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Abstract 

The relative importance of density-dependent and density-independent factors 

in determining the population dynamics of plants has been widely debated with little 

resolution. In this thesis, I explore the effects of density-dependent population 

regulation on population dynamics in Cardamine pensylvanica, an annual plant. 

In the first chapter, I show that experimental populations of C. pensyzvunica 

cycled from high to low density in controlled constant-environment conditions. These 

cycles could not be explained by external environmental changes or simple models of 

direct density dependence (Nt+l = f[NJ), but they could be explained by delayed density 

dependence (Nt+l = f[N, Nf+l]) .  

In the second chapter, I show that the difference in the stability properties of 

population growth models with and without delayed density dependence is due to the 

presence of Hopf as well as flip bifurcations from stable to chaotic population 

dynamics. I also measure delayed density dependence due to effects of parental density 

on offspring quality in C. pensylvunica and show that this is large enough to be the cause 

of the population dynamics we observed in C. pensylvanica. 

In the third chapter, I extend my analyses of density-dependent population 

growth models to include interactions between competing species. Interspecific and 

spatial environmental differences in time delay, unlike differences in growth rates and 

competition coefficients, allow some mixtures of species which would be stable in 

isolation to stably coexist. 

In the final chapter, I compare the effects of fixed spatial environmental variation 

and variation in population size (due to density-dependent cycles) on the evolutionary 

response of C. pensylvanica populations. This response was dominated by 

differentiation of populations within environmental treatments, suggesting that cycles in 
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population size accelerated the importance of random genetic drift, which then 

overwhelmed environmental differences. 

Thus, in C. pensylvunicu, density-dependent factors were an important 

component of population dynamics and evolution. Because mechanisms of population 

regulation that would cause delayed density dependence (parental effects, age structure, 

litter accumulation) may be important in many other species, such cycles may be more 

widespread than earlier studies had suggested. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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Cardamine pensylvanica (Muhlenberg. ex Willd.) (Brassicaceae) - upper left: Sarah P. 
Duke Gardens; upper right: Duke University greenhouse; lower left: experimental 
phytotron populations; lower right: figure from Rollins (1993). 
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Overview 

One of the most exciting contributions of mathematical modeling to our 

understanding of basic ecological processes has been the discovery that very simple 

forms of density-dependent population regulation can lead to complex spatial and 

temporal patterns, even in completely homogeneous environments. However, despite 

their potential importance, the role of density-dependent processes in determining the 

distribution of real organisms has been difficult to assess. For example, in the presence 

of environmental heterogeneity and stochastic noise, it is difficult to separate 

environmentally-induced patterning from patterning due to population regulation. 

Furthermore, temporal patterns often take a substantial number of generations of 

monitoring to detect, and are therefore beyond the scale of most ecological data sets. 

This dissertation grew from a study that was begun by Doug Taylor several years 

ago. Our goal was to monitor experimental populations of fast-growing plants in 

controlled conditions, and simply to observe what would happen. As an initial attempt 

at assessing the relative importance of demographic, genetic, and external environmental 

factors in determining spatial and temporal patterns, we monitored populations with 

different degrees of spatial environmental heterogeneity and genetic diversity. 

In the first chapter of this thesis, I present the most striking result of this study. 

All of our experimental populations cycled from high to low density over time, with a 

period of about four generations. However, simple models of direct density dependence 

(Nf+, = f[N,]) could not reproduce the population cycles we observed. On the other 

hand, models which included delayed density dependence (Nt+? = f[N, N,-J) were able 

to reproduce these cycles. This led to the study presented in the second chapter, in 

which I measured delayed density dependence due to effects of parent density on 

offspring quality. Parental density effects were not only detectable, but were large 
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enough to predict population cycles that were remarkably similar to our earlier 

observations. 

In the third chapter, I highlight some of the differences between the stability of 

models with only direct density dependence and models with a combination of direct 

and delayed density dependence. Relative to non-delayed models, inclusion of delayed 

density dependence changes the shape of population cycles (flip DS. Hopf bifurcations) 

and decreases the range of parameters which predict stable equilibria. Differences in the 

importance of delayed density dependence among competing species also change the 

way in which demographic parameters scale to overall dynamics by allowing some pairs 

of species that would both exhibit cyclical or chaotic dynamics in isolation to stably 

coexist. Analogous conclusions hold for differences in delayed density dependence due 

to spatial environmental variation. 

The final chapter of this thesis is a first attempt at extracting some of the effects 

of the genetic and environmental treatments in our long-term experiment from the 

overwhelming signal of the population dynamics. The results of this study highlight two 

interesting interactions between population dynamics and evolution. Although this 

study was not designed to test hypotheses about the effects of population dynamics on 

evolution, it appears likely that population cycles accelerated the rate of random genetic 

drift. Population density also appeared to be a critical determinant of the direction of 

evolutionary responses to the environmental treatments. 

Taken together, these results show that temporal patterns due to density 

dependent feedback can and do matter in plant populations. Furthermore, the effects of 

density dependent feedback were large relative to the effects of our environmental 

treatments. However, the most significant result of this study is that population cycles 

were due to delayed density dependence. The vast majority of both theoretical and 

empirical studies of plant population dynamics have assumed that population 
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regulation is only due to direct density dependence. However, delayed density 

dependence is likely to be important in many plant populations, and has very different 

effects on population dynamics than direct density dependence. Incorporation of this 

into our understanding of plant population biology will undoubtedly lead to a richer and 

more comprehensive understanding of the dynamics of plant populations. 
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CHAPTER 1. 

Complex dynamics in experimental populations 
of an annual plant, Cardamine pensylvanica 



1. Complex dynamics in Curdumine 

Abstract 

To study the numerical dynamics of plant populations, twelve experimental 

populations of an annual greenhouse weed, Curdurnine pensyZvunicu, were maintained for 

fifteen generations in controlled-environment growth chambers by growing plants in an 

array of pots and allowing seed for the next generation to disperse into an adjacent 

array of fresh pots. Discrete generations were enforced by harvesting mature plants 

after seed dispersal, but germination, recruitment, competition and dispersal occurred 

naturally. The numerical dynamics of the experimental populations cycled from high to 

low density with a period of four to five generations, as indicated by negative 

autocorrelations in population size at lags of two and three generations. Demographic 

data collected during the experiment indicate that population density affected plant 

growth and seed set. Independent estimates of low-density recruitment were also high 

enough to predict complex population dynamics from simple models of direct density 

dependent population regulation. However, simple population models fit to the time 

series data predicted stable dynamics. Similar models including time-lagged density 

dependence qualitatively reproduced the dynamics of the experimental populations. 

Delayed feedback through maternal effects or interacting herbivores or pathogens may 

be possible causes of the observed dynamics. This suggests that although plant 

population dynamics may be stabilized by direct density dependence, delayed density 

dependence could destabilize dynamics. 
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1. Complex dynamics in Cardamine 

Introduction 

The relationship between density-dependent population regulation and complex 

(cyclical or chaotic) population dynamics is one of the most widely debated issues in 

ecology. Ecologists have long been aware that many animal populations exhibit cyclic 

oscillations from high to low density over time (Elton 1942, Andrewartha and Birch 

1954, Krebs 1985), and that these oscillations are similar to those generated by simple 

models incorporating density-dependent population regulation (Cunningham 1954, 

Nicholson 1954, May 1973). The potential importance of density dependence in 

generating complex population dynamics is also supported by several examples of 

experimental populations of animals which have exhibited complex dynamics under 

controlled conditions (Nicholson 1954,1957, Prout and McChesney 1985, Constantino 

and Desharnais 1991, McCauley 1993, but see Mueller and Ayala 1981). However, the 

presence of density-dependent population regulation in natural populations has been 

notoriously difficult to demonstrate from time series data (Wolda and Dennis 1993, 

Hanski et al. 1993). 

The classic analysis of Hassell et al. (1976) typifies the discrepancy between 

models of population regulation and census data. To estimate the frequency of 

intrinsically-generated complex dynamics in natural populations, Hassell et al. (1976) 

parameterized a discrete generation model of density-dependent population regulation 

with field census data for insect populations. Of the twenty-four times series analyzed, 

twenty-three were predicted to reach a stable equilibrium and one was predicted to have 

stable limit cycles. Based on these results, many ecologists have concluded that density 

dependence does not usually cause complex dynamics in nature (Hassell et al. 1976, 

Nisbet and Gurney 1982, Godfray et al. 1991). Others responded to this conclusion by 

noting that complex dynamics are far more likely when population regulation occurs 
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1. Complex dynamics in Curdmine 

after a time delay of greater than one generation (Schaffer and Kot 1986, Turchin 1990, 

Berryman 1992). To demonstrate the potential importance of delayed regulation, 

Turchin and Taylor (1992) analyzed thirty-six insect and vertebrate time series using 

response surface methodology (Box and Draper 1987) with temporal lags. In contrast to 

Hassell et al. (1976), they found a wide range of complex dynamics, with only about half 

of the populations exhibiting monotonic growth toward stable equilibria. They 

concluded that intrinsically-generated complex dynamics are common in nature, but 

result from delayed rather than direct density dependence. 

In contrast to animal populations, the long-term numerical dynamics of plant 

populations have received relatively little attention. Plant population biologists widely 

accept the importance of direct density-dependence in both natural and agricultural 

system (Harper 1977), but density dependence in plants has been assumed to stabilize 

population dynamics, rather than generating cycles or chaos (Antonovics and Levin 

1980, Rees and Crawley 1989, Crawley 1990, but see Molofsky 1994). Rees and 

Crawley suggested that the stability of plant populations comes from several 

fundamental differences between plants and animals (Rees and Crawley 1989, Crawley 

1990): (1) plants show extreme physiological plasticity and can reproduce at very low 

size; thus, even under crowded conditions most individuals can reproduce; (2) plants 

are spatially fixed and have long dispersal distances relative to the scale of competition, 

so the effects of crowding at one location can be ameliorated by long-distance 

recruitment; (3) plant population dynamics may often be stabilized by recruitment from 

long-lived seed banks. Numerical dynamics in plants are therefore expected to be 

asymptotically stable. Nevertheless, there are a few examples of plant populations that 

appear to exhibit oscillatory dynamics independent of changes in the external 

environment (Wilkon-Michalska 1976 in Silvertown 1991, Symonides et al. 1986, Thrall 
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1. Complex dynamics in Cardamine 

et uI. 1989, Tilman and Wedin 1991, but see Rees and Crawley 1991). However, it is 

difficult to interpret these studies because extremely few studies have monitored plant 

population dynamics over several generations. Examples of complex dynamics in plant 

populations may be rare exceptions to generally stable plant population dynamics or 

may reflect general phenomena that cause complex dynamics in plants, but have not 

been incorporated into models of plant population regulation. 

To address this issue, we monitored population dynamics in replicated 

experimental populations of a greenhouse weed, Curdurnine pensyIvunicu. We first show 

the dynamical data and the evidence for density dependence in these populations. We 

then show the results of characterizing the dynamics of the populations by fitting simple 

lagged and non-lagged discrete generation models to the data. We also predict dynamics 

from independent estimates of population growth rates. Comparison of the actual, 

fitted and predicted dynamics highlights some possible causes of complex dynamics in 

plant populations as well as some problematic issues in extracting the effect of density- 

dependence on population dynamics from time series data of either plant or animal 

populations. 

Methods 

Species 

Cardarnine pensylvunica (Brassicaceae) (Muhl.) is an ephemeral weed of damp 

habitats (AI-Shebaz 1988) and is a widespread and noxious greenhouse weed. 

Greenhouse populations of C. pensylvunicu have no specific germination or flowering 

requirements and are present throughout the year under a wide variety of environmental 

conditions. Seed from these populations can germinate within a week of reaching a 

suitably moist environment and individuals begin to set seed approximately two months 
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1. Complex dynamics in Cardamine 

after germination. In the field, C. pensylvanica behaves as a winter annual, setting seed in 

the early spring before most other plants are established. The source population for this 

experiment was created by selecting more than 100 individuals from each of three long- 

established greenhouse populations: the greenhouses at Duke University (Durham, NC), 

North Carolina State University (Raleigh, NC), and a private greenhouse in Durham, 

NC. The history of the source populations were not known specifically except that each 

greenhouse was decades old, and in each greenhouse the staff recognized C. pensyhanica 

as a chronic pest. Thus, our controlled experimental conditions were similar to the 

recent experience of the populations under "natural" conditions. Fifty non-flowering 

plants from each source population were planted in a single flat in the Duke University 

greenhouse until they flowered and dehisced seed. The parent plants were then 

removed, and the germinated seedlings were harvested from the flats and used to 

initiate the population cages. 

Population cage design and maintenance 

The experimental populations were maintained for fifteen generations in a 

growth chamber in the Duke University Phytotron with a 16-hour photoperiod and a 

constant temperature of 27°C. Each population consisted of a number of 2.5 cm 

diameter by 10 cm deep tubular pots (RL-200 ConetainersTM, Stuewe & Sons, Cowallis, 

OR) arranged in a long narrow array (2 pots x 36 pots). The populations were watered 

from the bottom by filling a system of interconnected tanks with dilute Hoagland's 

solution until the pots were saturated, then draining the system. Populations were 

isolated from each other within the growth chamber by clear plastic sheeting suspended 

from the ceiling. The location of the populations within the chamber was randomized 

twice each generation. 
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1. Complex dynamics in Cardmine 

Discrete generations were enforced as follows: Populations began with three 

seedlings sown in half the pots (Figure 1, open circles). After establishment (one week), 

the surviving seedlings were thinned to one plant per pot. Before plants set seed, the 

remaining pots (Figure 1, slashed circles) were filled with bare soil to receive naturally 

dispersed seed from the original plants. After all plants had dehisced most of their seed 

(approximately two to three weeks after the first plants dehisced seed), the pots for the 

first generation were removed and replaced with bare soil. These pots received seed for 

the third generation plants, etc. The time of harvest was determined from pilot 

experiments which showed a distinct end to seed set approximately two weeks after the 

first plants set seed. After four generations the timing of seed dehiscence appeared to 

vary somewhat; to account for this, we harvested plants whenever the distinct wave of 

seed set had finished (usually about three weeks after first seed set). Because numerical 

dynamics were not visibly different during the first four generations than in later 

generations (see Results), we assume that initial population dynamics were not driven 

by the length of time available for recruitment (see Discussion). Generations (time from 

input of bare soil to the time of removal of plants in that soil) were approximately three 

months long; fifteen generations were completed in three years. This is similar to the life 

span of individuals grown under identical conditions without forced generation lengths 

(E. Crone, unpublished data). 

