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The i L I b  i ;xrformance of ITER is predicted using three different techniques; 

statisti - . .c.dysis of the global energy confinement data, a dimensionless physics 

parain<:: \iinilarity method and the full I-D modelling of the plasma profiles. 

Althougi, r l ~  three methods give overlapping predictions for the performance of ITER, 

the cos! i L  :!ice interval of all of the techniques is still quite wide. 

1. 1 t!. roduction 

In the I 8~ years there has been considerable progress in the understanding of the 

transp('i. :cusses taking place in a tokamak. In the theoretical area large codes have 

been y e d  which simulate the turbulence and ensuing radial transport. The main 

source .:I !uience is thought to be due to the ion temperature gradient instability and 

as we xee in Section IV there has been some success in comparing theoretical 

model. I ,L!; contain this type of turbulence with the data (l). However at the present 

time ;I .( '  pirte and fully validated I-D model describing the transport throughout the 

radial :: '11 I \  not yet available. 

Thus 10 t -  :,!Ic~ the performance of ITER three different techniques are currently being 

used: ' < rlobal energy confinement scaling method; b) the dimensionless physics 

paramci,.b \iniilarity technique; and c) the full I-D modelling of the plasma profiles. 

The I A : C - *  :\Lilts from each of the techniques will be briefly reviewed in this paper. 

Each t : .:chniques has its own strengths and weaknesses. The main strengths of 

the !$os> ,x;ic.rgy confinement scaling are its simplicity and the fact that all the 
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, 
physic.. 

modeli 

‘iLesses are contained within the data. Its main weakness is that the 

’ ;  the energy confinement time 7th by a simple log-linear form, or even by 

more . .yilcated forms, can only, at best, be a very approximate description of the 

physic., ocesses taking place, since no knowledge of the heating, temperature or 

densit; *-  I t  iles or atomic physics processes for that matter, are built into the analysis. 

Keveri::- \ \  [his technique has a good track record (2) and as will be shown in section 

I1 the A.:~ i i o i 1  of data from new machines ASDEX-U, C-MOD, COMPASS-D, JT- 

60U ;I:’ C 1 cls well as new data from DIII-D and JET has improved the condition of 

the d ~ ~ i L ~ * ~  \c  from that used to derive the scalings ITERH93-P(3) AND ITERH92- 

P ( Y F  - ’ _  

The lacl, ,f profile information in the global energy confinement time approach can be 

overco:;-,: h! extrapolating the profile data using the dimensionless parameter 

similai I :  \echnique. In this approach discharges which have similar dimensionless 

parainL>;L- t o  those of ITER are set-up. In principle it is possible to keep all of the key 

physic- . xiisionless parameters such as p, v*, q etc. fixed at their ITER values apart 

from yh: -1iinensionless Larmor radius p* (= pih). The p* dependence of the 

confinc.:!--.ir ic then determined by scaling experiments in which p and v* are kept 

fixed. Y . \c experiments have been completed on several devices (4-6). For ELMy 

H-rnnd:. * 11‘s been found in DIII-D (4) and JET (3 that both the global and local 

confin::-. 11 I \  close to gyro-Bohm (Bzh = p*-3) and also in ASDEX-U (6) the local 

confini.l:.L.i( has been shown to be gyro-Bohm. 

Using information the temperature profiles in ITER can then be obtained from 

those ( ’ ;  -writ experiments by a simple linear scaling and the power to achieve these 

profile\ I ::I dso be obtained in a simple fashion as will be shown in section III. 

Hoive\ C“ ‘it error in the estimate of the power requirements is quite large when 

scalins . 1 I 0111 a single machine and it  will be necessary to form a database using data 

from d :  I : <\ l i t  size machines to obtain an accurate estimate of the fusion performance 

of ITEX - . i i ?  this technique. 
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The w',: -<:-:ngth of the I-D modelling approach is that in principle all of the 

transpw -r-ocesses and all of the sources and sinks could be included in the model. 

