ELEMENTARY PARTICLE PHYSICS

Progress Report
1993 – 1995

Joseph M. Izen
Department of Physics
University of Texas at Dallas

October, 1997

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
UNDER GRANT NUMBER DE-FG05-92ER40736
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
Beijing Spectrometer (BES) Run History and Plans.

The BES 1993 run was devoted to D_s at $\sqrt{s} = 4.03$ GeV. The year began inauspiciously with a vacuum leak in the beam pipe near the interaction region. Once this problem was corrected, 7 pb$^{-1}$ were collected between the Chinese New Year and the summer shutdown. BEPC operation resumed during the fall for a synchrotron light run. During December, 1993, BES recorded more than a million $\psi(3685)$ hadronic decays. The D_s running resumed at the start of January, 1994. The detector is operating reliably and typically collects 150 nb$^{-1}$/day at $\sqrt{s} = 4.03$ GeV.

BES Physics Topics

Last year, BES published a tau lepton mass measurement $m_\tau = 1776.9^{+0.4}_{-0.5} \pm 0.2$ MeV using $\tau^+ \tau^-$ events identified by their $e\mu$ + missing energy topology. This result is being improved by using combinations of additional τ decay channels ($\tau \rightarrow e\nu\bar{\nu}$, $\tau \rightarrow \mu\nu\bar{\nu}$, $\tau \rightarrow \pi\nu$, and $\tau \rightarrow \rho\nu$) to reduce the statistical error to the level of the systematic error. Many $\psi(3685)$ measurements are underway, including a study of the suppression of the decay $\psi(3685) \rightarrow \rho\pi$, and the branching fraction $\text{Br}(\psi(3685) \rightarrow \tau^+ \tau^-)$. Various J/ψ studies (spin–parity analysis of hadronic final states, radiative decays including $J/\psi \rightarrow \gamma\pi(2200)$, ...) are continuing. The UTD group is investigating physics derived from $\sqrt{s} = 4.03$ GeV data. Interesting topics include D_s production, absolute D_s branching fractions (hadronic, leptonic, and inclusive semileptonic), D^*D and D^*D^* production, absolute D hadronic branching fractions, D^+ branching fractions, and placing an upper limit on the ν_τ mass.

UTD BES Personnel

The UTD group has doubled in the past year. In January, 1994, Dr. XinChou Lou joined UTD from CERN and Indiana University where he is leading OPAL’s B_s lifetime, $B^0\bar{B}^0$ oscillation, and Λ_b mass measurements. He will return to CERN this summer with CERN and UTD support to complete these measurements. Dr. Lou’s BES interests are leptonic and semileptonic D_s decays. Dr. Lou was hired as part of UTD’s participation in the Rocky Mountain Consortium for High Energy Physics (RMCHEP). Consortium support from the Texas National Research Laboratory Commission ends on March 31, 1994, and it is not anticipated that RMCHEP will be able to honor the remaining four years of its obligation to UTD which includes half of Dr. Lou’s salary. UTD is committed to supporting Dr. Lou should RMCHEP not find new sources of funding.

Three new Ph.D. students, John Standifird, Ira Blum, and Byung-Kyu Kim have joined the existing contingent of Bruce Lowery, Pat Gratton, and Jeff Campbell. Currently, Lowery, Gratton, and Byung-Kyu are supported with research assistantships (RA’s) by this grant. Standifird and Blum are supported with teaching assistantships by the physics department. Campbell is an electrical engineer at Texas Instruments and does not require support. This summer, all five full-time students will be supported as RA’s. The status of each student follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Thesis</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Lowery</td>
<td>D_s Production and Hadronic Branching Fractions</td>
<td>Lowery expects to complete his Ph.D. in August, 1994.</td>
</tr>
</tbody>
</table>
Name: Patrick Gratton
Thesis: The Mass of the Tau Neutrino
Status: Gratton’s Ph.D. proposal was approved by his committee in November, 1993.

Name: Jeffrey Campbell
Thesis: The D_s Inclusive Semileptonic Branching Fraction
Status: Campbell will present his Ph.D. qualifying exam/proposal during the Spring, 1993 semester.

Name: John Standifird
Thesis: D_s Leptonic Branching Fractions
Status: Standifird switched to high energy physics in September, 1993. He passed his qualifying examination while working for his previous advisor. Standifird will present a seminar on his new research topic to his committee during the Spring, 1994 semester.

Name: Ira Blum
Thesis: Absolute Branching Fraction Scale of the D^0 Meson
Status: Blum is a second year graduate student who joined BES in September, 1993. He plans to present his Ph.D. qualifying exam/proposal during August, 1994.

Name: Byung-Kyu Kim
Thesis: not yet specified
Status: Kim is a first year Ph.D. student. He is working on the calibration of the BES electromagnetic calorimeter. He is considering several D_s and D Ph.D. topics.