The experimental populations were set up with different combinations of two 

environments: (1) deep soil - pots filled with fine vermiculite, and (2) shallow sui2 - pots 

half filled with fine vermiculite. Because arrays were watered from the bottom and lit 

from above and soil depth determined the position of plants within the pots, plants in 

deep soil experienced high light and low water availability, and plants in shallow soil 

experienced the reverse. Each population had one of four environment types: (1) 
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A. B. C. D. 

Figure 1. Diagram of the 
experimental setup. Pots were 
either filled with soil (shaded) or 
half-filled (unshaded). Plants in 
the open circles comprised 
generation t. When generation t 
plants were flowering, pots with 
bare soil were placed in positions 
shown by slashed circles. After 
the generation t plants set seed, 
the pots for generation t were 
removed and demographic data 
recorded. When the generation 
t+l plants (now in pots marked 
by slashed circles) flowered, 
positions shown by open circles 
were replaced with bare soil for 
generation t+2, etc. A.) 
homogeneous shallow soil, B.) 
homogeneous deep soil, C.) 
coarse-grained heterogeneous soil, 
D.) fine-grained heterogeneous 
soil. 



1. Complex dynamics in Cardamine 

homogeneous deep - all pots filled with deep soil, (2) homogeneous shaZIow - all pots filled 

with shallow soil, (3) coarse-grained heterogeneous - one end of the population entirely 

deep soil and the other end entirely shallow soil, and (4)fi’ne-grained heterogeneous - deep 

and shallow soil in alternate pots (Figure 1). Our initial goal was to compare the 

dynamics of populations in above- and below-ground limited environments and to 

investigate the evolutionary responses to the different treatments. However, similarities 

across environments were much greater than differences (see Results), and in this paper 

we focus on these similarities. (A discussion of the differences between environmental 

treatments and the evolutionary responses of populations to environments will be 

presented elsewhere.) Although the environmental treatments were not necessary for 

this study, we present data from all twelve populations to emphasize general patterns. 

However, we only show statistical analyses of data from homogeneous environments 

(homogeneous deep and homogeneous shallow soil). This is because we do not know 

that dynamics were identical in deep and shallow soil pots, so analyses of populations 

in heterogeneous environments were complicated by spatial environmental heterogeneity. 

At the end of each generation, demographic data were collected from the 

populations. For each pot in each population the number of flowering plants and the 

total number of plants were recorded. For the first ten generations, a random sample of 

25 pots of each soil type was selected from among the entire set of pots in each 

generation. For each plant within those pots, height, number of siliques (seed pods) and 

dry biomass were recorded. Relationships between plant size and fecundity and plant 

density were used to test for local density-dependent responses of plants in each 

environment (deep or shallow soil). 

The dynamics of the numbers of flowering adults and the total numbers of 

individuals in each population were characterized using autocorrelation functions (ACF; 
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1. Complex dynamics in Cardamine 

Nisbet and Gurney 1982, Chatfield 1989). The population size (A!) for each population 

(i) in each generation (f) was log transformed = log N J ,  and the ACF was estimated 

by calculating the correlation coefficient between L,,, and L,, where f is the number of 

generations lag. Single short time series generally require large autocorrelations (r > 0.5 

for two generation lags in a 15-point series) to statistically distinguish correlations from 

noise. However, we were also able to estimate statistical confidence by comparing 

ACFs from replicate populations in each environment. We considered correlations 

significant by this criterion if the 95% confidence-interval around the mean correlation of 

the three time series did not overlap zero. Note that if oscillations are random, 

autocorrelations averaged across replicates should be zero; if oscillations are similar in 

shape (but not necessarily synchronous) across replicates, then the average 

autocorrelation across replicates should be nonzero at some temporal lags. Like ACF 

analyses of single time series, this detects periodicity but does not distinguish between 

externally-driven and internally-generated periodic oscillations because the experimental 

populations were initiated at the same time with similar population sizes. We obtained 

qualitatively similar results from analyses of both total population density and adult 

plant density, so we report only data from total numbers of flowering adults. We feel 

that these data are more reliable than data for total number of plants because seeds 

dispersed into the current generation's pots may have germinated before the harvest, and 

the generation to which small seedlings belonged could not be identified unambiguously. 

Curve-fitting anaZyses 

The results of fitting population regulation models to time series data are often 

highly sensitive to the choice of models and curve-fitting methods (Morris 1990, Turchin 

1990, Berryman 1992). Thus, we characterized population dynamics by fitting a number 
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Table 1. Population regulation models fit to data from the population cage experiment. For all models, Nf = the number 
of individuals in generation t, r = density independent growth rate, k = equilibrium population size. Estimates of density 
independent growth rates (k standard error) are from models fit to pooled data from replicate time series using the SAS 
NLIN procedure. Where models could be linearized and fit using the SAS GLM procedure, F-statistics are shown for 
qualitative comparison of model fits. For additional parameter estimates and model comparisons, see Appendix. 

Density- 
F independent 

Soil (model, error growth rate 
Model: Type DF) k std err. 

Ricker: N,,I = N,  exp(r(1 - N f i ) )  
Ricker ( 1954) 

discrete logistic: N,,, = N, (r(1 - N f i ) )  
May and Oster (1976) 

- Hassell: N,,, = N,  (r(1 - N/k)? 
9 
P Hassell ef al. (1976) 

lagged Ricker: N,+, = N, exp(r(1 - ((l-p)N, - pNi&4)) 
Ricker (1954), Turchin (1990) 

deep: 13.5 (1,26) e'= 4.7f1.6 
shallow: 6= 3.0f0.8 

deep; 18.7 (2,28) r= 2.8f0.5 
shallow: 40.4 (2,28) r= 2.6f0.3 

deep: r= 4.4f2.3 
shallow: r= 2.3f0.7 

deep: 10.4 (2,25) e'= 4.3f1.3 
shallow: 13.7 (2,27) er= 5.4f1.4 

Turchin and Taylor: N,+, = N, exp(r + a, N:' + a, N,,@ + all (N,e')' + az2 (Ni-Iez)2 + a12 N:' N,-le2) deep: - e'= O.lfO.1 
Turchin and Taylor (1992) shallow: e'= 2.1k1.3 

add reference: 

Crone, E. 1995, Causes and consequences of complex population dynamics in an annual plant, Curdarnine pensylvunicu. 
Dissertation. Department of Botany, Duke University, Durham, North Carolina, USA. 



1. Complex dynamics in Cardamine 

of discrete-generation models to density transitions (Nt + N,, or Nt-l+Nt+Nt+l) from 

the time series data from experimental populations (Table 1): the non-lagged Ricker, 

Hassell, and discrete logistic models, a lagged Ricker model with one- and two- 

generation delays, and the one- and two- generation delay model suggested by Turchin 

and Taylor (1992). All models included a one-generation feedback term because our 

demographic data indicated direct density dependence (see Results). We chose to add 

the second lag at two generations based on ACF patterns (Berryman 1992). A single set 

of parameter estimates for each model was calculated for all of the pooled observations 

from three replicate populations in each environment type. As mentioned above, in this 

paper we only present analyses of populations in homogeneous deep and homogeneous 

shallow soil environments. We repeated analyses of heterogeneous environments using a 

number of assumptions about spatial environmental heterogeneity and the results of all 

these analyses were nearly identical to those for homogeneous environments. The 

analyses of heterogeneous environmental treatments are therefore much more laborious 

to explain without giving any additional information about the nature of population 

dynamics. 

For the first four models, curves were fitted to data by (1) using the SAS NLJN 

procedure (SAS Institute 1987), (2) using a downhill simplex function minimization 

algorithm (Press et al. 1989) to find maximum likelihood estimates of parameters 

assuming Poisson-distributed (rather than normally-distributed) errors, (3) fitting 

equivalent models using the SAS GLM procedure (SAS Institute 1987) where possible 

(Le. linear regressions of In-transformed replacement rates for Ricker-variant models and 

polynomial regressions for the discrete logistic) and (4) fitting maximum likelihood 

models to individual population data sets within each environment type and averaging 

parameter estimates. Although each of these methods makes different assumptions 
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1. Complex dynamics in Curdarnine 

about the source and distribution of error, the results of the four analyses were virtually 

identical, and we report only parameters fitted using the SAS NLIN procedure. Due to 

the large number of parameters in Turchin and Taylor's lagged model, we fit this model 

only by using linear regressions of In-transformed replacement rates. 

Prediction of dynamics from population growth rates 

We also characterized population dynamics by estimating the rate of population 

increase at low density. In simple nonlagged population growth models (e.g. Ricker and 

discrete logistic), asymptotic stability depends only on the value of this parameter (r), 

and stability decreases monotonically with increasing r. Our intention was not to obtain 

an exact value for r, but to determine whether or not this value was high enough to 

potentially generate complex dynamics. 

A single plant (NJ was placed in the center of an array identical to the arrays 

used for a population in the population cage experiment. When this plant set seed, 

additional pots were added to receive seed for the next (Nt+J generation. Nt+l plants 

were left in the arrays until they set seed, and then numbers of flowering adults were 

censused to determine the rate of increase. Transitions were measured for six 

populations with the source plant (NJ in deep soil, and six in shallow soil. Pots for the 

generation were filled with deep soil on one side of each plant and with shallow soil 

on the other side of each plant. Thus, we estimated recruitment from N,(deep) to 

N,+,(deep) as twice the number of adult plants in the N,,, generation in the deep half of 

the population, and recruitment from N,(deep) to N,,(shaIloW) as twice the number of 

adult plants in the Nt+l generation in the other half of the population. 

Results 
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1. Complex dynamics in Cardamine 

All of the experimental populations exhibited complex numerical dynamics over 

fifteen generations, with most populations having three or four distinct peaks during the 

experiment (Figure 2). The autocorrelation functions from the time series indicated cyclic 

behavior through significant negative autocorrelations after two and/or three generations 

and oscillation between positive and negative autocorrelations (Figure 2). Thus, the 

populations appear to cycle with a period of approximately four or five generations. 

Data from the census of the individual pots demonstrate density-dependent 

reproduction in both environments (Figure 3). In both environments fecundity increased 

with increasing biomass, but extremely small plants were able to set seed (Figure 4), 

suggesting that the direct effects of density-dependent reproduction would not 

necessarily have caused oscillatory dynamics (Rees and Crawley 1989, but see 

Discussion). Total plant density was lower and surviving plants were larger and more 

fecund in pots with shallow soil (Table 2), but a smaller proportion of survivors 

flowered in deep soil, reflecting the persistence of smaller plants in that environment 

(Table 2). 

When fit to the time series data, all the population growth models explained 

significant amounts of variation in the data (Table l), and quadratic terms (density- 

dependence sensu Turchin 1990) were significant in SAS PROC GLM curve fits (Type III 

sums of squares, p < 0.05). However, statistical significance is based on the null 

hypothesis that there is relationship between density in one generation and density in 

the next, rather than the null hypothesis that density dependent feedback is present, but 

not strong enough to generate cyclical dynamics. This, combined with the lack of 

established procedures for estimating statistical confidence when using iterative curve- 

fitting methods, makes interpretation of statistical significance problematic. Only 

models with time lags reproduced the qualitative dynamics. In some cases, deterministic 
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Figure 2. A.) Dynamics of experimental populations over fifteen generations for three 
replicate populations in four environments: i) homogeneous shallow soil, ii) 
homogeneous deep soil, iii) coarse-grained heterogeneous, iv) fine-grained 
heterogeneous. B.) Associated autocorrelation function for each treatment; bars are 
mean correlations of three replicate populations at each lag k standard error. 
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Table 2. Characteristics of the plants from individual pot harvest data. N = sample 
size, standard errors are given in parentheses. 

Trait: 
Deep Soil Shallow Soil 

mean N mean N 

mass (g) 0.052(+0.005) 1796 0.140 ( f O .  0 12) 841 

fecundity (# 6.58(+0.631) 2743 27.67(f2.084) 1161 
siliques) 
height (an) 4.84(&0.125) 2743 12.98(+0.315) 1161 
density (plants 11.50(+1.676) 146 5.05 (50.570) 152 

percent 23.3 640 61.7 71 6 
flowering 

Per Pot) 

Table 3. Recruitment of seedlings and adult plants from an isolated target plant into an 
array of 36 pots. N = 6 plants/environment for seedling recruitment data and N = 5 
plants/environment for adult recruitment. Standard errors are given in parentheses. 

Progeny Plant Type/ 
Progeny Environment 

a) mean number of 
seeds germinating in: 

deep soil 
shallow soil 

b) mean number of 
plants flowering in: 

deep soil 
shallow soil 

Parent Plant Environment 

Deep Soil Shallow Soil 

83 (+ 61) 
933 (* 477) 

12 (+ 9) 
45 (k 16) 

150 (+ 68) 
1236 (+ 397) 

13 (+ 5) 
41 (5 10) 



1. Complex dynamics in Cardumine 

iteration of the lagged models produced dynamics nearly identical to our data (fits of 

lagged Ricker model to shallow soil and Turchin and Taylor's model to deep soil, Figure 

5C and 5D). In others, dynamics were asymptotically stable but with transient cycles 

(fits of Turchin and Taylor's model to shallow soil and lagged Ricker to deep soil, Figure 

5C and 5D). With stochastic noise, the latter also realistically reproduce cycles similar 

to the actual dynamics, unlike the nonlagged models which rapidly return to equilibrium 

population size, even in the presence of stochastic noise (E. Crone, unpublished). 

Since the time series data only used census data from flowering plants, the 

maximum potential population growth rate is estimated as the total number of flowering 

plants produced (at the time of the census) by an isolated flowering plant in an 

experimental population (Table 3). The experimental estimates of the rate of density- 

independent population increase are noisy, but mean values are considerably larger than 

values estimated from the time series data. Independent estimates of maximum growth 

rates are 12.0 and 41.0 in deep and shallow soil environments, while the maximum 

fitted estimates of these parameters are 4.7 and 5.4 respectively (Tables 1 and 3). The 

dynamics predicted from simple models using independent estimates of the parameters 

predicted complex dynamics (Figure 6), but did not give the qualitatively close fit of the 

fitted lagged models (Figure 5). 

Discussion 

To the best of our knowledge, this is the longest-term (Le. over most generations) 

time series data set available for plant populations. Contrary to theoretical 

expectations, we observed strong cyclic variation in population density over time. 