The pr-:,.. : , !  \.'. eakness is that, although significant progress has been made in modelling 

the trx-!\l- in the plasma corc, ,ye still do not have a good validated edge model, and 

as will :': h ) w n  in section IV, the prediction of the performance of ITER is extremely 

sensiti \! c . 1 me edge conditions for some of the models. In particular, those models 

that L' cry strong profile stiffness lead to a very pessimistic ITER prediction if the 

predict-.:: :.igc. pedestal temperature is low. 

11. 

As me'.. . ' i t i i  in  the introduction substantial additions have been made to both the 

ELhl! . ~ .  . E!_M-free database DB2 (7-8) in the last year. Five new machines have 

contrib!:! i . i  data: ASDEX-U, C-MOD, COMPASS-Dl JT60-U and TCV, and DID-D 

1 !:ai,vsis of the global confinement H-mode data 

and JET . I \  i' ubmitted additional pulses. A standard data sub-set has been assembled 

which *- of the same subset that was taken from DB2 (7) plus a new subset which 

includt.. iicr forms of heating; ICRH and ECRH as well as NBI. In addition the 

ohmic F1 !ode data from COMPASS-D (ELMy and ELM-free) and TCV (ELM-free) 

was al ..t IC' \  tided in an effort to improve the condition of the standard dataset. The 

new d;:iL. :: consists of 11 12 ELM-free discharges and 1190 ELMy discharges which is 

roughI \ 

The CPT;.. (vi  of both the ELM-free and the ELMy database is significantly better than 

DB2. . :%\IO weakest principal components have a very similar form to those of 

DB2 

;O( r increase in the total number of data points over the DB2 database. 

PC7 - Bn/RK2 

Pc8 - &/I 

The nr : -  :I o f  standard deviations to ITER of themost important one (PC7), has been 

reducc,. $):i~ S to4 though. The main reason for this reduction is due to the 

inrrodiii :i o t  the C-MOD data which has a high B/R compared to the other tokamaks 

i n  thc . . D.X. The weakest PC8 has a q like dependence and is not so important 

since i t > :  .!L,L liase includes some data at the ITER value of q. In terms of the physical 
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variahi-  .,nd p the new devices C-MOD, ASDEX-U and TCV have filled in the 

?;ip lx- : I  JET and DIII-D and the smaller devices. This can be seen in Fig. 1, 

where ' 1  . $ 1  I !  database for the ELM free and ELMy data is shown in p*, p space. 

The C C J I  . r:onal log-linear fits to the ELM-free and ELMy data sets are as follows; 

0.95 0.25 p-0.67 ,0.35 R1.92 &0.08 .0.63 M0.42 rth zO.031 I B 

for thc i:! '.l-t'ree data set with an RMSE of 16%; 
0.90 B0.20 p-0.66 ,0.40 2 03 0.19 .0.92 M0.2 r t h  = 0.029 1 R '  E 

for the 1 . 1  \I!. with an RMSE of 15%. 

Both o; . I - .  \c' forms satisfy the high p Kadomtsev constraint and writing them in terms 

of the c ! : , ;  :!?,ionless physics parameters, they have the form: 

, ELM-free 

ELMy 

,-2.94 p-0.87 *-0.13 

*-2.88 -0.69 *-0.08 
BT:,h OC P 

BTth OC P P 
(3) 

(4) 

The E! ' . \ -  I X  f i t  is similar to ITERH93-P and, as can be seen in Table 1, the ITER 

preclicr,'] I \  \*cry close to that of ITERH93-P. The only difference is the slightly 

weake, .:,.pendente. The DB2 ELMy fit ITERH92-P(y) did not satisfy the 

Kadon:r\, cixistraint. The fact that the ELMy fit now satisfies the constraint is due to 

the inc i~ i~ i .~ i i  of the C-MOD data. The ELMy fit is shown in Fig. 2. 

