Experimental study of pulsed heating of electromagnetic cavities

PDF Version Also Available for Download.

Description

An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE{sub 011} mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 {mu}s. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE{sub 012} mode in the cavity with a low-power CW signal at a ... continued below

Physical Description

4 p.

Creation Information

Pritzkau, D.P.; Menegat, A. & Siemann, R.H. August 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An experiment to study the effects of pulsed heating in electromagnetic cavities will be performed. Pulsed heating is believed to be the limiting mechanism of high acceleration gradients at short wavelengths. A cylindrical cavity operated in the TE{sub 011} mode at a frequency of 11.424 GHz will be used. A klystron will be used to supply a peak input power of 20 MW with a pulse length of 1.5 {mu}s. The temperature response of the cavity will be measured by a second waveguide designed to excite a TE{sub 012} mode in the cavity with a low-power CW signal at a frequency of 17.8 GHz. The relevant theory of pulsed heating will be discussed and the results from cold-testing the structure will be presented.

Physical Description

4 p.

Notes

INIS; OSTI as DE97007087

Source

  • 17. IEEE particle accelerator conference, Vancouver (Canada), 12-16 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97007087
  • Report No.: SLAC-PUB--7534
  • Report No.: CONF-970503--145
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 508119
  • Archival Resource Key: ark:/67531/metadc696856

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 2, 2016, 5:29 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Pritzkau, D.P.; Menegat, A. & Siemann, R.H. Experimental study of pulsed heating of electromagnetic cavities, article, August 1, 1997; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc696856/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.