Nuclear criticality safety calculations for a K-25 site vacuum cleaner

PDF Version Also Available for Download.

Description

A modified Nilfisk model GSJ dry vacuum cleaner is used throughout the K-25 Site to collect dry forms of highly enriched uranium (HEU). When vacuuming, solids are collected in a cyclone-type separator vacuum cleaner body. Calculations were done with the SCALE (KENO V.a) computer code to establish conditions at which a nuclear criticality event might occur if the vacuum cleaner was filled with fissile solution. Conditions evaluated included full (12-in. water) reflection and nominal (1-in. water) reflection, and full (100%) and 20% {sup 235}U enrichment. Validation analyses of SCALE/KENO and the SCALE 27-group cross sections for nuclear criticality safety applications ... continued below

Physical Description

[200] p.

Creation Information

Shor, J. T. & Haire, M. J. February 1, 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 16 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A modified Nilfisk model GSJ dry vacuum cleaner is used throughout the K-25 Site to collect dry forms of highly enriched uranium (HEU). When vacuuming, solids are collected in a cyclone-type separator vacuum cleaner body. Calculations were done with the SCALE (KENO V.a) computer code to establish conditions at which a nuclear criticality event might occur if the vacuum cleaner was filled with fissile solution. Conditions evaluated included full (12-in. water) reflection and nominal (1-in. water) reflection, and full (100%) and 20% {sup 235}U enrichment. Validation analyses of SCALE/KENO and the SCALE 27-group cross sections for nuclear criticality safety applications indicate that a calculated k{sub eff} + 2{sigma} < 0.9605 may be considered safely subcritical. Thus, a system with a calculated k{sub eff} + 2{sigma} {ge} 0.9605 is considered unsafe and may be critical. Critical conditions were calculated to be 70 g U/L for 100% {sup 235}U and full 12-in. water reflection. This corresponds to a minimum critical mass of approximately 1,400 g {sup 235}U for the approximate 20.0-L volume of the vacuum cleaner. The actual volume of the vacuum cleaner is smaller than the modeled volume because some internal materials of construction were assumed to be fissile solution. The model was an overestimate, for conservatism, of fissile solution occupancy. At nominal reflection conditions, the critical concentration in a vacuum cleaner full of UO{sub 2}F{sub 2} solution was calculated to be 100 g{sup 235}U/L, or 2,000 g mass of 100% {sup 235}U. At 20% {sup 235}U for the 20.0-L volume of the vacuum cleaner. At 15% {sup 235}U enrichment and full reflection, critical conditions were not reached at any possible concentration of uranium as a uranyl fluoride solution. At 17.5% {sup 235}U enrichment, criticality was reached at approximately 1,300 g U/L which is beyond saturation at 25 C.

Physical Description

[200] p.

Notes

INIS; OSTI as DE98003663

Source

  • Other Information: PBD: Feb 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98003663
  • Report No.: K/ER--314
  • Grant Number: AC05-84OR21400
  • DOI: 10.2172/638209 | External Link
  • Office of Scientific & Technical Information Report Number: 638209
  • Archival Resource Key: ark:/67531/metadc696636

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 3, 2016, 6:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 16

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Shor, J. T. & Haire, M. J. Nuclear criticality safety calculations for a K-25 site vacuum cleaner, report, February 1, 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc696636/: accessed August 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.