In den \ 1 1  - ;!it. fits of equations (1) - (4) each point in the database has equal weight. 

Howe?zl :tiere are only a small number of points from COMPASS-D and 

JT-601. ~~~ i o  strengthen up the contribution from these. a fit is completed in which 

each to,L::::A I S  weighted equally. This fit, which is for the ELMy dataset, is presented 

i n  its c : : ~ : ~ x r i n g  and physics forms in equations (5) and (6) ,  respectively. 
0.99 B-0.06 -0.69 0.61 2.11 E0.22 0.7 M0.11 7 t h  = 0.029 I P n R  K 

(6) -0.41 *0.13 PSth OC p *-3'21 v 

(5)  

This t(~:;.,.::;::!k weighted form is very similar to that of equations (3) and (4) and, as can 

be see;: ::: !..:!>le 1. the ITER prediction is also very similar. 

S c \.e 1;: : i ~ ' t .  -log-linear repessions have been completed using different data 

seiccti,\t:N ; i ! d  normalisations. The main ones that reduce the ITER confinement 
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prcdici L 1 )  omission of the COMPASS-D ELMy data, this reduces the T& by 0.4s 

2 j  cha::::. L :he normalisation of the PDX data from the TAUC93(3) correction used in 

this JX-:: ' 0  rhe earlier TAUC92(7) correction reduces T& by 0.7s. The addition of 

auxi l ix: .  .i.ared data from COMPASS-D could assist in resolving the PDX data 

We 1x8 

expr-eL., 

ri1 to the error in the ITER prediction and the results of other models, an 

.or the 95% confidence interval for a log-linear form is (8) 

whel-c \ [lie standard deviation of the jth principal component and h m j  is the 

disran;: I ,  : j ic centre of the database to ITER in the direction of the jth principal 

. Yeeff is the number of independent data points and, as in the past, we 

assiirnc '\. I - N/4 where N is the total number of data points and the factor of 4 

XCOUI::- : ti. iorrelations between data points, such as those taken during the same 

p" 1 se. 

___ .... 

W. Dorland and 
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I 7- i p-w _ _  ” - ’ .:I- I T. Takizuka (16) I DB2 + JT-6OU 1 4.7 
I I I I 

1 1 
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E.xpl.c> : 

reipsx; 

For t h c  t : . 5 ' ~ t  \election used in deriving equations (1) - (4) i t  is found that 6r/r = 4 17% 

for the i:i  \ I \  dataset and &18% for the ELM-free data set. These values are smaller 

than th!]., dT[iiined from DB2 (-29%) and this is due to the increased number of data 

'lit improved condition of DB3 with respect to the ITER extrapolation. 

!: iog-linear models have also been fitted to the previous database DB2 and 

-rLLiiictions for these models are listed in Table I, along with those from the 

l o ~ - l i i ~ ~ ~ : : :  :?oiiels of this section. From the table, one can see that there is quite a range 

i n  [lit. ' .  :!,.!c.d performance of ITER. In view of this wide range; the group 

reo o m : \  ITER to consider contingency scenarios based on a confinement time 

inrer\.;ii z 15% about the point prediction from expression (2) (7th = 5.8 secs). In 

vie\\! o: . :c improved condition of DB3 it may be possible to reduce this range; 

ho\ve\ L.:.. :i!il the differences between the various scaling have been understood and a 

- 1  is only valid if all the major influences on q, are included in the 

full stili;\; :AI iinaiysis has been completed it is prudent to keep the same interval. 

The coi:.. .;sc.nces for the fusion performance of ITER of the two intervals are shown 

i n  Fig. 3. j l jr the narrow interval of the log-linear forms ITER would ignite, but with 

the \vi&%!- :-:$ion at the low confinement end the performance drops to Q of 5, which 

illustriiiL*. w importance of determining more precisely the confidence interval. 