Although our experimental populations were maintained in controlled-enviroment 

arrays, dispersal, germination, competition and recruitment occurred naturally. 
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1. Complex dynamics in Curdumine 

Dispersal into current-generation (as opposed to next generation) pots is roughly 

analogous to landing in unsafe sites in natural environments, and limited recruitment 

periods are analogous to seasons in natural populations of annual plants. Furthermore, 

our populations captured many of the key stabilizing features of plant populations 

described by Rees and Crawley (Rees and Crawley 1989, Crawley 1990). For example, 

density rapidly became variable in space (E. Crone, personal observation). Because 

competition took place primarily within individual pots but seeds dispersed large 

distances through explosively dehiscent siliques, the effects of crowding in one part of 

the population should have been lessened by recruitment from other less dense areas in 

the population. Similarly, our demographic data indicate that, although reproductive 

output decreases with decreasing size, extremely small plants are able to reproduce 

(Figure 4). The dynamics of natural populations of C. pensyhnica could be stabilized 

by recruitment from seed banks, which were completely absent in our experimental 

arrays. Nonetheless, our data suggest that complex dynamics are at least plausible in 

natural plant populations, even when potentially stabilizing factors are present. 

In fitting population models to the data we see the same pattern when the 

studies of Hassell et al. (1976) and Turchin and Taylor (1992) are compared. Nonlagged 

models predict stable dynamics but models incorporating time lags extract complex 

dynamics. There is a degree of circularity in fitting recruitment models to time series 

data and then iterating these models to "post-dict" dynamics, i.e. models are tested only 

by determining how accurately they reproduce the temporal dynamics of the data set 

from which they were derived. Thus, it is not surprising that the lagged models were 

able to reproduce the observed dynamics. Rather, the striking feature of our curve-fitting 

analysis is the huge discrepancy between the post-dictions of nonlagged models and the 

actual dynamics. Our data support the growing body of literature (Turchin 1990, 
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1. Complex dynamics in Cardamine 

Berryman 1992, Turchin and Taylor 1992, Dennis and Taper 1994) suggesting that 

density-dependent population regulation takes place at many temporal scales, and that 

inclusion of delayed density dependence is a minimum requirement for extracting 

dynamics from time series data. Unlike the natural populations analyzed in the above 

studies, our populations were maintained in growth chambers, so it seems unlikely that 

oscillations were driven by cyclic fluctuations in climate or weather. 

In this study, a number of factors could be responsible for delayed density 

feedback. The first is feedback through direct maternal effects. Specifically, density may 

affect maternal provisioning (e.g. seed size) in one generation, offspring quality in the 

next generation, and density in subsequent generations. The potential importance of 

offspring quality on population dynamics has been emphasized recently by Ginzburg 

(1992), and density effects on seed size and seed size effects on plant biomass and seed 

set are common in plants (Roach and Wulff 1987, Bazzaz et al. 1992). Time-lagged 

feedback could also be due to the effects of herbivores and pathogens interacting with 

the plant populations (Turchin and Millstein 1993). This is quite plausible in our study, 

even in a controlled environment chamber. Mild aphid and gnat infestations were 

common, and though there were some noticeable fluctuations in insect abundance, we 

did not quantify them. In retrospect, it would have been very interesting to do so. 

Insects were free to disperse between populations within the growth chamber so the 

remarkable synchrony of the replicate populations may, in fact, be due to chamber-wide 

delayed regulation via insect interactions. For example, there was a noticeable crash 

across populations in generation 11 (Figure 2), and there was a noticeable aphid 

infestation that generation. Finally, Tilman and Wedin (1992) attributed chaotic 

dynamics in perennial grasses to delayed feedback through accumulation of dead plants 

from previous years' growth which gradually changed site quality. Changes in site 
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1. Complex dynamics in Cardarnine 

quality are unlikely in our experimental arrays because soil conditions were reset when 

new pots were added each generation. However, seed in offspring-generation pots often 

germinated before parent-generation pots were removed. Plant quality could have been 

affected by shading from the previous generation, and the amount of shading varied 

with density (E. Crone, personal observation). 

Another interpretation of the failure of the population growth models to describe 

the complex dynamics of C. pensylvunica is that population dynamics were altered by 

the enforcement of discrete generations. This has been found in population cage 

experiments with Drosophila species. Development rates in Drosophila are slower at high 

density, causing fewer individuals to reproduce at high density under constant 

generation length, whereas more individuals might reproduce at high density if 

generation length were increased to span the reproduction of all individuals (M. Gilpin 

and T. Philippi, personal communication). In our populations of C. pensylvanicu, the 

population cycles appeared not to be sensitive to the amount of time available for 

recruitment (see Methods). We believe that this reflects a difference in the mechanisms 

of density-dependent competition in Drosophila and Cardamine. In Drosophila, crowded 

conditions result in slower development because less food is available to each larva 

(Gilpin et ~2.1986). In Cardmine, only the first seeds to germinate in each pot survive to 

adulthood; later germinants are shaded by adults (E. Crone, personal observation). 

Thus, as seed density increases, more individuals survive (because more seeds germinate 

simultaneously), but these individuals are only from among the earliest recruits. In direct 

contrast to Drosophila, C. pasylvanica generations were actually shorter at high density 

(E. Crone, unpublished data). 

Another possible explanation of the results of our curve-fitting analyses is that 

total population censuses average over among-pot spatial variation in density and 
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1. Complex dynamics in Cardamine 

genetic heterogeneity among individuals, and this could also mask the causes of 

population dynamics (spatial: Pacala and Silander 1985, Hastings 1993; genetic: May 

and Anderson 1983, and see Chapter 3). However, the ACF pattern in our data (strong 

autocorrelation at two-generation lags and no autocorrelation at one-generation lags) is 

typical of lagged density feedback and is only infrequently generated by nonlagged 

models, even those including spatial, genetic, and/or stochastic variation (see Chapters 

2 and 3). In fact, spatially discrete metapopulation models of population dynamics 

usually generate either stable equilibria or stable two-point cycles in population size 

(Hastings 1993, Molofsky 1994), and genetic diversity increases the probability of 

asymptotic stability (see Chapter 3). Neither factor is likely to cause the four-generation 

cycles we observed and neither spatially explicit models nor explicit modeling of clonal 

dynamics accurately reproduced the observed dynamics (E. Crone, unpublished). Thus, 

we favor the hypothesis of delayed density feedback. 

Of course, without direct experimental evidence for delayed feedback, we cannot 

prove the causes of complex dynamics in C. pensybunicu. However, our analyses bring 

an important point to light: the theoretical reasons why plants should display stable 

dynamics (Rees and Crawley 1989, Crawley 1990) are based on the assumption that 

density feedback is through direct density dependence. For example, direct density 

dependence stabilizes plant population dynamics when there is extreme plasticity in 

reproductive output of plants. However, if extremely small plants set seed but produce 

offspring that cannot set seed or are more susceptible to predators or pathogens, this 

could actually decrease dynamical stability by increasing the time lag between growth 

and density feedback. Similarly, plant population dynamics would not be stabilized by 

additional recruitment from a seed bank or from other sites if delayed feedback occurs 

through changes in site quality which inhibit seed germination or seedling growth (as in 
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1. Complex dynamics in Curdarnine 

Tilman and Wedin 1992). Thus, until we obtain data on the dynamics of natural plant 

populations and the factors which cause delayed density feedback in plant populations, 

the complexity of plant population dynamics remains an open question. 

Appendix 

The set of possible models that could potentially describe population dynamics 

is the set of models that: (1) explain significant amounts of the variance among paired 

time series observations ((Nf, Nf+l) or (Nt.l, Nt, Nt+l)), and (2) predict population 

dynamics which do not differ significantly from the dynamics used to estimate 

parameters in (1). Because there are many established statistical procedures for fitting 

models to data and testing (l), I simply tried several methods for fitting possible models 

to data (see Methods). Because the results of these analyses were redundant, I did not 

list them all in the text. However, for those interested, the exact results of several of 

these analyses are given in Tables Al-A4. 

In spite of a noticeable amount of variation among parameter estimates derived 

by different methods of parameter estimation, there was a clear distinction between the 

predictions of models that did and did not include delayed density dependence. 

Models without delayed density dependence predicted stable population dynamics 

with mean population sizes much higher than we observed, while models with time 

delays predicted dynamics with damped or apparently stable oscillations in the general 

range of the data. Thus, I visually rejected models without delayed density dependence 

as possible causes of the observed cycles, and retained models with delayed density 

dependence. As described in Chapters 2 and 3, the difference between the predictions 

of these classes of models reflects the difference between populations driven by flip vs. 
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1. Complex dynamics in Cardarnine 

Hopf bifurcations. Flip bifurcations can never generate the ACF pattern we observed in 

C. pensylvanica populations, while Hopf bifurcations can. 

A third step is to ask which of the models that meet criteria (1) and (2) provides 

the best description of the data. When two or more models are able to predict dynamics 

that capture the key features (mean and ACF) of time series data, I advocate estimating 

the probability of parameters that reproduce these features being the true parameter 

estimates, given paired observations from the time series. Although I have not fully 

pursued this issue with these data, I have tested the significance of individual 

parameters in a simplified (6-parameter) version of Turchin and Taylor’s %parameter 

model, and compared the Ricker and lagged Ricker models (Tables A5 and A6). These 

analyses show that Turchin and Taylor’s model is overparameterized for this data set, 

and that the time delay parameter in the lagged Ricker model, in addition to predicting 

more realistic dynamics than the Ricker model, significantly improves the fit of the 

model to paired time series observations. 
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1. Complex dynamics in Curdarnine 

Table Al. Summary statistics for models fit to data using the SAS NLIN procedure. 
Because the parameters in these models were not identical to the parameters in Table 1, 
the relationships between the two parameterizations of the models are given. 

model 

Ricker - 

parameter 

shallow soil 
standard 

error estimate 

deep soil 
standard 

error estimate 

a = e' 
b = r/k 

3.05 
0.0090 

0.82 
0.0030 

4.72 

0.0155 

1.59 

0.0058 

discrete logistic a = r  
b = r/k 

2.36 
0.0043 

0.34 
0.0005 

2.78 
0.0050 

0.50 
0.0007 

Hassell a = r  
b = r/k 
c = e  

2.31 
0.0044 
0.92 

0.71 
0.0014 
0.98 

4.41 
0.0021 
6.26 

2.33 
0.0085 
31.07 

lagged Ricker a = er 5.36 
b = r(1-p)/k 0.0087 
c = rp/k 0.0096 

1.42 
0.0022 
0.0039 

4.31 
0.0098 
0.0065 

1.35 
0.0041 
0.0073 
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1. Complex dynamics in Cardarnine 

Table A2. Summary statistics for models fitted using the SAS GLM procedure. DF are 
model degrees of freedom for each parameter, F-statistics are from Type I11 sums of 
squares, and p-values are based on T-statistics testing the null hypothesis that the 
parameter value is zero. In these models, all terms involving direct or delayed density 
dependence are statistically significant. 

parameter 
estimate 

DF F P 

1. shallow soil (30 total DF) 
a. Ricker: ln(N,+,/NJ = a - bN, 

a 0 n/a 0.0027 0.829 
b 1 17.49 0.0003 0.0092 

b. discrete logistic: N,, = aN, - bN: 
a 1 34.83 < 0.0001 1.76 
b 1 15.05 0.0006 0.0057 

c. lagged Ricker: ln(N,+,/N,) = a - bN, - cN, 
a 0 n/a < 0.0001 1.25 
b 1 20.11 < 0.0001 0.0090 
c 1 6.51 0.0167 0.0050 

2. deep soil (28 total DF) 
a. Ricker: ln(N,+,/N,) = a - bN, 

a 0 n/a 0.1419 
b 1 13.46 0.0011 

b. discrete logistic: N,+, = aN, - bN: 
a 1 28.88 < 0.0001 
b 1 19.34 0.0002 

0.672 
0.0144 

1.77 
0.0056 

standard 
error 

0.252 
0.0022 

0.30 
0.0015 

0.28 
0.0020 
0.0020 

0.444 
0.0039 

0.33 
0.0013 
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1. Complex dynamics in Curdamine 

c. lagged Ricker: 1n(Nt+JNt) = a - bN, - cN,, 

a 0 n/a 0.0156 1.27 0.49 
b 1 13.47 0.0012 0.0135 0.0037 
C 1 5.13 0.0325 0.0115 0.0051 
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1. Complex dynamics in Curdumine 

Table A3. Summary statistics for parameters r and k (as defined in Table 1) fitted to 
individual time series using the simplex algorithm (Press et a1 1989), assuming Poisson- 
distributed error. (Poisson-distributed error is expected if differences in recruitment are 
due to demographic stochasticity, rather then environmental variance.) Parameters were 
fit to each replicate population and variance among replicate populations was used to 
estimate the distribution of maximum likelihood estimates. 

replicate population 
1 2 3 mean 

parameter 

1. shallow soil 
a. Ricker 

r 
k 

b. lagged Ricker 
r 
k 

P 

2. deep soil 
a. Ricker 

r 
k 

b. lagged Ricker 
r 
k 

P 

1.08 
96.6 

2.05 0.97 1.37 
102.2 120.3 106.4 

1.32 2.24 
88.1 99.4 
0.26 0.10 

1.24 1.60 
105.6 97.7 
0.40 0.25 

1.00 
83.8 

1.55 1.05 1.20 
102.7 91.1 92.5 

1.09 1.72 1.31 1.37 
79.7 83.3 64.6 75.9 
0.13 0.41 0.73 

standard 
error 

0.28 
5.8 

0.15 
4.7 
0.07 

0.14 
4.5 

0.15 
4.7 
0.14 
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1. Complex dynamics in Cardamine 

Table A4. Parameters fitted using Turchin and Taylor’s Response Surface Methodology, 
as originally proposed (Turchin and Taylor 1992). Note that in the intervening years, 
Turchin has greatly modified and improved this technique ( e g .  Turchin and Millstein 
1993, Ellner and Turchin 1995). 

parameter shallow soil 
0.76 

-0.0018 
-5.12 

0.00000020 
337.0 

0.024 
1.5 

-1.0 

deep soil 
-3.25 

0.00000015 
23.8 

0 
29.6 

0.00000097 
3.0 

-0.5 

Table A5. Models of population regulation calculated using stepwise multiple 
regression of parameters ao-a, in a simplified 5-parameter version of Turchin and 
Taylor’s model with 8, = 8, = 1. Model selection began with all 5 parameters and 
eliminated the parameter at each step that explained the least variation, until all 
variables were significant at a liberal p c 0.15 level. 

estimate parameter 
1. shallow soil 

a0 0.81 
a1 -0.0042 
a12 -0.00053 

2. deep soil 
a0 
a2 

a11 

0.73 
-0.011 
-0.000043 

standard error F 

0.23 
0.0027 
0.00002 

0.42 
0.005 
0.000011 

12.37 
2.37 
6.95 

3.02 
5.11 
15.29 

P 

0.0016 
0.1357 
0.0137 

0.0946 
0.0328 
0.0006 
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1. Complex dynamics in Curdumine 

Table A6. Likelihood ratio (LLR) statistics for comparison of the Ricker model of 
recruitment vs. the lagged Ricker model. Because the models differ by 1 parameter, this 
ratio is distributed as x’ with one degree of freedom. In all populations, delayed density 
dependence significantly improves model fits. 

population shallow soil 
-2 LLR (-x2) p 

48.26 < 0.005 
19.54 < 0.005 

120.10 < 0.005 

deep soil 
-2 LLR (-x2) p 

6.82 < 0.01 
95.96 < 0.005 

193.14 < 0.005 
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CHAPTER 2. 