UTD Physics Analysis of 4.03 GeV Data

UTD is playing a leading role in the D_s analysis, and Joe Izen is coordinating the D_s and D analysis efforts for the U.S. side with Li Weiguo and Zhang Changchun in Beijing. The selection of hadronic data summary tapes (DST) is the first analysis step after the data has been reconstructed. Since early 1993, Bruce Lowery has produced the hadronic DST which have been used by all American collaborators. Bruce’s strategy of simple visible energy and event vertex cuts inspired the collaboration-wide selection which is presently in use. The current routine was written by Hu Xiaoqing with feedback from Bruce Lowery and Joe Izen.

The next common feature of most analyses is kaon identification. Organizing efforts are underway in the U.S. and Beijing to standardize π/K separation (time of flight and dE/dx systems) and $K_s^0 \rightarrow \pi^+\pi^-$ reconstruction by the end of January, 1994. Since this work is occurring at many sites (UTD, Cal. Tech, SLAC, and IHEP), email and BESnews, a collaboration-wide electronic bulletin board using the Internet and international DECNET link to China is essential. UTD is directly involved in the K_s^0 studies.

The next step is the selection of ‘single-tag’ samples of reconstructed D_s hadronic decays. During July, 1993, UTD performed an independent single-tag analysis for the U.S. side to determine the D_s production cross section, and UTD helped prepare the D_s
analysis results shown by IHEP Director Zheng Zhipeng's at the Cornell Lepton Photon conference. The single-tags are the starting point for work on D_s leptonic decay, D_s semileptonic decay, and D_s absolute hadronic branching fraction analyses (double-tags). Currently, Bruce Lowery has reconstructed the largest sample of hadronic D_s decays in the collaboration using the $\phi \pi^+$, $\bar{K}^0 K^+$, and $\bar{K}^o_s K^+$ final states (see Appendix I). Bruce will visit IHEP during April or May at IHEP's request to produce a standard set of single-tags events for the collaboration.

The two highest priority D_s topics are double-tags for absolute branching fractions and leptonic decays. Bruce Lowery is working on the double-tag analysis. Kinematic fitting will be important since the mass resolution for a fully reconstructed $\epsilon^+ \epsilon^- \rightarrow D_s^+ D_s^-$ event can be improved by a 5-C fit. If there are narrow resonances among the D_s daughters, additional constraints may be applied. Currently Bruce is testing Mark III's Telesis kinematic fitting package which was ported to the BES environment at IHEP.

Leptonic D_s decays at BES are seen in two channels. The mode with the cleanest signature is $D_s^+ \rightarrow \mu^+ \nu$, however the branching ratio for this channel is expected to only be around 0.3%. A conventional analysis requires a single tag plus an identified muon and missing energy/momentum with zero missing mass. John Standifird is also exploring whether 'weak single-tags' may be used to improve the tagging efficiency. Weak single-tagging strategies increase the tagging efficiency by relaxing particle ID requirements, and even attempt to work when a small part of the D_s tag is not detected by BES.

The second leptonic channel is $D_s^+ \rightarrow \tau^+ \nu$, with either $\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_e$ or $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\mu$, subsequent decay. Each final state should have a combined branching fraction of around 0.5%. Kinematic constraints are lost due to the second neutrino in the final state, so lepton identification is crucial. The UTD electron subgroup (Campbell, Gratton, Standifird - the students with thesis topics using electrons, plus Kim who is the shower counter calibration expert) is optimizing electron identification. They are studying how to best make use of shower shape information, and are comparing neural net and confidence level methods. Jeff Campbell has pioneered the use of neural nets in BES. Training samples of electrons are being used from radiative Bhabha events, and hadrons from J/ψ and tau scan data.

Nonstrange D signals provide a useful monitor of data quality and are interesting in their own right. The D's are produced copious at $\sqrt{s} = 4.03$ GeV via $D^+\bar{D}^-$ and $D^+\bar{D}^*$ events (see Appendix II). BES has verified that direct $D\bar{D}$ production is small at this energy. The momentum resolution for the monochromatic D's produced in $D^+\bar{D}^-$ events is similar to that of D but much easier to directly measure. Ira Blum is using $D^{0}\bar{D}^{0}$ and $D^{0}\bar{D}^{*0}$ events to measure D^{0} absolute branching fractions. A double-tag analysis is possible because the D^{0} decays either to $D^{0}\gamma$ or $D^{0}\pi^{0}$. Ira has identified a few $K\pi$ vs. $K\pi$ double tags and is expanding his analysis to include additional D^{0} decay modes.

Finally, UTD hosted the monthly BES collaboration meeting in October, 1993, and UTD will again host a BES meeting in April, 1994.