111. i ii; !leiisionless Physics Parameter Similarity Approach 

!c;il basis of this technique is described in the review by Cordey (lo). The 

. i t . )  set up discharges with the same shape as ITER in which as many of the 

diiiici1\..,' L'b\ physics profiles sucn as those of p, v*. q, K, E are kept at their ITER 

\*;il~ie>. .',. , L,\;unple of such a discharge in the JET tokamak is shown in Figs. 4 and 5. 

I L I I -  discharge is at a field of 1.7T and current of 1.7MA has the same fin 
- . .  (p,, = - .- :!;ti [he same collisionality as the ignited ITER. 

The 0 1 ; : '  :i!!!t.nsionless physics parameter that cannot be fixed at its ITER value in 

presciii . ::z!iients is the dimensionless Larmor radius p* (Epj/iI). This parameter is a 

factor - ! .!:.<CY i n  JET than ITER and a factor 7 larger in DIII-D. Thus we need to 
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delcl'!? ' ' . - 4 ding of the confinement with the parameter p*. The first experiments 

on t t l ~  L . d i n g  " of ELMy H-modes were completed on DIII-D (4), where the 

contln-1 

(BT,, ,  

2JI4/1 ' 

: '70th globally and locally, was found to have a gyro-Bohm scaling 

Similar experiments on JET (5911) were completed at lMA/lT and 

I ,' these also showed a close to gyro-Bohm scaling (Bz ,~  = p*-*.7). The 

rangc i the JET experiments has recently been extended to 3MA/3T and the 

clo\e i - Rohm scaling is maintained. 

E\pei1 ~ n both JET and DIII-D on the scaling of confinement with the other 

dinien, I 1 L \ \  parameters p and v* were reported recently ( I 1 3 l 2 ) .  The scaling of BT* 

\\ It11 \' i 3 \\ ar found to be very weak. The weak scaling with p is in contradiction 

to tlic - ~ L I /  database scaling studies of equations (3) and (4) and the original 

ITER1 ' ( 1  : >Laling which had a very strong p scaling, BT:,~ 0~ p-1.2. This discrepancy 

is L i n c l .  , ~ i ~ e  investigation by the group and possible reasons for it are discussed in 

Cliris~i<L. ' - 1 1  ct aI. (I3). Forcing the fit to the ELMy data set DB2 to be gyro-Bohm 

and in~::--!ii!eiit of p gives a scaling of the form BZfh 0~ P * - ~  v*-O.*, and an energy 

cniil'ln; L 

J17c no 

el sos\ 

L m i o *  

:iine. which is given at the end of Table I, of 8.8 secs. 

ii :i, the prediction of the performance of ITER using this technique and the 

i-' yediction. For a pulse which has the same p and v* the dimensionless 

1.14 p^ scales as B-2/3 a-516. If we then express the confinement scaling in 

C\ ing  . 1 . I i I < ) n  (8) and the confinement time of the ITER demonstration pulses in 

DIII-I2 ' :nJ JET ( I f ) ,  one can calculate the confinement time in ITER, assuming an 

H - i i i c ~ ~ : ~  ,L> discharge is obtained, using the value of a derived from the scaling 

stuciie-. ' b  . .ii.ii esperiment. The results are given in Table 11. 
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?'at,le ' : 
I 

I I ohii1ib'iI\ _ _  - Yn P*/P*ITER a 6a ' Ti11 ITER 6z (S) 
I 

DIII-T: ._ - 3.1 7.7 3.1 k0.3 j 38 218 
1 
I E-  I JET -.- -,7 5 .5  2.7 k0.22 1 6.4 + 3  

Tlic e1 % I GT are assumed to come entirely from the errors in  the determination of 

the p : i i t  . .  ;: u in  the p* scaling experiments. For a standard error of rt 15% (20 )  in 

thc \ I ( '  i '!;::-c\. - _  the error in the parameter a will be 6a = k 0.3 for DIII-D and 