Parental environmental effects and cyclical dynamics 
in plant populations 



2. Parental effects and plant population dynamics 

Abstract 

Parental environmental effects have been widely reported in plants, but never 

incorporated into models of plant population dynamics. Nonetheless, inclusion of 

effects of parental density on offspring quality fundamentally changes population 

dynamics models by making recruitment a function of population size in two previous 

generations (Nt+l = f[N, NJ), rather than one (Nt+l = f[Nt]). In this study, I measured 

effects of parental and offspring density on offspring quality in an annual plant, 

Cardarnine pensylvanica, by manipulating plant density independently in parent and 

offspring generations, and comparing the effects of parent and offspring density on 

offspring performance. Parental density effects were detectable, but were noticeably 

weaker than offspring density effects. Nonetheless, the parental effect was large enough 

to change the predictions of a model of population dynamics. Without parental effects, 

this model predicts sharp density-dependent crashes from high to low density (flip 

bifurcations). With parental effects, the model predicts gradual cycles in population 

size (Hopf bifurcations). Thus, parental effects may be a critical and overlooked 

component of the numerical dynamics of plant populations. 
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2. Parental effects and plant population dynamics 

Introduction 

Numerous studies have shown that a plant’s environment can affect not only the 

traits of that plant but the traits of its offspring (reviewed in Roach and Wulff 1987, 

Lacey 1991). Variation in parental environmental conditions has been shown to affect 

aspects of offspring performance across wide ranges of experimental manipulations 

(nutrient availability, water availability, temperature, light quality, and plant density) 

and plant taxa. However, despite the fact that parental environmental conditions can 

affect demographically important traits (e.g. survivorship, size and fecundity), few, if 

any, studies have asked whether these ”parental environmental effects” might influence 

long-term population dynamics. 

Effects of parental density on offspring quality are particularly likely to alter 

population dynamics. Most theoretical models of plant population dynamics assume 

that population density in one generation is a declining function of population density in 

the previous generation (e.g. Watkinson 1980, Pacala and Silander 1985, Rees and 

Crawley 1989, Molofsky 1994). However, if plants whose parents were crowded are 

smaller and less fecund than plants whose parents were uncrowded, then population 

size in the third generation is affected by population size in two previous generations. 

Parent plant density has been shown to directly affect seed size, seed germination 

characteristics, and seedling size (e.g. Harper 1977, Roach and Wulff 1987, Mazer and 

Wolfe 1992, Platenkamp and Shaw 1993). Furthermore, many other studies have shown 

that plants whose parents grew in low-quality environments (low nutrients or low light) 

are smaller and less fecund than plants whose parents were in high-quality environments 

(high nutrients or high light; e.g. Roach and Wulff 1987, Aarssen and Burton 1990, Mia0 

et al. 1991, Wulff and Bazzaz 1992). Because nutrient availability, light availability, 

and other differences in environmental quality are often mediated by plant density, 
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2. Parental effects and plant population dynamics 

these parental effects could also make population density in the third generation a 

function of density in two previous generations. 

It is not clear that predictions made by models with parental effects would be 

the same as those made by models without parental effects. For example, the potential 

importance of density feedback from multiple past generations has been demonstrated 

in recent studies of animal population dynamics. Time series data from several natural 

populations of insects and small mammals can be explained by models that include 

delayed density dependence, but not by models that only include direct density 

dependence (Turchin 1990, Berryman 1992, Turchin and Taylor 1992, Turchin 1993). In 

some cases, delayed density dependence in insect and small mammal populations has 

been shown to be caused by direct effects of parent density on offspring survivorship 

and/or fecundity, which are analogous to parental density effects in plants (Royama 

1981, Rossiter 1994). 

In this paper, I measure parental density effects in an annual plant, Curdumine 

pensylvunicu, and ask whether these effects might be important in driving population 

dynamics. In an earlier study (Chapter l), I observed that population size in C. 

pensylvunicu cycled from high to low density over time, apparently due to density- 

dependent population regulation. This suggests that C. pensyZvunicu populations are 

exposed to high variation in population density and that discrete-generation models of 

density-dependent population regulation are appropriate for this species. To determine 

whether parental density effects might be an important component of population 

dynamics in C. pensylvunicu, I use three approaches. First, I measure the effects of parent 

and offspring density on demographic traits in C. pensylvunicu. I then extend these 

relationships to a model of population dynamics that includes parental effects, and 

explore the general stability properties of this model relative to an identical model that 
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2. Parental effects and plant population dynamics 

does not include parental effects. Based on this analysis, I show that parental effects 

change population dynamics when they are fairly large relative to direct effects of 

offspring density effects. Thus, I use my experimental data to generate a probability 

distribution for the relative size of parent and offspring density effects, and ask whether 

these parameters predict population dynamics that differ from the predictions of 

models without parental effects. 

A. Study species 

Curdumine pensyZvunicu (Brassicaceae) (Muhl.) is an ephemeral plant of damp 

habitats (Al-Shebaz 1988) and is a widespread and noxious greenhouse weed (Cloutier 

et uI. 1991, Whitcomb and Santlemann 1983). Plants from greenhouse populations of C. 

pensylvanicu germinate and flower readily and are present throughout the year under a 

variety of environmental conditions. Seed from these populations can germinate within 

a week of reaching a suitably moist environment, and individuals begin to set seed 

approximately two months after germination. In the field, C. pensylvanica behaves as a 

winter annual, setting seed in the early spring before most other plants are established. 

The source population for this experiment was created by combining seeds from more 

than 100 individuals from each of three long-established greenhouse populations: the 

greenhouses at Duke University (Durham, NC) and North Carolina State University 

(Raleigh, NC), and a private greenhouse in Durham, NC. Each greenhouse was decades 

old, and in each greenhouse the staff recognized C. pensylvunicu as a chronic pest. Thus, 

the experimental conditions were similar to the recent experience of populations in 

"natural" conditions. 

B. Density feedback in Cardamine pensylvanica 

40 



2. Parental effects and plant population dynamics 

Methods 

To compare the effects of parent and offspring densities on offspring 

reproduction and subsequent recruitment into the third, grand-offspring, generation, I 

conducted two parallel experiments. In the first, I manipulated density in the first 

(parental) generation and examined effects of parental density on plants in the second 

(offspring) generation. In the second, I held parent density constant and varied 

offspring density. 

1. PurentuZ effects - To generate plants for this experiment, seeds from the source 

population (described above) were grown under high light, water and nutrient conditions 

in the Duke University greenhouse for one generation. Seeds from these plants were 

harvested and grown for one generation in the Duke University Phytotron at low 

density. Experimental conditions in phytotron chambers were identical to the "shallow 

soil" treatment described in Chapter 1. Seeds harvested from these plants were used for 

the first (parental) generation in the density experiment. In the parental generation, 

seeds were sown in 2.5 cm pots (RL-100 Conetainers) at each of three densities: 6,100, 

and 800 seeds per pot (Figure 1). Twenty-four replicate pots were planted at each seed 

density. Densities were chosen based on preliminary experiments to generate a range of 

adult densities similar to those observed in population dynamics studies (1-25 adult 

plants/pot; see Chapter 1). To make above-ground plant density similar to within-pot 

density, the pots for each density treatment were grouped into four blocks, and the 

twelve blocks (3 densities x four blocks/density) were randomly located in a growth 

chamber in the Duke University Phytotron. 

Seeds for the offspring generation were harvested from the parent-generation 

plants. In many plant species, early maturing seeds are larger and more robust than 

later seeds (Roach and Wulff 1987). Seed set in C. pensylvanicu takes place over about 
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2. Parental effects and plant population dynamics 

two weeks, and seed pods dehisce explosively after seeds are mature. Thus, to ensure 

even collection of seeds across time and treatment, I collected seed from each pot weekly 

for a three-week period, beginning when about 20% of plants had begun to set seed, and 

ending after about 80% of plants had produced mature seed for two weeks and all 

plants that had flowered had dehisced several seed pods. 

For the second generation, I randomly selected a single seed from each pot in the 

first generation. These seeds were planted in 2.5 cm pots at a constant density of 1 

seed/pot (Figure 1). I planted second generation pots at a constant density to avoid 

confounding effects of parent and offspring densities (see below). I planted only one 

seed per parent generation pot to ensure independence of second-generation plants. 

This design yielded a total of 72 seeds planted in the second generation (24 from each of 

3 parent generation seed densities). 

To determine the potential effects of parental density on population dynamics, it 

is necessary to know whether differences in parental density will change offspring 

fecundity, and thus also affect recruitment into the third (grand-offspring) generation. In 

previous experiments (E. E. Crone, unpublished), ln-transformed seed density was 

proportional to ln-transformed adult density (N = 59, R' = 37, p < .0001), and ln- 

transformed mass of isolated adult plants was proportional to ln-transformed seed rain 

into an adjacent array of pots (N = 5, R' = 39, p = .0052). Thus, I used mass of 

offspring plants as an estimate of offspring fecundity and recruitment into the third 

(grand-offspring) generation. 

Specifically, I fitted a linear model of parent density effects to ln-transformed 

offspring mass (SAS GLM procedure, SAS Institute 1987): 

~n[y,] = a - b ~ , - ,  + E (1) 
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2. Parental effects and plant population dynamics 

where yr is the average mass of individual plants in the offspring generation, N,, is the 

density of plants in the parent generation, and E is stochastic error. I repeated the 

analysis using both seed density (which was directly manipulated) and adult plant 

density (which is probably a better indicator of the competitive environment). Although 

I expected that adult density would be the best predictor of performance, it was not 

logistically possible to independently manipulate seed and adult density, to exactly 

manipulate adult density, or to census plants between the seed and adult stages (recall 

that, to achieve realistic adult densities, up to 800 seeds were planted in single 2.5 cm 

pots). 

2. Offspring density efiects - Effects of variation in offspring (second generation) 

density on recruitment into the third generation were measured by keeping parent 

generation density constant and varying offspring generation density. In the parent 

generation, seeds were planted at a constant density of 1 seed/pot (Figure 1). Plants 

were grown and seeds were collected from each plant in this generation as described 

above. 

Seeds from randomly selected parent plants were planted at each of three 

offspring densities: 6,100, and 800 seeds per pot (Figure 1). Twenty-four pots were 

planted at each density. Each pot contained seed from only one parent-generation 

plant, and each parent plant was used only once. Third generation recruitment was 

estimated from second-generation adult mass as described above, except that plant 

mass was related to current (rather than parental) density: 
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2. Parental effects and plant population dynamics 

where yt is the average mass of plants in each pot and Nt is the total plant density in 

that pot, and E is error. As above, the analysis was repeated using seed density in each 

pot, and adult density at the time of harvest. 

3. Interactions between parent and offspring density - My original goal was to test for 

interactions between parent and offspring effects by doing a full factorial experiment of 

four parent and offspring-generation seed densities (1,6,100, and 800 seeds/pot). 

However, this experiment was impossible to perform because none of the pots planted 

at parent densities of 100 or 800 seeds/pot yielded enough seed to plant pots for the 

next generation at a density of 800 seeds/pot, and few yielded enough seed to plant at 

100 seeds/pot. This implies that transitions from high density to high density are highly 

unlikely if not impossible in C. pensyhnica populations, and is consistent with my 

earlier observation of cyclical population dynamics in C. pensylvanica (Chapter 1). 

Nonetheless, as a preliminary test for interactions, I aggregated seeds from all 

parent generation plants at each density and planted 10-24 pots from each parent 

density treatment at each of the offspring densities (depending on the availability of 

seeds). I then tested for heterogeneity among slopes of mass vs. parent density for 

plants from different offspring seed densities and slopes of mass vs. offspring density 

for plants from different parent seed densities. Analyses of these data indicated that 

offspring effects were independent of parent density (p =0.84). There was a weak 

interaction between parent effect and offspring density in which the effect of parent 

density declined at high offspring densities (p=0.06). However, stability analysis of a 

model incorporating this interaction showed that this would not significantly alter the 

predicted population dynamics. Because numerous caveats apply to these data 

(including bias toward the more successful plants at high-high density transitions and 
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lack of strict independence of replicates) and the interaction did not change the general 

pattern of results, I will not discuss these results further in this paper. 

Results 

Both parent and offspring density affected recruitment, i.e. slopes of offspring 

mass DS. parent and offspring plant density were both negative and unlikely to be zero 

(Table 1, Figure 2). In both cases, adult plant density was a better predictor of 

performance than seed density. This is consistent with my observations of competition 

among C. pensylvunicu seeds, seedlings and adult plants. For example, when 100 seeds 

are placed in a 2.5 cm pot, several seeds germinate at approximately the same time, and 

form a canopy that covers the pot. The majority of these individuals appear to survive 

to be adults, while subsequent germinants do not survive long or become large, and 

probably do not significantly affect resource availability. If this scenario is true, the 

available resources would be consumed almost exclusively by the first cohort of 

germinants, which are also the plants that survive to be reproductive adults.. 

Nonetheless, although this analysis suggests that parent density affects offspring 

fecundity, the effects of parent density are only marginally significant (p = 0.08), and 

are noticeably weaker than the effects of offspring density. Thus, it is not immediately 

clear whether parental effects are significant for population dynamics. It may be that 

parental effects would be overwhelmed by offspring density effects, or would simply 

add noise to predictions of density-dependent population dynamics based only on 

offspring density. To address the importance of parental effects, I will begin by using a 

mathematical model to explore when parental density effects change population 

dynamics. 
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Table 1. Statistics for effects of parent and offspring seed and plant density on plant 
biomass. ML estimate is the maximum likelihood estimate for each parameter, p and F 
have their traditional values. Note that seed density and adult density are highly 
correlated, so it is not surprising that the results of the two analyses are similar. 

slope standard P 
estimate error 

parent effect 
seed density 
adult density 

offspring effect 
seed density 
adult density 

-0.0011 0.0008 0.1684 2.03 
-0.0767 0.0431 0.0835 3.16 

-0.0024 0.0008 0.0037 9.32 
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2. Parental effects and plant population dynamics 

C. Model of population dynamics with parental effects 

Given the absence of significant interactions between parent and offspring 

density effects, the models fitted to parent and offspring effects (equations 1 and 2) can 

be combined into a single model: 

~n[y,] = a - b ~ , - ,  - CN, (3) 

where all parameters are as described above. This relationship suggests that a similar 

model can be used to describe population growth (see Appendix): 

In [?] - = a‘ -b‘ iV,-l - c’ N,, (4) 

This model can be reparameterized and written using traditional notation from models 

of population growth: 

where Nt_l, Nt, and N,, are population size in the parent, offspring and grand-offspring 

generations (respectively), r (=a’) is the density-independent population growth rate, k 

(=a’/(b’+c’)) is equilibrium population size (or carrying capacity), g (=b’/(b’+c’)) is the 

proportion of density feedback from parent density, and 1-8 is the proportion of 

density feedback from offspring density. When parental effects are not present (8 =O), 

this model collapses to the well-known Ricker model of population growth (Ricker 1954, 

May and Oster 1976, Edelstein-Keshet 1987): 

In addition to emphasizing its relationship to classical models of population dynamics, 

equation 5 has two advantages over equation 4: (1) asymptotic stability of equation 5 

depends only on two parameters, r and g (see below), while analysis of equation 4 
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depends on 3 parameters, and (2) equation 5 allows qualitative patterns of population 

dynamics (see below) to be predicted from parent and offspring effects on biomass, 

which are much easier to measure then effects on actual recruitment into subsequent 

generations (see Appendix). 

