for the {eta} and a mixing angle of about -30{degrees} from the phenomenological value {sigma} {approx} 0.18GeV{sup 2}. The ... continued below

Physical Description

3 p.

Creation Information

Smekal, L. von; Mecke, A. & Alkofer, R. September 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The pseudo-scalar flavor-singlet meson mixes with two gluons. A dimensional argument by Kogut and Susskind shows that this can screen the Goldstone pole of the chiral limit in this channel, if the gluon correlations are infrared enhanced. Using a gluon propagator as singular as {sigma}/k{sup 4} for k{sup 2} {yields} 0 we relate the screening mass to the string tension {sigma}. In the Written-Veneziano action to describe the {eta}-{eta}{prime} mixing this relation yields masses of about 810MeV for the {eta}{prime}, 430MeV for the {eta} and a mixing angle of about -30{degrees} from the phenomenological value {sigma} {approx} 0.18GeV{sup 2}. The very weak temperature dependence of the string tension should make this mechanism experimentally distinguishable from exponentially temperature dependent instanton model predictions.

Physical Description

3 p.

Notes

INIS; OSTI as DE97053817

Source

  • 6. conference on the intersections of particle and nuclear physics, Big Sky, MT (United States), 25 May - 2 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97053817
  • Report No.: ANL/PHY/CP--93861
  • Report No.: CONF-970564--
  • Grant Number: W-31-109-ENG-38
  • Office of Scientific & Technical Information Report Number: 570244
  • Archival Resource Key: ark:/67531/metadc697121

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 12:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Smekal, L. von; Mecke, A. & Alkofer, R. A dynamical {eta}{prime} - mass from an infrared enhanced gluon exchange, article, September 1, 1997; Illinois. (digital.library.unt.edu/ark:/67531/metadc697121/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.