Preliminary bounds on the water composition and secondary mineral development that may influence the near-field environment

PDF Version Also Available for Download.

Description

The evolution of the water chemistry and secondary mineral development in the vicinity of the near-field of a potential Yucca Mountain high level nuclear waste repository will be controlled by temperature, and interaction of water with rock over time. This report describes initial bounds on water composition and secondary mineral development, as a function of time, temperature, and rock type (devitrified, welded tuff and vitrophyre). The code EQ3/6 was used in the calculations, with explicit use of transition state theory models for mineral dissolution rates for the framework minerals of the tuff. Simulations were run for time durations sufficient to ... continued below

Physical Description

46 p.; Other: FDE: PDF; PL:

Creation Information

Whitbeck, M. & Glassley, W. February 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The evolution of the water chemistry and secondary mineral development in the vicinity of the near-field of a potential Yucca Mountain high level nuclear waste repository will be controlled by temperature, and interaction of water with rock over time. This report describes initial bounds on water composition and secondary mineral development, as a function of time, temperature, and rock type (devitrified, welded tuff and vitrophyre). The code EQ3/6 was used in the calculations, with explicit use of transition state theory models for mineral dissolution rates for the framework minerals of the tuff. Simulations were run for time durations sufficient to achieve steady state conditions. Uncertainty in the calculations, due to uncertainty in the measured dissolution rates, was considered by comparing results in simulations in which rates were varied within the range of known uncertainties for dissolution rate constants. The results demonstrate that the steady state mineralogy and water compositions are relatively insensitive to the rock unit modeled, which is consistent with the fact that the compositions of the rock units in the vicinity if the potential repository are similar, and will tend toward similar thermodynamic free energy minima, for similar rock:water ratios. Significant differences are observed, however, for large differences in rock: water ratios. The rates at which this end point condition are approached are a function of the rate parameters used, and can vary by orders of magnitude.

Physical Description

46 p.; Other: FDE: PDF; PL:

Notes

OSTI as DE98057447

Source

  • Other Information: PBD: 1 Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98057447
  • Report No.: UCRL-ID--129906
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/641265 | External Link
  • Office of Scientific & Technical Information Report Number: 641265
  • Archival Resource Key: ark:/67531/metadc696564

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 18, 2016, 5:52 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Whitbeck, M. & Glassley, W. Preliminary bounds on the water composition and secondary mineral development that may influence the near-field environment, report, February 1, 1998; California. (digital.library.unt.edu/ark:/67531/metadc696564/: accessed December 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.