To explain the consequences of parental effects, I distinguish three possible 

patterns of variation in population size over time (Figure 3). The first is asymptotically 

stable dynamics, in which population size grows to a constant equilibrium density 

(carrying capacity) from any starting size (Figure 3A). This kind of population 

dynamics is probably the classical view of most plant population biologists, who have 

generally hypothesized that fluctuations in population size in plants are driven by 

variation in environmental conditions, rather than density dependent population 

regulation (Crawley 1990). 

The second and third kinds of population dynamics describe two kinds of cycles 

in population size due to overcompensating density dependence. Although population 

cycles have been assumed to be rare in plant populations (Rees and Crawley 1989, 

Crawley 1990; but see Silvertown 1991, Molofsky 1994, Cousens 1995 and Discussion), 

they are clearly relevant here because C. pensylvanicu populations cycle in the absence of 

environmental variation (Chapter 1). The first kind of population cycles is 

characterized by dynamics which alternately overshoot and undershoot carrying 

capacity in successive generations (hereafter called ”flip bifurcations”; Thompson and 

Stewart 1986; Figure 3B). This is the familiar “period doubling” instability described by 

May and Oster (1976). Another notable feature of flip bifurcations is that population 

size always falls from the highest density to the lowest density in one generation, even 

when population dynamics are asymptotically chaotic, rather than cyclical. 
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2. Parental effects and plant population dynamics 

This contrasts directly with the second possible form of cycles which are 

characterized by population cycles which rise and fall over several generations (hereafter 

called ”Hopf bifurcations”; Thompson and Stewart 1986; Figure 3C). In this case, 

population size can slowly fall from high to low density, rather than ”crashing” in a 

single generation. The distinction between these two kinds of cycles has a well- 

established theoretical basis (instability to real vs. complex eigenvalues, Nisbet and 

Gurney 1982). However, unlike the distinction between stable and cyclical dynamics, 

the distinction between population cycles caused by flip and Hopf bifurcations has 

never been made in discussions of plant population dynamics. 

Standard techniques for stability analysis of equation 4 (May 1973), show that 

all three kinds of population dynamics (stable dynamics, flip bifurcations, and Hopf 

bifurcations) are possible in this model (Figure 4) (see Chapter 3), depending on the 

values of the population growth rate, r, and the time delay parameter, g. If there are no 

parental effects (g = 0), then population dynamics are stable if r 52.0, and unstable due 

to flip bifurcations if r > 2.0 (May and Oster 1976, Figure 4). If g 5 0.25, then 

population dynamics are unstable if 

2 r > - .  
1-28 

This instability is due to negative real eigenvalues of the Jacobian stability matrix, which 

(7) 

cause flip bifurcations. In other words, when g I 0.25, the presence of parental effects 

changes population dynamics by increasing the minimum growth rate that leads to 

cyclical population dynamics, but does not change the shape of population cycles. On 

the other hand, if g > 0.25, then population dynamics become unstable through complex 

eigenvalues, which cause Hopf bifurcations (Figure 4). In this case population dynamics 

are unstable if 
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(8) 

This means that when parental effects cause 25% or more of the total density-dependent 

variation in demographic parameters, population dynamics can be radically different 

from the dynamics predicted by models without parental effects (contrast Figure 3B 

with Figure 3C). 

In other words, the shape of population cycles is determined only by the 

proportion of density feedback from parental density effects (g). For parental effects to 

allow kinds of population dynamics that would never be predicted by models without 

parent effects, g, the proportion of density feedback from parents 'us. offspring, must be 

greater than 0.25. Thus, to ask whether parental effects in C. pensylvunicu might be an 

important factor in population dynamics, I will use the experimental data to estimate 

the value of g. 

D. Empirical estimate of g in C. pensylvanicaa 

As shown in the Appendix, the parameter g can be directly estimated from 

parent and offspring density effects as follows: 

b g = -  
b + c  

where b and c are the effects of adult plant density in the parent and offspring 

(5) 

generations, respectively, on ln-transformed offspring mass (equations 1-5; see 

Appendix). Thus, it is possible to calculate a maximum likelihood estimate of g simply 

from the slope estimates presented in Table 1 (g = 0.77/(0.77+0.148) = 0.35). For any 

fixed nonzero value of c (offspring effect), the probability that g is zero is equal to the 

probability that b (the parental effect) is zero. Because b is different from zero with 

marginal statistical significance (p = 0.08), g is also different from zero with the same 
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"significance". However, this analysis does not give any information about our 

confidence in the distribution of g, particularly around the value of g = 0.25, which is the 

critical value for population dynamics. 

To understand the distribution of g, I adopt a Bayesian perspective and treat the 

experimental data as fixed and the estimates of parent and offspring effects (b and c) as 

random variables, with probability distributions based on the data. (See Walters and 

Ludwig (1994) for a discussion of Bayesian reasoning with applications to ecological 

parameter estimation.) Given the assumptions of an uninformative prior distribution 

and normally distributed errors, both of which are appropriate for these data, Bayesian 

posterior distributions for the parameters b and c are normally distributed with mean 

and variance identical to those of parameters estimated by least-squares methods 

(Table 1; Box and Tiao 1973). Because b and c are independent random variables, the 

probability distributions of functions of these variables (such as g) can be calculated 

from their joint distributions (Box and Tiao 1973). I found this distribution numerically 

by taking all values of b and c with posterior probabilities > 0.001. Values of g were 

calculated for each b, c pair. The probability of any given b, c pair is the product of their 

two independent probabilities, and the probability of obtaining for any given value of g 

is the sum of the probabilities of all pairs of slopes which generate that value of g. 

Based on this analysis, g is likely to be large enough to affect population 

dynamics in C. pensylvanicu. 69% of the area of the posterior probability distribution of 

g fell in the Hopf bifurcation region (.25 e g 5 l), where population cycles are very 

different from cycles predicted by models without parental effects, while only 25% was 

in the flip bifurcation region of parameter space (0 I g 1.25), where parental effects 

could be statistically significant, but not large enough to affect population dynamics 

(Figure 5). The remaining 6% of the distribution yielded values of g that were less than 0 
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2. Parental effects and plant population dynamics 

or greater than 1 (which would not be consistent with this model of population 

dynamics). 

Discussion 

Parental density effects change the predictions of plant population dynamics 

models by predicting a completely different kind of population cycles (cycles caused by 

Hopf bifurcations) from models without parental effects. This is significant because 

earlier models of density-dependent population regulation in plants have only predicted 

flip bifurcations or stable dynamics (Figures 3B and 3A). It is important to recognize 

that analyses based on these models only ask whether cycles characteristic of flip 

bifurcations are possible and would attribute cycles caused by Hopf bifurcations (Figure 

3C) to "noise". In fact, of the three published studies which show cyclical dynamics in 

plant populations, one (Symonides et al. 1987) shows cycles consistent with flip 

bifurcations, while the other two (Tilman and Wedin 1991, Chapter 1) show cycles that 

are only consistent with Hopf bifurcations. 

For example, in an earlier study (Chapter l), I monitored population dynamics 

and characterized the shape of population cycles using autocorrelation functions (ACFs, 

Chatfield 1989; Figures 6 and 7). ACFs are correlations between time series 

observations separated by different temporal lags. In other words, the autocorrelation 

between observations separated by a lag of one generation is the correlation between 

parent and offspring density, and the autocorrelation at a lag of two generations is the 

correlation between parent and grand-offspring densities. ACFs of unstable population 

dynamics caused by flip bifurcations are characterized by negative correlations at one- 

generation lags (parents vs. offspring), and positive (cyclical dynamics) or weaker 

negative (chaotic dynamics) autocorrelations at lags of two generations (parents vs. 
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grand-offspring; Nisbet and Gurney 1982). ACFs of cycles caused by Hopf bifurcations 

have strongest negative correlations at lags of two or three generations (parents vs. 

grand-offspring or great-grand-offspring; Berryman 1992). Because the ACFs of 

population cycles we observed in C. pensylvanica had largest negative correlations at lags 

of two generations and no significant correlations at one-generation lags (Figure 7), these 

cycles were only consistent with Hopf bifurcations. 

The significance of the parental feedback for population dynamics in C. 

pensylvanica can be illustrated by comparing the time series data and ACFs to 

predictions of population dynamics models that do and do not include maternal effects, 

when parameterized with experimental estimates of demographic parameters Y (as 

measured in Chapter 1) and g (Figure 8). Without parental feedback (Figure 8A and 8B) 

population dynamics are cyclical, but are always governed by flip bifurcations and 

therefore cannot reproduce the actual dynamics, even in the presence of environmental 

noise. Models including parental feedback predict longer cycles, and are more similar to 

the observed dynamics (Figure 8C and 8D). When demographic parameters are 

modeled as random variables (with distributions based on Bayesian posterior 

distributions), simulations of population dynamics with parental effects (Figure 8D) can 

be strikingly similar to the observed dynamics (Figure 6) .  

Generally speaking, parental effects in C. pensylvanica are similar to parental 

effects in other species: statistically detectable, but smaller than direct effects of 

offspring environment (analogous to 0 > g > 0.5). Because other studies of parental 

environmental effects in plants have emphasized changes in individual phenotype, 

rather than population dynamics, it is necessary to revisit these studies to compare their 

results to the data presented here. Unfortunately, although previous studies have 

reported effects of parent density on seed and seedling performance (Roach and Wulff 
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1987, Mazer and Wolfe 1992, Platenkamp and Shaw 1993), I have not found any 

published studies that report effects of parental density on the adult mass or fecundity 

of offspring. Nonetheless, there a few studies of the effects of nutrient availability on 

annual plants from which it is possible to estimate the relative magnitudes of the effects 

of parental and offspring-generation environmental conditions on offspring plant size 

(Table 2). Of the six experiments for which I was able to compare parental and 

offspring nutrient effects, two report nonsignificant parental effects, two report 

significant effects which do not translate into relative values that would change 

population dynamics ("g" < 0.25, see Table 2), and two have significant effects with 

relative magnitudes high enough to change predictions of population dynamics ("g" > 

0.25). Obviously, these analyses should be interpreted with caution, because the studies 

were not designed for this purpose, and different estimates of size were often used in 

estimating parental vs. offspring effects. Nonetheless, they show that the magnitude of 

parental density effects in C. pensylvanicu is not atypical of parental nutrient effects in 

other species. This suggests that parental effects might be an important component of 

population dynamics in numerous plant species. 

In extending these results to other species, it is also important to note that the 

qualitative shift in population dynamics that results from parental density effects can 

also result from other ways in which parent density can influence offspring performance. 

For example, litter from plants in previous generations can accumulate and suppress 

plant germination and fecundity in future generations (Bergelson 1990). In addition, 

theoretical investigations have shown population cycles due to age-structured 

demographic rates and plant-pathogen interactions (May and Anderson 1983, Wilkan 

1994). Although the specific functional forms of models that describe these processes 

are different from the model of parental effects presented here, they lead to Hopf 
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Table 2. Parental and offspring nutrient effects reported in other studies. Slopes were estimated by least squares 
regressions when more than two treatment levels were used, and by taking the difference between size at low nutrients and 
high nutrients when only two were used. To scale parameters, estimates were divided by plant size at low nutrients. 
Relative values were calculated from these using equation (5). Note that in many cases the same set of plants was used to 
measure both parent and offspring effects, that experiments were designed to test the null hypothesis that parent and 
offspring effects were zero, rather than estimating parameters, and that, given the published data, I was usually unable to 
calculate confidence intervals for these slopes. Nonetheless, the parental density effect reported in C. pensylvanica falls 
well within the range of values reported in other studies. * denotes effects which were statistically significant (p < 0.05) in 
the analysis reported in the original publication, and ' denotes effects for which I estimated values from graphically 
presented data. In Stratton (1989), C and NC refer to offspring grown in competitive and noncompetitive conditions. 

species # levels 

Mia0 and Bazzaz 1990, Plantago 
Miao, Bazzaz and Primack, 1991 major 

Plantago 
rugelii 

Wulff and Bazzaz 1992 Abuti lon 
t h e o p h r a s t i i  

2 

2 

2 

Stratton 1989 

Aarssen and Burton 1990 

Erigeron 

Erigeron 
annuus (C) 

annuus (NC) 

Senecio 
vulgaris 

2 

2 

3 

offspring nutrient effect 
trait measured slope 

biomass (g) 
8 145 days 

biomass (g) 
8 173 days 

biomass (mg) 
8 56 days' 

-0.36* 

-0.63* 

-0.86* 

basal stem -0.23* 
diameter (mm) 

diameter (mm) 
basal stem -0.23* 

biomass (g) 
8 12 weeks 

-0.34" 

parental nutrient effect 
trait measured slope 

biomass (g) -0.09" 
8 8 months' 

8 9 months' 
biomass (g) 0.09 

biomass (mg) -0.14" 
8 56 days' 

biomass (g) -0.30* 

biomass (g) -0.07 
8 8 weeks 

@ 11 weeks' 

biomass (9) 
8 7.5 weeks 

-0.20* 

relative values (-g) 

0.20 

-0.17 

0.14 

0.57 

0.23 

0.37 



2. Parental effects and plant population dynamics 

bifurcations, and therefore can allow both long cycles in population size and cycles at 

relatively low population growth rates (see Turchin and Millstein 1993). Thus, although 

the parental effects model analyzed here describes an annual plant with discrete 

generations, other forms of delayed density dependence (litter accumulation and age 

structure) show that cycles can occur in perennial, as well as annual, species. Because of 

the difference between cycles driven by flip vs. Hopf bifurcations, cycles caused by these 

mechanisms would neither be predicted by simple discrete generation models nor 

detected by statistical tests derived from these models. I do not know whether there are 

extant data sets of dynamics of natural plant populations over several generations that 

could be examined for population cycles consistent with Hopf bifurcations. (To date, I 

have found very few.) Nonetheless, the potential for cyclical dynamics in plant 

populations is clearly worthy of further consideration in light of the potential for cycles 

due to Hopf bifurcations. 

