Time domain response of electrical ceramics -- Micro to megaseconds

PDF Version Also Available for Download.

Description

The electrical properties of ceramics can be measured in either the time domain or in the frequency domain. But for electrically nonlinear ceramics such as varistors, time-domain measurements provide insights that are different and more relevant to material performance as well as being more physically incisive. This article focuses specifically on the electrical properties of ZnO varistors, but much of it is of relevance for other materials, in particular those materials with grain-boundary barriers and disordered ceramics or glasses. The interpretation of electrical measurements in the time domain is profoundly influenced by such practical matters as source impedance and waveform ... continued below

Physical Description

11 p.

Creation Information

Modine, F. A. November 1997.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

  • Modine, F. A. Oak Ridge National Lab., TN (United States). Solid State Div.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The electrical properties of ceramics can be measured in either the time domain or in the frequency domain. But for electrically nonlinear ceramics such as varistors, time-domain measurements provide insights that are different and more relevant to material performance as well as being more physically incisive. This article focuses specifically on the electrical properties of ZnO varistors, but much of it is of relevance for other materials, in particular those materials with grain-boundary barriers and disordered ceramics or glasses. The interpretation of electrical measurements in the time domain is profoundly influenced by such practical matters as source impedance and waveform characteristics. Experimental results are presented for both high and low source impedance relative to that of a test varistor, and the different in experimental difficulty and ease of interpretation is described. Time-domain measurements of capacitance and of the inductive response of varistors to large, fast electrical pulses are presented and their implications for varistor theory are given. Experimental evidence is given of short- and long-term memory in varistors. These memory phenomena are ascribed respectively to the life time of holes that become trapped in barriers and to polarization currents originating from deep electron traps. Polarization current measurements are presented for a wide range of time and temperature. The power-law time dependence and universal behavior of these currents is discussed. The exponent that describes the power law behavior is seen to change with temperature, and the change is interpreted as a double transition from diffusive to dispersive transport that originates with current from two different electron traps.

Physical Description

11 p.

Notes

OSTI as DE98001846

Source

  • 1997 fall meeting of the Materials Research Society, Boston, MA (United States), 1-5 Dec 1997

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE98001846
  • Report No.: ORNL/CP--95630
  • Report No.: CONF-971201--
  • Grant Number: AC05-96OR22464
  • DOI: 10.2172/564232 | External Link
  • Office of Scientific & Technical Information Report Number: 564232
  • Archival Resource Key: ark:/67531/metadc696481

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • November 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Jan. 22, 2016, 7:03 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Modine, F. A. Time domain response of electrical ceramics -- Micro to megaseconds, report, November 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc696481/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.