6u. = z 

r;ingt' 

-: : )I' JET. The reason that the errors are so large is due to the fact that the 

i \  \ ery small in the experiments (DEI-D; p*  I T / P * ~ T  = 1.6 and JET; 

To I C L ~ ~ .  error in the prediction of the confinement i t  will be necessary to 

; ( . : i i ~  p* scan on at least two machines of different sizes to increase the 

rrinsc ~i , ideally the joint scan would contain an identity pulse in which all of the 

dirncn~: .  . .  ,:'\ ' _  i3h\,sics parameters p*, v*, p are identical. Such pairs of discharges have 

been ti.:,. 2 : \ i ~ ~ c l  iointly by DID-D and JET (12) at lower values of p than that of ITER. 

It \\'it5 r L i  rhat the confinement times in the two machines did vary inversely with 

field ;,. . '.;vcted from theory and the scaled effective thermal diffusivities also 

m:itchc.:i. !-hi\ does not imply that the three dimensionless parameters p*, v* and p are 

all thiir i \  I LLiiiiiI-ed to describe the confinement behaviour of ELMy H-modes. Further 

identit\, \.\.x!.iments need to be completed between other pairs of experiments to 

iii\cstig*.LL, il:i\ question. 

Sc.\c.r-;!, . ~ . ~ i ~ : . L ~ : i c i l  papers have proposed that the turbulence in a tokamak can be 

qlicIic!:,.'. ~ < .  .xx in the toroidal flow. This implies that the Mach number M V p e  

Jimensionless parameter. This is certainly not being kept constant . .  in 

speriments completed so far, which use neutral beam injection heating. 

it'nts in which the Mach number is varied n h i l s t  p*. p and V* are kept 

f l \cd  &..  . 

l I l ~ C L ' ~ 1 ~  

L;.:a~tLi. There are several possibilities here: co \ers,us counter and balanced 

I ! ;t~\mparisons of NBI and ICRH, and the breaking of the toroidal rotation 1 .  
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b \  I O i  -,id ripple. Although work is proceeding i n  all these areas a clear 

C( ) l i L  I L: 

11. f -1) modelling approach 

W'oi h 

>et too emerge. 

,lIinued on the systematic testing of the eleven I-D models listed in Table 

~ _ .  - 

Modeller _- hl o ~ k l  

Ill .IF,, * . + !  2 data in the profile database using the syjtematic testing procedure 

C ~ L ' W I ~  . , i 'onnor et a1 (1) .  The profile database has now also been extended to 

iiicliitl ii! documented discharges from 9 tokamaks: DIU-D, JET, TFTR, 

Physics 

JT-6OI . ;;!X-L. T-IO, TEXTOR, TORE SUPRA and RTP 

Tu1 i ic i  11. Turner (EU), S. Attenberger (US) 

IFS /P!~~  ' - 

The tli . . , , ::import codes used by the modellers are being benchmarked against 

each ( 8  :hi\ benchmarking process is almost completed among the subset of 

Semi-empirical 

tr;in\pcl' >~.:\ that only evolve the electron and ion temperatures, as seen in Fig.6. 

Here .. iifferent codes from this subset using the IFS/PPPL model give 

appro\ '  9 : "  the same prediction of the ion and electron temperature profiles for a 



AI t ~ I [ j -  J Kin5ey et a1 (US) Weiland + Resistive I- B ~ i l  looning 
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S O I I I C  . *::oc!eis have also evolved in the last year: ExB flow has been added to 

borh t l  . . il;.%'PPPL model and the GLF23 model of R. Waltz. The addition of ExB 

flo\i. ; i :  ~ :, . \  improve the fit to the data for the GLF23 model but not the IFSPPPL 

m o t l e i .  -::I>! f o r  t he  sub set of mainly H-mode discharges considered in this paper. 