This is the first study to relate parental environmental effects to population 

dynamics in plants. Parental density effects in C. pensylvanica populations not only 

changed the phenotype of offspring plants, but were large enough to cause a qualitative 

shift in patterns of long-term population dynamics. Thus, in addition for their long- 

recognized potential for changing the evolutionary dynamics of plant populations, 

parental environmental effects may be a significant factor in numerical population 

dynamics. 

Appendix 

In this section, I show that estimates of the relative effects of parental and 

offspring density on offspring biomass (b and c in equation 3) can be used to calculate 
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2. Parental effects and plant population dynamics 

the time delay parameter (8 in equation 5). My goal is not to prove that this is the best 

possible model of plant population dynamics. In fact, several different assumptions 

about the relationship between biomass and fecundity in one generation and the number 

of adult plants in the next generation fit the data almost as well and make similar 

predictions about population dynamics, but that is beyond the scope of this paper. In 

this appendix, I simply show that these steps are consistent with empirically estimated 

functional rela tionships. 

Based on preliminary experiments (see Methods), I know that In-transformed 

mass of single isolated plants (y,) is proportional to In-transformed seed rain (st+J: 

St+l = PYtZ (AI) 

and that In-transformed seed rain is proportional to In-transformed recruitment of adult 

plants into that generation (Nt+J: 

(A2) W 

Nt+l = st+1 - 
In order to relate effects of density (NJ on In-transformed average mass on single 

plants (yt from equation 3) to In-transformed replacement rates (N,,/N, from equation 

4), the following relationship must also hold: 

In - = u-v1n[yt] [:I 
so that 

and 

ln- Nt+l = u - v(a - bNt-, - CN,) = uva - vbNt-l - VCN, 
Nt 

(A41 

vb b - b' ---=- 
b'+c' vb+vc b+c  

(A51 

Taken together, equations A2 and A3 imply the following relationship between 

density, biomass, and seed rain: 
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2. Parental effects and plant population dynamics 

~n[s,+,] = k-~ln[~,]+rnln[y,] (Ab) 

It is not possible to test whether this relationship is consistent with seed rain data from 

the experiment used to generate Al, because all of the plants in that experiment were 

planted as single plants per pot (Nf = 1). However, in an earlier experiment (E. Crone, 

unpublished), I measured plant density, plant mass, and the number of seed pods per 

plant (which is likely to be proportional to seed rain) in C. pensylvanica. I calculated a 

regression of the form described by A6, and found that ln-transformed fecundity was 

linearly related to ln-transformed density and ln-transformed average plant mass (SAS 

GLM procedure; N=242 pots of plants, p < -0001 for both factors (Type III SS), R’ = 

0.656 for the full model). Although this does not test whether A6 is the best possible 

description of the relationship between density, mass, and fecundity in C. pensylvanicu, 

it shows that these relationships are not inconsistent with A6. 
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3. Delayed density dependence and population stability 

Abstract 

Theoretical investigation of the dynamics of populations with discrete 

generations have traditionally been based on simple models of the form Nt+7 = f[N,]. 

However, recent studies of the dynamics of natural populations indicate that density 

dependent population regulation probably takes place over many generations (Nf+l = 

f[N, Nf-l, ...I). In this paper, I contrast the stability properties of discrete-generation 

models of population growth which do and do not include delayed density dependence. 

Relative to non-delayed models, inclusion of delayed density dependence changes the 

shape of population cycles (flip vs. Hopf bifurcations) and decreases the range of 

parameters which predict stable equilibria. I also explore extensions of these models 

that include interspecific competition and coupling of spatially isolated patches. In both 

cases, delayed density dependence significantly changes the way in which demographic 

parameters scale to overall dynamics. For example, when delayed density dependence 

does not differ between two species, the asymptotic stability of both species is 

determined by a weighted average of the population growth rates of the two species. 

However, when species differ in time delay, some pairs of species that would both 

exhibit cyclical or chaotic dynamics in isolation can stably coexist. Analogous 

conclusions hold for the effects of deterministic spatial environmental variation among 

coupled patches. This implies that inclusion of delayed density dependence in 

investigations of population dynamics can dramatically change the inferences we draw 

from mathematical models, and that further investigations of the effects of delayed 

density dependence are warranted. 
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3. Delayed density dependence and population stability 

Introduction 

In recent years, our understanding of the processes controlling the dynamics of 

natural populations has been considerably changed by the recognition that density- 

dependent population regulation can take place at a variety of temporal scales. 

Ecologists have demonstrated that past generations can affect population growth rates 

through a number of time delay mechanisms, including density-mediated changes in 

habitat quality, maternal (or parental) effects of population density on offspring quality, 

age structure in populations with overlapping generations, and population regulation 

through predator-prey or host-pathogen interactions (Royama 1981, Roach and Wulff 

1987, Mousseau and Dingle 1991, Bergelson 1990, Turchin and Taylor 1992, Hornfeldt 

1994, Rossiter 1994). Furthermore, first-order discrete-generation population models 

= f[N,]) cannot reproduce the dynamics of most natural populations which cycle in 

size (e.g. Hassell et al. 1976). However, models including density feedback from more 

than one past generation (iVt+] = f[N,, N,], ...I) can often explain cycles in natural 

populations (Turchin and Taylor 1992, Turchin 1993, Ellner and Turchin 1995). These 

results do not prove that delayed density dependence causes cycles in natural 

populations. However, they do show that population cycles due to direct density 

dependence are probab€y unusual in natural populations, but cycles due to delayed 

density dependence may be relatively common. 

Nonetheless, the majority of theoretical studies of discrete-generation models of 

population dynamics have included only direct density dependence. Thus, the goal of 

this paper is to point out some of the consequences of variation in the temporal scale of 

population regulation. Specifically, I investigate three simple models which include 

delayed density dependence: a model of single species population growth, a model of 

two competing species, and a coupled-patch model of population dynamics. In the first 
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3. Delayed density dependence and population stability 

analysis, I show how the predictions of a model with delayed density dependence differ 

from the predictions of a model with only direct density dependence. In the second and 

third analyses, I investigate how the presence of differences in the time scale of 

regulation (across species and habitat patches) scale to overall population dynamics, 

and contrast this with the effects of differences in other demographic parameters (such 

as population growth rates). In general, I emphasize simple aspects of population 

dynamics, such as predictions of stable or unstable dynamics. I make no attempt to 

explore all the dynamical behaviors of these models, and I do not distinguish chaotic 

dynamics from high period or quasiperiodic cycles. Rather, my emphasis is a relatively 

straightforward difference between the qualitative dynamics of models with and 

without delayed density dependence, and how this result changes the effects of coupling 

between spatial patches and interacting species. 

Models and results 

1. single species population dynamics 

Single-species population dynamics can be described by a simple time-delayed 

extension of a discrete exponential model of population growth (e.g. Turchin 1990): 

where A, is the density of single species at time t, Y is the density independent 

population growth rate, k is the equilibrium population size (or carrying capacity), and g 

is the proportional feedback on population growth from past-generation density 

(making (1 - g )  the proportion of feedback from current density). At a very abstract 

level, the parameter g is a simple phenomenological way to incorporate variable time 

delays into population growth while allowing Y and k to retain their traditional ecological 

values. 
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3. Delayed density dependence and population stability 

I have chosen to investigate this model because of its similarity to commonly 

analyzed models of direct density dependence. Furthemore, in earlier studies, I found 

that this model was sufficient to explain population cycles I had observed in annual 

plant populations (Chapter l), due to effects of parental density on offspring 

performance (Chapter 2). Similar parental effects have been widely observed in plant 

and insect populations (Roach and Wulff 1987, Mousseau and Dingle 1991). Other 

mechanisms generating delayed density dependence give slightly different forms to time 

delayed population growth equations, but the qualitative behavior of these equations is 

similar (Berryman 1992, Turchin and Taylor 1992, Turchin and Millstein 1993, but see 

Ginzberg and Taneyhilll994). 

Like the non-lagged version of (l), there is a single non-trivial equilibrium 

population size at A* = k. To determine whether this equilibrium is stable, it is necessary 

to rewrite the equations as a pair of equations with a dummy variable (A,) to represent 

the time delay (Turchin and Millstein 1993): 

4+1 = A ,  

This pair of equations can then be analyzed for asymptotic stability at equilibrium using 

standard techniques for stability analysis (May 1973). The nontrivial equilibrium is 

asymptotically stable if 

so the dynamics of the model are affected by the relationship between the growth rate Y 

and time delay g.  Like many similar models, this model has two criteria for stability 

(Figure 1). If g e 0.25, then population dynamics are unstable if 
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Figure 1. Stability of single-species delayed Ricker equation as a function of 
population growth rate (r) and time delay (g). 
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Figure 2. Simulations demonstrating typical population cycles from regions of 
parameter space with (A) flip bifurcations, (B) Hopf bifurcations, (C and D) solutions 
for both flip and Hopf criteria. 
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3. Delayed density dependence and population stability 

2 r > - .  
1-28 (4) 

This instability is due to real negative leading eigenvalues of the Jacobian stability matrix 

with magnitude greater than one, and leads to the familiar ”period doubling” route from 

stability to chaos (flip bifurcations; Thompson and Stewart 1986). If g > 0.25, then 

population dynamics are unstable if 

1 
8 

r > - .  (5) 

This instability is due to complex leading eigenvalues, which cause slow, often 

quasiperiodic oscillations from high to low density (Hopf bifurcations; Thompson and 

Stewart 1986). 

Visual inspection of simulated time series suggests that these two criteria divide 

parameter space into three regions with qualitatively different kinds of population 

cycles. When g < 0.25, population dynamics are typical of flip bifurcations (Figure 2A). 

When g > 0.50, population dynamics are typical of Hopf bifurcations (Figure 2B). When 

0.25 < g < 0.50 (i.e. when the Hopf criterion (4) determines the initial bifurcation but 

nonnegative solutions still exist for the flip criterion (5)), population dynamics appear to 

combine aspects of both the sharp crashes from high to low density that typify flip 

bifurcations and the quasiperiodic cycles of Hopf bifurcations (Figures 2C and 2D). 

2. two-species competition 

Two-species competition can be described by a simple extension of the single- 

species model (1): 
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3. Delayed density dependence and population stability 

In this model A, and B, are densities of two species at time f, r, and r, are density 

independent growth rates for species A and B (respectively), 8, and 8, are the respective 

density feedback coefficients, and a, and a, are the Lotka-Volterra competition 

coefficients (the strength of interspecific competition relative to intraspecific 

competition). As in the single species model, there is a single nontrivial equilibrium at 

A* and B" are both positive when 

->->a, kB 

aA kA 

where A now arbitrarily designates the species with the smaller a, i.e. the better 

competitor. When criterion (6) is met both species will also increase at low density/ so 

conditions for existence of a nontrivial equilibrium and protected coexistence are both 

met. 

To simplify stability analysis of equations (6) to include only species pairs that 

coexist, I reparameterized equations (6) to be dimensionless as follows: A', = A,/k,, a,' = 

a,kB/k,, B', = B,/k, ,  a,' = aBk, /kB,. In this model, Species Will Coexist when 

1 - > 1 > aE'. 
a A '  
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3. Delayed density dependence and population stability 

Thus, all coexisting species pairs are mathematically equivalent to a species pair in 

equation (6) with kA = k, = 1, and a, I a, 5 1. These criteria were used to limit the range 

of parameter space explored in numerical analyses (below). 

Following Hastings (1993), stability of equations (7) was solved for species pairs 

using a numerical program in Mathematica (Wolfram 1991) in which eigenvalues of the 

Jacobian stability matrix were solved iteratively for species pairs that differ in 

demographic parameters. I present the results of these analyses graphically in diagrams 

outlining regions of stability in rA / Y, parameter space for given values of gA,B and u!A,B. 

Using maximum stable r values from the single species model (1) (Figure l), rA / r, space 

can be divided into three regions (Figure 3): (I) the region in which both species are 

asymptotically stable in the absence of other species, (II) the region where one species is 

stable and the other unstable, (111) the region where neither species is stable in isolation. 

To evaluate the effects of competition on stability, I compare single-species population 

growth rates for which the two-species community is stable to the dynamics predicted 

by those growth rates for isolated species. For example, if the temporal variance in 

population size of the mixture is in any way an average of the variance of its component 

species in isolation, then species pairs in regions (I) and (III) should be stable and 

unstable, respectively. Conversely, if two stable species form an unstable mixture 

(unstable points in region I) or two unstable species form a stable mixture (stable points 

in region 111), then the dynamics of the mixture are clearly outside the range of qualitative 

dynamics of species in isolation. 

When competing species differ only in density independent growth rate (Y), the 

dynamics of the mixture are intermediate between the dynamics of species in isolation 

(graphs along the diagonal of Figure 4); all stable points fall in regions I and 11. However, 

when species vary in time delay, the shape of the stability region becomes highly 
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parameter space into regions in which species A is stable (left) or unstable (right) in 
isolation, and the horizontal line divides stable (lower) from unstable (upper) regions for 
species B in isolation. h this example, g A  = gB = 0, so the maximum stable Y for each 
species is 2 (see Figure 1). In the lower left corner of parameter space (TA < 2 and ug < 2; 
region I), both species would be stable in isolation. In the upper right corner (rA > 2 and 
rg > 2; region III), both species would be unstable in isolation. In the other two corners 
(regon 11), one species is stable and the other species unstable in isolation. 
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3. Delayed density dependence and population stability 

irregular, and in many cases pairs of otherwise unstable species can stably coexist. The 

dynamics of the two species are always linked (i.e. both stable or both oscillatory) 

because of the density feedback between species. However, the magnitudes of density 

fluctuations in the species in unstable communities can vary greatly (see Figure 8 and 

Discussion). 

When species pairs differ in competition coefficient and growth rate but not time 

delay, there are no stable combinations of species that would be unstable in isolation 

(Figure 5). In fact, there are only a few combinations of species in which the inferior 

competitor (higher a) can stabilize the dynamics of the superior competitor (points in 

upper left part of region 11). On the other hand, stable dynamics in the superior 

competitor can easily stabilize the dynamics of the inferior competitor (points in lower 

right part of region II). When both g and in a vary, asymmetric competition does not 

change the qualitative effects of variation in time delay, but it does increase the ability of 

the superior competitor to stabilize population dynamics and decrease the same ability 

in the inferior competitor (Figure 6). 

