Understanding the dynamics of water availability and use in China

PDF Version Also Available for Download.

Description

This report presents the preliminary results of an analysis of China`s water resources, part of an effort undertaken by the National Intelligence Council Medea scientists to improve the understanding of future food production and consumption in the People`s Republic of China. A dynamic water model was developed to simulate the hydrological budgetary processes in five river drainage basins located in northeastern, central, and southern China: the Chang Jiang (Yangtse River), Huanghe (Yellow River), Haihe, Huaihe, and Liaohe. The model was designed to assess the effects of changes in urban, industrial, and agricultural water use requirements on the availability of water ... continued below

Physical Description

73 p.

Creation Information

Thomas, R.P.; Conrad, S.H.; Jeppesen, D.M. & Engi, E. July 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report presents the preliminary results of an analysis of China`s water resources, part of an effort undertaken by the National Intelligence Council Medea scientists to improve the understanding of future food production and consumption in the People`s Republic of China. A dynamic water model was developed to simulate the hydrological budgetary processes in five river drainage basins located in northeastern, central, and southern China: the Chang Jiang (Yangtse River), Huanghe (Yellow River), Haihe, Huaihe, and Liaohe. The model was designed to assess the effects of changes in urban, industrial, and agricultural water use requirements on the availability of water in each basin and to develop estimates of the water surpluses and/or deficits in China through the year 2025. The model imposes a sustainable yield constraint, that is, groundwater extraction is not allowed to exceed the sustainable yield; if the available water does not meet the total water use requirements, a deficit results. An agronomic model was also developed to generate projections of the water required to service China`s agricultural sector and compare China`s projected grain production with projected grain consumption requirements to estimate any grain surplus and/or deficit. In future refinements, the agronomic model will interface directly with the water model to provide for the exchange of information on projected water use requirements and available water. The preliminary results indicate that the Chang Jiang basin will have a substantial surplus of water through 2025 and that the Haihe basin is in an ongoing situation. The agricultural water use requirements based on grain production indicate that an agricultural water deficit in the Haihe basin begins before the onset of the modeling period (1980) and steadily worsens through 2025. This assumption is confirmed by reports that groundwater mining is already under way in the most intensely cultivated and populated areas of northern China.

Physical Description

73 p.

Notes

OSTI as DE97007939

Source

  • Other Information: PBD: Jul 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE97007939
  • Report No.: SAND--97-1626
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/508107 | External Link
  • Office of Scientific & Technical Information Report Number: 508107
  • Archival Resource Key: ark:/67531/metadc697078

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 5, 2016, 8:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Thomas, R.P.; Conrad, S.H.; Jeppesen, D.M. & Engi, E. Understanding the dynamics of water availability and use in China, report, July 1, 1997; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc697078/: accessed June 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.