For 11) - ! . -  ;!:id H-mode discharges ExB effects are less t h a n  a 20% effect on the 

tei i ipc,.  '. :>!-or'iies: however, the effect is quite drainatic for NCS and ERS 

dl\L!l:.. . .. >itinonstrated for the DIII-D NCS shot #84736 (t=1.3 secs) shown in 

FiS.7. 

In ilic , , ,.c.: bixtce available in this paper it is only possible to present a small fraction 

\ ; i n d  summarise the general trends. A number of tests of each model 

..' ; I  t i l  and electron temperature profile data have been carried out and an 

i: of these tests for four of the models is shown i n  Fig.8. Here the offset 

i n  ilic - : '  L ~ t i s ~ - ~ y  Wsimulation/Wexp - 1 is shown for a selection of 46 pulses from the 

da~h: !~:  : .ii!aining both L-modes and H-modes. The goodness of fit is tabulated in 

a~ii1115: 

Table IV 

<Rw> ARW 

0.96 0.15 

0.94 0.22 

0.97 0.24 

1.05 0.27 

1.20 0.37 

OTe OTi 

0.17 0.22 

0.28 0.26 

0.25 0.39 

0.32 0.34 

0.53 0.34 

<Rwinc> 

0.94 

0.90 

0.92 

1.10 

I .35 

< tT,> 

-0.05 

-0.04 

-0.05 

0.02 

. 0.17 

mwinc 

0.23 

0.35 

0.38 

0.43 

0.64 

d T i >  

0.0 1 

-0.07 

-0.02 

0.03 

0.08 
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Wl,lL 1 \  

0 1 1  !hi 

thc 1 0 1  

. I .  -.emental stored energy W-Wpedestal. 

- ' [Iiese tests i t  would appear that the Multi-mock model performs best of 

j *-.xident of which figure of merit is chosen: ARth. C J T ~  etc. However the 

rc'sii!r\ .. . ' . '  \lc.i.isive in indicating a best model since most models are able to match 

thc \ l t  . i I ~ i x y  to within 20-30%, and it is possible thi i t  uncertainties in the 

expcr! i :  'iI!,lits could generate discrepancies of this mxgniLude. What is required 

):.e stringent tests such as the response ot tlic models to localised 

pc.i~!ii-!.. , I '. :T:.otluced by pellets or highly localised heating hources such as ICRH or 

ECRJ-i 

c u l t y  with using these models in ITER prediction5 is that a model of the 

pla.sii;,. . :;: ,.:destal is required since they only deal ivith the region 0.2 < r/a c 0.9. 

In I'iiL: . <>:;::xiring the results of these models with the ~ lobu l  energy confinement 

aplmxi~i , .  .: i \  rhe quantity A Rwinc which ranges fr01-n 2344% that should be 

i i i ;  rhe RMSE of 11-16% of the simple Log-linear scalings of section 11. 

: \  :lot quite as simple as this, since knowledze of the type of pulse L or H 

, lo?-linear scalings. 

' 

. . >  I 

Tui.i!ii?- . * : ' :  prediction of the fusion performance of ITER iisiiig these 1-D models in 

FiZ.0 I ; .  >:l . \ i i  power output for each model is given. These models cover a very 

L; ',.. ill] the most optimistic being the Itoh-Itoh-Fuliuyama model, which 

: :  . ' . > ' ,  :r the edge temperature (at r/a = 0.9). d o \ \ ~ i  to the IFSRPPL model iFiiiic- 

\\ I1 11:l I 

ot t !ii 

to ! l :L> 

PI 01 1 1 .  

I \ ($= 1 for a pessimistic 1 KeV edge- temperat III  c The strong sensitivity 

' .!iic'c of the IFSRPPL and GLF23 modelstto the edge temperature is due 

; I C  o f  these models, and as mentioned ex11t.r. cuperiinental tests of this 

4 AC iii-gently needed. 

AchI10!@ i i  !izci11c11t 
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