3. Coupled patch model 

In the same way that demographic parameters can differ between species, 

demographic parameters can vary within a single species due to spatial environmental 

variation. For example, a species could be spread over patches in which a predator is 

and is not present (Hassell et al. 1991). Similarly, the importance of maternal effects has 

been shown to vary with offspring environmental conditions (Miao et al. 1992), which 

could differ between patches for numerous reasons. Thus, single species population 

growth (equation (1)) can be extended to a model of population dynamics across 

patches in which demographic parameters differ as follows: 
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3. Delayed density dependence and population stability 

(10) 

where A, and B, are now population densities in patch types A and B, D is the rate of 

dispersal between patches, r, and r, are population growth rates in patches A and B, 

and and gs are the time delay parameters for each patch. If there is no delayed 

density dependence (gA = 8 8  = 0), this model is equivalent to one of the models analyzed 

by Hastings (1993) and similar to one of the models analyzed by Gyllenberg et al. 

(1993). 

As above, I analyzed this model by numerically solving for the eigenvalues of the 

Jacobian stability matrix. However, because non-delayed versions of this model have 

been extensively explored elsewhere, I simplified this analysis by using a relatively 

coarse-grained exploration of parameter space (intervals of Ar = 1/3), and solving for 

cases with regulation through entirely direct or entirely delayed density dependence (SA 

= 0, gB = 0; g A  = 0, gB = 1; and gA = 1,& = 1). Nonetheless, the results of this analysis 

are sufficient to demonstrate that spatial differences in the importance of delayed 

density dependence could significantly alter the ways in which dispersal affects 

population dynamics. As was true for interspecific differences, spatial environmental 

variation in growth rates causes population stability to be determined by a weighted 

average of growth rates in the two patch types, and the tendency for one patch to 

stabilize overall dynamics increases as the connectivity (dispersal fraction) increases 

(Figure 7) (see Gyllenberg et al. 1993 for further discussion). However, when a 

population is spread across habitat patches which differ in the time scale of population 
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regulation, dispersal among patches can stabili>ze population dynamics in some 

combinations of internally unstable patches (Figure 7). 

Discussion 

Population dynamics are affected by delayed density feedback. As the strength 

of delayed density dependence increases, population size cycles slowly over many 

generations, rather than jumping from high to low density in successive generations, and 

the range of population growth rates which lead to stable equilibria decreases. Visual 

inspection of the time series data analyzed by Hassell et aI. (1976) and Turchin and 

Taylor (1992) suggests that it is this change in the shape of population cycles that 

differentiates the ability of models that do and do not include delayed density 

dependence to explain the dynamics of natural populations. The difference between the 

qualitative effects of different forms of density dependence has long been recognized 

among mathematical biologists (e.g. Nisbet and Gurney 1982). However, its utility in 

discriminating among possible causes of dynamics of natural populations (e.g. Chapter 

2) has not been adequately emphasized in these studies. 

In addition to affecting the shape of population cycles, delayed population 

regulation has a dramatic effect on the way in which differences in demographic 

parameters scale to overall population dynamics. In the absence of differences in the 

importance of delayed density dependence, the asymptotic stability or instability of 

both species is apparently determined by a weighted average of the demographic 

parameters of interacting species. However, when there are differences in time delay 

between species, these differences can significantly stabilize population dynamics, and 

individually unstable species can stably coexist. The effects of differences in time delay 

can be clarified through simulations of population dynamics of species pairs that go 
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3. Delayed density dependence and population stability 

from being independent to being linked by competition (Figure 8). When two 

competitors differ only in r, they both experience the same density at any given time; 

when one species is above its equilibrium population size, the other is also above, and 

both fall to lower density (Figure 8A). When species differ in competition coefficient (a) 

as well as r, species are responding to different densities, but because the difference in a 

changes the equilibrium population size as well, species still rise and fall synchronously 

(Figure 8B). When species differ in time delay, however, the density of the two species 

can be the result of two very different past densities, depending on the difference 

between population size in successive generations. It is then (and only then) possible for 

one species to increase while the other is decreasing. This allows some combinations of 

species that would be unstable in isolation to stabilize each other (Figure 8C). 

The majority of previous studies of competition have looked at the effects of 

interspecific differences on species coexistence, rather than dynamical stability of 

coexisting species. Thus, a second counterintuitive effect of species diversity is also 

worthy of further explanation: when species coexist, the dynamics of an intrinsically 

unstable competitor can be stabilized by the presence of a stable superior competitor 

(Figure 5). In fact, if the asymmetry of competition is high enough, even an inferior 

competitor with wildly chaotic dynamics in isolation can stably persist, albeit at low 

density. This is because the stable superior competitor is relatively unaffected if the 

inferior competitor overshoots equilibrium and crashes, so the superior competitor 

approaches its equilibrium population size more or less as it would in isolation. As the 

superior competitor approaches its equilibrium, population growth in the inferior 

competitor is suppressed, and does not overshoot and undershoot its equilibrium. 

Because the probability of population extinction declines as variance in population size 

declines (Lande 1993), this implies that, in some cases, the presence of a stable superior 

68 



A. 

6. 

c. 

....*...#.... ...I B - A  

species in competition I I species separate 

5 10 15 
generation 

20 

species separate +species in competition 

300 

5 10 15 
generation 

20 

5 10 15 
generation 

20 
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competitor could increase the persistence of an inferior competitor that would be 

unstable in isolation. 

Mathematical models of two-species competition and are extremely similar to 

models of connected patches (equations 6 and 10). Thus, it is not surprising that the 

results of comparing stability of single patches to coupled-patch dynamics (Gyllenberg et 

al. 1993, Hastings 1993) are virtually identical to those of single-species vs. two-species 

competition (Figures 5 and 8). The effects of spatial environmental differences in time 

delay appear to be very similar to those of interspecific differences in time delay; when a 

population is spread across habitat patches which have different effects on delayed 

population regulation, dispersal among patches can stabilize dynamics across patches 

that would both be unstable in the absence of dispersal. This result is not equivalent to 

earlier results in which global stability is achieved through local patches fluctuating 

asynchronously (eg .  Reeve 1990, Hastings 1993). Although such behavior is also 

possible in this model, the analysis here defines population dynamics as stable only 

when dynamics are both locally and globally stable. 

It would be intriguing to investigate the effects of delayed density dependence on 

aspects of population dynamics for which coupled patches and competing species 

differ. For example, an interesting difference between spatial and interspecific 

differences in demographic parameters in the absence of delayed density dependence is 

that patches linked by dispersal have stable two-point cycles over an extremely wide 

range of parameter values compared to single patch dynamics (Hastings 1993). This is 

because migration from less crowded patches can rescue population crashes and thus 

prevent chaotic dynamics. This kind of rescue effect is not caused by species diversity 

because the presence of a competing species can only prevent population crashes by 

suppressing reproduction, not rescue extinct populations by providing additional 
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3. Delayed density dependence and population stability 

recruits (Hassell and Comins 1976). Interestingly, similar stable two-point cycles do 

result from some explicit genetic models with recombination (Doebeli and Koella 1995), 

in which recombination allows recruitment from one genotype to other genotypes. 

However, extensions of these analyses to include delayed density dependence are 

beyond the scope of this paper. 

Taken together, the analyses presented here show that inclusion of delayed 

density dependence can dramatically affect the inferences we draw from models of 

interacting populations or subpopulations. However, these analyses only begin to show 

the extent to which greater emphasis on the time scale of population regulation may 

change our theoretical understanding of population dynamics. Given the empirical 

evidence that delayed density dependence is important in natural populations, inclusion 

of this aspect of population regulation in further studies is clearly warranted. 
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CHAPTER 4. 

Population dynamics and evolution in experimental populations 
of an annual plant, Cardamine pensyZvanica 



Introduction 

Numerous theoretical studies have pointed out the potential for interaction 

between demographic, environmental and evolutionary factors in deterrnining the 

behavior of populations (e.g. Nicholson 1954, King and Anderson 1971, Roughgarden 

1971, Asmussen 1979, Turelli and Petry 1980, Holt 1990, Endler 1992, Lynch and 

Lande 1993, Saloniemi 1993, Doebeli and Koella 1995, Hartt and Haefner 1995, 

Abrams in press). For example, reduction in population size may increase the 

importance of genetic drift, and thereby reduce the ability of populations to respond to 

selection pressure (Hedrick 1985, Hartt and Haefner 1995). Similarly, genetic changes in 

a population may alter demographic parameters, and shift the dynamics of that 

population (King and Anderson 1971, Pease et al. 1991). Nonetheless, remarkably few 

studies have simultaneously monitored the demographic and evolutionary dynamics of 

populations (Antonovics and Levin 1980, Schemske et al. 1994). 

We present results from an experiment designed to monitor phenotypic evolution 

in homogeneous and heterogeneous environments. Our initial goal was to compare the 

rates and directions of adaptation to different environmental treatments at differing 

levels of connectedness between habitat patches. Although many theoretical studies 

have discussed possible effects of migration between patches on evolution (e.g. Levene 

1953, Levins and MacArthur 1966, Gillespie 1973, Hedrick 1973, Christensen 1975, 

Slatkin and Lande 1976, Via and Lande 1985, Gillespie and Turelli 1988, van Tienderen 

1991; and see reviews in Felsenstein 1976, Hedrick 1986), few studies have 

experimentally manipulated habitat and then followed evolutionary responses of 

populations (but see Hedrick 1986). However, our ability to make inferences about 

evolutionary responses was confounded by an unexpected result of this experiment. 

Throughout the experiment, populations cycled from high to low density over time due 

to density-dependent feedback from prior generations (Chapters 1 and 2). Exploration 
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of the evolutionary response of these populations highlights ways in which population 

dynamics can influence evolution, and the importance of considering the ecological 

context of evolutionary predictions. 

Methods 

1. Study species 

Cardmine pensylvanica (Muhl.) (Brassicaceae) is an annual plant of damp 

habitats (Al-Shebaz 1988) which often invades greenhouses as an ephemeral weed 

(Cloutier et al. 1991). C. pensylvanica individuals are highly self-fertile; isolated plants 

may set thousands of seed in the greenhouse and siliques often form before flowers open 

(pers. obs.) The seed source for this experiment was a composite of lines from three 

long-established greenhouse populations: the greenhouses at Duke University (Durham, 

NC) and North Carolina State University (Raleigh, NC), and a private greenhouse in 

Durham, NC. The histories of these populations were not known specifically except 

that each greenhouse was decades old, and in each greenhouse the staff recognized C. 

pensylvanica as a chronic pest. Plants from these naturalized greenhouse populations 

have no specific germination or flowering requirements and flowering adults are present 

throughout the year (pers. obs.). Moreover, the "natural" conditions which these plants 

experience in greenhouses are similar to the conditions under which experimental 

populations were maintained. 

Fifty non-flowering plants from each greenhouse source were planted in a single 

flat in the Duke University greenhouse until they flowered and set seed. Progeny of 

these plants showed considerable among- population variation for numerous traits, 

including height, fecundity, and plant size (Table 1); thus, the aggregate mixture of 

plants was genetically variable for the response variables measured below. Seeds from 
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Table 1. Phenotypic differences among populations used to generate the ancestral seed 
mixture. Duke, NCSU, and DECI refer to populations from the Duke University, North 
Carolina State University, and Durham Exchange Club Industries greenhouses. There 
were two model degrees of freedom (73 total df) for all F-tests. Superscripts mark 
populations that were not significantly different (p > 0.05) using Tukey’s multiple range 
test (SAS GLM Procedure). 

character F p rank order 

# leaves at 4 weeks 

height at 4 weeks 

stem diameter at 4 weeks 

# leaves at 7 weeks 

height at 7 weeks 

stem diameter at 7 weeks 

# inflorescences at 7 weeks 

width of terminal leaflet 

days to flowering 

7.18 

3.66 

2.70 

2.97 

5.06 

1.41 

2.52 

3.43 

4.90 

0.001 

0.031 

0.074 

0.058 

0.009 

0.250 

0.088 

0.038 

0.010 

Duke” > DECI” > NCSub 

DECI” > Dukeab > NCSUb 

DECI” > Duke” > NCSU” 

Duke” > DECI” > NSCU” 

NCSU” > DECIab > Dukeb 

Duke” > DECI” > NCSU” 

Duke” > NCSU” > DECI” 

Duke” > NCSU” > DECI” 

NCSU” > DECIb > Dukeb 
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these plants were collected and used for the first generation of plants in population 

cages. Additional seeds from these plants were saved for use in later experiments. 

2. Population cage maintenance 

The experimental populations were maintained for fifteen generations in a 

growth chamber in the Duke University Phytotron with a 16-hour photoperiod and a 

constant temperature of 27°C. Each population consisted of seventy-two 2.5 cm 

diameter by 10 cm deep tubular pots (RL-200 Conetainersm, Stuewe & Sons, Corvallis, 

OR) arranged in a long narrow array (2 pots x 36 pots). The populations were watered 

from below by filling a system of interconnected tanks with dilute Hoagland's solution 

until the pots were saturated, then draining the system. Populations were isolated from 

each other within the growth chamber by clear plastic sheeting suspended from the 

ceiling. The location of the populations within the chamber was randomized twice each 

generation. 

Experimental populations had combinations of two different environments: pots 

completely filled with fine vermiculite (deep soil) and pots half-filled with fine 

vermiculite (shallow soil). Because arrays were watered from below and lit from above, 

plants in deep soil experienced high light and low water availability, and plants in 

shallow soil experienced the reverse. Each population had one of four environment 

types (see Figure 1, Chapter 1): (1) homogeneous deep - all pots filled with deep soil, (2) 

homogeneous shallow - all pots filled with shallow soil, (3) coarse-grained heterogeneous 

- one end of the population entirely deep soil and the other end entirely shallow soil, 

and (4) fine-grained heterogeneous - deep and shallow soil types interdigitated. Three 

replicate populations were maintained for each of the four environment types. 

Recruitment occurred from one generation to the next when plants in one generation 

dehisced seeds into an adjacent interspersed array of pots for the next generation (see 
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Figure 1 in Chapter 1). Thus, although discrete generations were enforced, competition, 

growth and dispersal were not manipulated (see Chapter 1). 

3. Phenotypic evolution in experimental populations 

At the end of each of the first ten generations, the phenotype of plants was 

measured by subsampling 25 pots of each soil type, randomly selected from among the 

entire set of pots in each generation. For each plant within those pots, we recorded 

height and number of siliques (seed pods). For the first eight generations we also 

measured mass of all plants. These data were collected to monitor the performance of 

plants in the experimental populations over time, rather than to test any specific 

statistical hypotheses. Nonetheless, in order to quantify trends in these data, we 

present results of two analyses. 

