Diode and final-focus simulations for DARHT

PDF Version Also Available for Download.

Description

Beam dynamics calculations for the injector and final-focus region of a 4 kA, 20 MeV linear induction accelerator are presented. The injector is a low-emittance 4 MeV thermionic or photocathode diode designed to produce four 70 ns pulses over 2 {micro}sec. Due to the long total pule length, the authors have kept the field stress to < 200 kV/cm over the cathode electrode, and to {approx} 50 kV/cm on the radial insulator stacks. The normalized edge emittance produced by the diode is only {approx} 0.019 cm-rad. In the final-focus region, the authors have modeled the effect of ion emission from ... continued below

Physical Description

4 p.

Creation Information

Hughes, T.P.; Welch, D.R. & Carlson, R.L. October 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Beam dynamics calculations for the injector and final-focus region of a 4 kA, 20 MeV linear induction accelerator are presented. The injector is a low-emittance 4 MeV thermionic or photocathode diode designed to produce four 70 ns pulses over 2 {micro}sec. Due to the long total pule length, the authors have kept the field stress to < 200 kV/cm over the cathode electrode, and to {approx} 50 kV/cm on the radial insulator stacks. The normalized edge emittance produced by the diode is only {approx} 0.019 cm-rad. In the final-focus region, the authors have modeled the effect of ion emission from the target. The intense electric field of the beam at the 1-mm-diameter focal spot produces substantial ion velocities, and, if the space-charge-limited current density can be supplied, significant focal spot degradation may occur due to ion space-charge. Calculations for the existing Integrated Test Stand, which has a larger focal spot, show that the effect should be observable for H{sup +} and C{sup +} ion species. The effect is lessened if there is insufficient ion density on the target to supply the space-charge-limited current density, or if the ion charge-to-mass ratio is sufficiently small.

Physical Description

4 p.

Notes

INIS; OSTI as DE97008183

Source

  • 17. IEEE particle accelerator conference, Vancouver (Canada), 12-16 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97008183
  • Report No.: LA-UR--97-1663
  • Report No.: CONF-970503--221
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 532550
  • Archival Resource Key: ark:/67531/metadc696581

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • October 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 25, 2016, 4:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hughes, T.P.; Welch, D.R. & Carlson, R.L. Diode and final-focus simulations for DARHT, article, October 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc696581/: accessed August 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.