BES Software and Data Processing

UTD and Colorado State University (CSU) have set up parallel HP735/Unix machines and we have ported BES software to the HP. Modern debugging tools on the HP's have helped correct long-standing 'array out-of-bounds' problems which have an unpredictable
affect. Pat Gratton has provided the Unix scripts for controlling the linking and execution of BES jobs and for maintaining BES object libraries. Pat and John Standifird have written the HP lexical converters that translate BES code between the HP and other BES computing platforms. The HP/Unix environment has proven so stable that it has become the principle platform for data reconstruction in the U.S. Data reconstruction is being coordinated by Joe Izen. UTD has set up production libraries at UTD, CSU and recently on SSC’s PDSF HP/Unix corral. In December, BES was officially approved to reconstruct data on PDSF although the lab is still wrestling with how to accommodate non-SSC users. When running at PDSF, we can process approximately 6 GB of BES data per day, and we are limited by the speed of our internet link to SSC lab for ftp transfers. UTD and CSU can each process 2-3 GB per day. We have just completed the reconstruction of the 7 pb\(^{-1}\) 1993 \(D_s\) data and have begun the reprocessing of the 3 pb\(^{-1}\) 1992 \(D_s\) data. Tapes with 1994 \(D_s\) data will begin arriving shortly as the run progresses and these will be given the highest priority. BES generates around 2 GB of data per day, so we should be able to catch up on older data sets and monte carlo production while process the latest data.

The U.S. side will be able to monitor the data quality this year on a daily basis. Joe Izen has benchmarked the transfer rate of the international DECNET link, and 25% of its capacity will be used to transfer one run (~200 MB) per day to SLAC. The UTD students set up a monitoring job which has been ported to VM by Alan Breakstone of Hawaii who will be checking the output once a day.

UTD Computing Upgrade

The UTD High Energy Lab’s Unix computing system consists of a HP735 running at 99 MHz, three SCSI hard drives totaling 7.5 GBs, an Exabyte drive mounted in a 10 tape stacker, three X-terminals. Additional seats are provided by two Macintosh computers and the console of a Sparcstation IPC. The system has been heavily loaded with the following tasks:

1) Processing BES raw data for the BES collaboration.
2) Producing DST tapes to be dispatched to other BES institutes.
3) Running analysis and calibration jobs.
4) Generation of Monte Carlo simulated events.
5) Interactive fitting and graphical displays for physics analysis.
6) Storage of DST data and Ntuples.

Eight BES physicists rely on this installation and it is overloaded. For example, DST data is often removed in order to provide staging space for data reconstruction, and monte carlo jobs have to be carefully coordinated with data processing to avoid conflicts CPU and/or disk space conflicts. Occasionally, we run out of terminals. We also have some evidence that BES jobs are I/O limited by the speed of our fast (not wide) SCSI II bus. As the UTD group grows and as larger BES data sets accumulate, our computing needs will increase.
We plan to upgrade the current system to a level at which we will have sufficient CPU power and disk capacity to ensure that we can fulfill our commitment to BES, and the output of physics results for the next year. The outline of the upgrade follows:

1) Add two HP735 or HP735 equivalent Unix stations
2) Expanding the disk capacity to 25 GBs using fast-wide disks which are now becoming available.
3) Add four additional X-terminals.
4) A local network (FDDI or fast ethernet) to all the CPUs.
5) Port software developed by OPAL to coordinate job execution, output dispatch and data management, to create a farm-like computing environment.

The proposed upgrade will enhance the overall capacity of our computing and is crucial to our physics output in the coming year. The estimated cost will is $89,690 and will be paid from Lou’s start-up money contributed by the University of Texas at Dallas. With the additional load of b Factory computing which will be starting this year, and the anticipated 1995 BEPC and BES upgrades, we anticipate that we will shortly saturate our local capacity by the end of 1994. With a local network in place the system will be configured for future expansion.

PEP II b Factory (Babar)

The medium to long term plans of the UTD HEP group have changed with the cancellation of the Superconducting Super Collider and SDC. We are becoming involved with the PEP II b Factory project which is well suited to the group’s experience with e^+e^- colliders. Most likely, UTD will become involved with the computing and physics simulation efforts, and our CsI work for the Tau Charm Factory may lead to participation in the design of Babar’s electromagnetic calorimeter. The collaboration is still in the process of defining itself, and we will continue to attend Babar workshops/collaboration meetings.

Budget Justification

Senior Personnel: Two months of summer salary are requested for Izen. Lou will be supported by CERN during the summer.

Domestic Travel: Based on 21 domestic trips of $600 each. Travel is mainly to monthly BES collaboration meetings at SLAC or a collaborating BES university, and to PEP II b Factory meetings. During the summer, Dr. Izen and the five RA’s plan to visit the Colorado State group. As a consequence, the lower, off campus indirect cost rate will apply to summer salaries, benefits, and travel.

Computer hardware/software maintenance and repairs: Required as initial one year warranties expire.