In the first, our goal is to qualitatively estimate how individual performance was 

influenced by plant density within each pot, soil depth, and environmental grain 

(homogeneous, coarse, or fine), and evolution (as measured by changes in plant 

phenotype) on individual performance. To do this, we present Type III F-statistics 

(SAS GLM procedure, SAS 1987) for these factors and all interactions as if this were a 

full factorial experiment. However, because this was not a factorial experiment, we do 

not use this analysis to test specific hypotheses about any of these effects. Because the 

variance of all response variables was highly skewed, we In-transformed all variables 

prior to analysis, which normalized residuals. 

The second analysis is designed to test whether there was directional change in 

the mean phenotype of individuals over time within each patch type in each 

environment type. However, the effects of density were large, and could potentially 

confound temporal patterns, particularly because density varied over time. Thus, we 

fitted density functions to In-transformed data from each patch type in each 
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environment (ln[performance] = a + b[density]). We then fitted a linear model to 

density residuals over time &[performance residual] = c + d[generation]). Thus, if the 

slope of this relationship is positive, plants became larger or more fecund for a given 

density over the course of the experiment. If the slope of this relationship is negative, 

plants became smaller or less fecund over time for a given density. Because of the 

potential confounding effects of parental environment in first-generation plants, we 

repeated this analysis twice, once including first generation plants and once excluding 

first generation plants. 

4. Genotypic changes in reciprocal transplant experiments 

We tested for genetic differentiation among the populations by growing seeds 

from family lines derived from each experimental population and from the seed mixture 

used to initiate the populations (hereafter designated the ancestral population) in 

reciprocal transplant experiments at two time points during the population cage 

experiment (after generations 8 and 14). Because the results were similar at both times, 

we present results from the final comparison. 

To control for effects of maternal environment and seed age, seeds from plants in 

the fourteenth generation and from the ancestral source population were planted in the 

Duke University greenhouse. From these plants, seeds were collected from nine 

randomly chosen plants to generate maternal family lines. Because C. pensylvanica is a 

highly selfing species, these "family lines" probably represent highly related individuals. 

Seeds harvested from each maternal plant were germinated on wet filter paper in petri 

plates, and transplanted to deep or shallow soil in the phytotron at the two cotyledon 

stage. In this experiment, eleven or twelve plants from each maternal family were 

planted in each environment and plants were randomly placed in three phytotron 

chambers. The total size of the experiment (2,736 plants) was determined by the 

- 
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amount of space in three phytotron growth chambers. Plants were harvested just after 

the first set of fruits matured, about eight weeks after transplanting. Plant height, mass, 

and fecundity (number of seed pods) were scored for each plant. 

To test for overall differentiation of experimental populations, we used a 

multivariate analysis of variance (MANOVA option in SAS GLM procedure, SAS 

Institute 1987) to compare overall differences in phenotype among populations. To 

ensure that phenotypic differences were due to genetic differences, we analyzed family 

means for each trait as response variables. Families with fewer than three surviving 

individuals were eliminated from the analysis. To normalize residuals, variables were 

In-transformed prior to analysis. Because replicate populations within each selection 

environment differentiated strongly over the course of the experiment (see Results), we 

present the results of both ANOVA and mixed-model ANOVA analyses (SAS GLM 

procedure, SAS Institute 1987; see Table 3). This is The mixed model analysis tests the 

hypothesis that selection environment effects and interactions were large relative to 

variance among replicates, rather than large relative to total variance in the data set. 

Our initial goal was to conduct further analyses to estimate the genetic 

covariance structure of performance in the two environments and to investigate the 

effects of environmental heterogeneity on rates and direction of evolution. However, the 

results of the above analyses made interpretation of further analyses problematic. 

Results 

In the experimental populations, the effects of density on plant mass and 

fecundity were bigger than the effects of either patch type or generation (Table 2). Plant 

height, however, was affected almost as much by soil depth as by density (Table 2). 

Plants in homogeneous environments were taller and thinner in shallow soil (low light 

environments) and shorter and bushier in deep soil (low water environments). This is 
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Table 2. Analysis of plant phenotype in individual pots harvested each generation 
during the population cage experiment. Effects are: density = decline of mean 
performance with density of plants in each pot; depth = effect of deep or shallow soil; 
grain = effect of whether individual pots were located in homogeneous, coarse-grained or 
fine-grained heterogeneous environments; time = temporal trends; and all interactions 
except those including both continuous variables (density and time). F statistics are for 
Type III sum of squares (SAS GLM procedure, SAS 1987; 17 model df, 328 error df for 
height and seed pods; 17 model df, 225 error df for mass), but see Methods for 
interpretation of statistical significance. 

effect 
density 
time 
depth 
grain 
density *depth 
densivgrain 
depth*grain 
depth*time 
grajn*time 
density*depth*grain 
depth*grain*time 

height 
28.39 
89.50 
11.07 
4.41 
1.82 
3.34 
3.87 
0.32 
1.70 
0.56 
3.51 

mass 
73.14 
15.43 
0.35 
2.82 
2.00 
1.78 
1.68 
1.67 
3.01 
1.07 
6.98 

# seed pods 
31.83 
0.03 
0.08 
1.80 
0.68 
0.32 
0.40 
1.58 
1.25 
1.20 
3.10 



the classic response of plants to above- vs. below-ground resource limitation. 

Interestingly, in heterogeneous environments, where plants were able to interact across 

patch types, plants in deep soil were smaller as well as shorter than plants in shallow 

soil (Figure 1). 

Plant height and mass increased over time in both homogeneous selection 

environments (Table 2, Figure 2). These trends were accompanied by statistically 

insignificant trends toward increasing fecundity. However, trends in plant mass and 

fecundity in shallow soil became insignificant (p > 0.20) when the first generation plants 

were excluded from this analysis. This implies either that plants were so strongly 

selected in the second generation that heritable variation was immediately exhausted, or 

that first generation plants were different due to parental environmental effects. In 

heterogeneous selection environments, changes in the phenotype of plants in shallow soil 

were statisticaoy indistinguishable from selection response in homogeneous 

environments, whether or not first generation plants were included in analyses. 

However, changes in phenotype of plants in deep soil differed markedly in homogeneous 

vs. heterogeneous environments. In heterogeneous environments, mean plant height 

increased over time, but at a slower rate than in homogeneous environments. Mean 

plant mass increased at a slower rate in coarse-grained heterogeneous environments than 

in homogeneous environments, and actually decreased over time in fine-grained 

heterogeneous environments. The fecundity (# of seed pods) of plants in deep soil 

patches of heterogeneous environments also decreased over time. This pattern was also 

apparent in analyses without first-generation plants. 

In all analyses from the reciprocal transplant experiment, there was evidence for 

divergence of replicate populations within each selection treatment (pop(se1env) effect, 

Table 3). These effects were similar to or greater in magnitude than treatment effects 

and selenv by test environment interactions. Thus, the effects of selection environment 
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Table 3. Test results for overall differentiation of populations in different 
environmental treatments. Effects are: testenv = test environment of deep or shallow 
soil; selenv = populations from homogeneous deep, homogeneous shallow, coarse- 
grained, or fine-grained heterogeneous selection environments or the ancestral 
population; pop = replicate populations within each selection environment. Type 111 F 
statistics (SAS GLM procedure, SAS 1987) are reported for individual response 
variables, and Wilks’ Lambda F statistic (MANOVA option in SAS GLM procedure) is 
reported for overall effects. A.) Comparison of all populations, B.) comparison including 
only homogeneous deep soil and homogeneous shallow soil populations. In the mixed 
model ANOVA, effects involving replicate populations were treated as random effects 
and all other effects were treated as fixed effects. In the mixed model, the following 
error terms were used (effect, error): (testenv, fam*pop*treat*soil), (selenv, pop(treat)), 
(pop(selenv), fam*pop*treat), (testenv*selenv, pop(treat)*selenv), where fam = mean of 
replicate family lines. 

mixed model 
ANOVA ANOVA 

effect height mass pods MANOVA height mass pods MANOVA 

A. overall comparison 
testenv 194.94 101.79 64.53 71.88***** 225.86 147.60 87.87 83.98***** 
selenv 3.63 1.90 0.77 2.46*** 0.82 0.46 0.21 1.23 
pop( selenv) 5.09 4.75 4.47 2.38**** 4.32 3.35 3.34 1.96** 
testenv*selenv 0.46 3.39 1.32 2.14** 0.37 2.85 0.83 1.09 

B. populations in homogeneous deep vs. shallow soil selection environments 
testenv 115.80 47.14 33.63 42.47***** 144.02 69.75 42.51 51.64***** 
selenv 1.57 0.02 0.10 1.57 0.27 0.00 0.00 1.06 
pop(se1env) 8.12 7.43 7.53 3.17**** 6.00 5.02 5.75 2.26** 
testenv*selenv 0.00 3.46 0.83 2.30* 0.06 2.85 0.34 1.12 

*.lo > p > .05, **.05 > p > .01, ***.01 > p > .001, ****.001 > p > .0001, ***** .0001 > p 



were significant relative to the total variance in this experiment, but not relative to the 

variance among replicate populations (Table 3). Furthermore, the direction of this 

differences among populations from different selection environments is quite surprising 

(Figure 3). Plants tended to be more robust (bigger, taller, more seed pods) in the 

"away" environment than in their "home" environment. There was also an overall 

difference between ancestral and evolved populations. Plants from evolved populations 

were generally smaller (shorter, less mass, fewer seed pods) than their unselected 

ancestors (Figure 3, Table 3A). In addition to being unexpected, this is the exact 

opposite of the phenotypic changes observed in the experimental populations (Figure 2). 

Discussion 

In general, plants became taller, larger, and more fecund over time, and this trend 

was strongest in homogeneous environments, intermediate in coarse-grained 

heterogeneous environments, and weakest in fine-grained heterogeneous environments. 

Although we cannot predict (or even "post-dict") evolutionary trajectories in the 

absence of data on genetic correlations for performance in the two patches and the 

strength of selection in these patches, decreases in mass and fecundity in deep soil 

patches of heterogeneous environments are not inconsistent with theoretical models of 

evolution in heterogeneous environments. For example, in the presence of negative 

genetic correlations between performance in deep and shallow soil, there are many 

evolutionary scenarios under which performance in deep soil patches in heterogeneous 

environments would at least temporarily decrease (e.g. Via and Lande 1985). 

However, there was virtually no congruence between phenotypic changes over the 

course of the population cage experiment and differences between selected and ancestral 

family lines in the reciprocal transplant experiment (compare Figures 2 and 3). In 

retrospect, this is not surprising, given our experimental design. In the reciprocal 
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transplant experiment, seedlings were individually planted in pots. In the population 

cage experiment, typical seed rains were on the order of hundreds of seeds per one-inch 

pot. Thus, despite the fact that the two experiments used the same carefully controlled 

abiotic conditions, conditions experienced by seedlings were vastly different. We had 

initially anticipated that effects of soil depth independent of density would be large 

with respect to density by environment interactions, and that inferences about these 

effects could be made from the reciprocal transplant experiment. Given the discrepancy 

between these results, this seems unlikely. It is possible to reconcile these results by 

hypothesizing that the phenotypic changes were not really genetic or that changes in 

performance in common-garden conditions are not correlated with changes in the same 

traits in competitive conditions. However, either hypothesis makes the significance of 

evolutionary changes in common garden conditions unclear. 

A second unexpected result of this experiment is that replicate populations 

within each environmental treatment differentiated more than the means of populations 

in different treatments (Table 3). The most obvious explanation of this result is some 

form of genetic drift. We had initially expected random drift effects to be small for 

several reasons. First of all, the time frame of the experiment was relatively short (15 

generations). Secondly, because C. pensyhanica reproduces largely through selfing and 

no pollinators were introduced into the growth chambers, we expected that evolution 

would occur through shifts in genotypic frequencies, rather than creation of new genetic 

combinations. Finally, we had not anticipated severe numerical bottlenecks due to 

density-dependent population regulation. It is likely that these bottlenecks significantly 

accelerated the importance of genetic drift in our experiments. In fact, given that 

evolutionary responses to selection are not significantly greater than random 

differentiation (Table 3), it is possible that apparent responses to selection (selenv 

effects in Table 3) are largely an artifact of random differentiation. Although the 
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possibility for interactions between cyclical population dynamics and genetic drift has 

been noted in theoretical studies (e.g. Hart1 and Clark 1989, Hartt and Haefner 1995), it 

has not been widely publicized. 

A final striking feature of this experiment is the fact that it would be extremely 

difficult to avoid confounding effects of population density in C. pensyhnica. It is 

interesting that the high average density and cyclical population dynamics in the 

population cage experiment resulted from the fact that we did 

competition and recruitment. In other words, we could not have maintained 

populations at constant low or high density without artificially manipulating recruitment 

under these conditions. 

manipulate 

Plants are notorious for hugely plastic density responses (Harper 1977, Rees and 

Crawley 1989, Crawley 1990), and a growing number of studies report interactions 

between plant density and genotype-phenotype relationships (e.g. Stratton 1989, Mazer 

and Wolfe 1992). However, asymptotically stable population dynamics have long been 

considered the rule, rather than the exception, particularly in plant populations 

(Crawley 1990, Cousens 1995), and most studies have implicitly assumed that 

constant-density common garden experiments can be used to infer performance as a 

function of environment. In many cases, this is probably true. However, several recent 

ecological studies indicate that population cycles due to density dependence may be far 

more common than earlier studies had indicated (Symonides et al. 1987, Turchin 1990, 

Silvertown 1991, Tilman and Wedin 1991, Turchin and Taylor 1992, Ellner and Turchin 

1995). Furthermore, although the textbook example of density-dependent population 

cycles describes species with discrete generations and completely deterministic 

dynamics, the majority of cycles observed in natural populations are not consistent with 

this model. Instead, cycles in natural populations are more often consistent with models 

of populations which have overlapping generations, age or size structure, and noticeable 
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amounts of environmental noise (Turchin and Taylor 1992, Ellner and Turchin 1995, and 

see Chapter 2). 

The results of our experiments highlight the importance of competition in 

determining the rank order of fitness of different lines, and the possibility that 

population cycles could dramatically reduce effective population size. The potential for 

both interactions has been noted in earlier studies (Roughgarden 1971, Hart1 and Clark 

1989, Mazer and Wulff 1992, Hartt and Haefner 1995). Nonetheless, we had not 

anticipated that the effects of competitive interactions among individuals would 

thoroughly overwhelm the effects of external environmental variation in determining 

patterns of evolution. Given the potential importance of density-dependent population 

cycles in natural populations, this kind of interaction deserves far wider recognition. 
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