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Analytical Theory of Intensity Fluctuations in SASE 

Li Hua Yu and S. Krinsky 

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, N.Y.11973 

Abstract 

Recent Advances in SASE experiments [l] stimulate interest in quantitative comparison 

of measurements with theory. Extending our previous analysis [2] of the SASE intensity in 

guided modes, we provide an analytical description of the intensity fluctuations by calculat- 

ing intensity correlation functions in the frequency domain. Comparison of our results with 

experiment yields new insight into the SASE process. 
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1. Introduction. 

Recently, there have been a number of experimental demonstrations of SASE [l]. All of 

them measured the SASE radiation pulse energy as a function of pulse charge, showing a 

deviation from the linear dependence. The theory on the average power, bandwidth, and 

transverse mode expansion for SASE has been developed years ago [2,3], and can be used to 

compare with the new results. However, the measurements also show that when the pulse 

charge increases, the pulse to pulse radiation energy fluctuation also increases. About this 

fluctuation, there have been analyses based on numerical simulations [4], showing that the 

relative fluctuation decreases as a function of the ratio of pulse length 1 over the coherence 

length 1,. This stimulated our interest to develop an analytical formula €or the fluctuation. 

Previous works on start-up noise [3], and specially our 3D calculation [2] made this task 

straight forward, because the expansion of radiation in terms of the guided modes in this 

work can be used to derive a formula directly comparable with the experiments. 

One particular result of our analysis is that in the 1D limit our 3D fluctuation formula is 

significantly simplified to: 
a, 1 -=- * $E’ 

where ow is the r m  fluctuation of the output SASE energy W per pulse, 1 is the length of a 

flat-top pulse and 1, is a correlation length characterizing SASE coherence. We find 

where N, is the number of undulator periods, A, is the radiation wavelength, L, the undulator 

length, and LG is the power e-folding length. 

In a recent BNL ATF SASE experiment: the radiation wavelength is 1 p; the MIT micro 

undulator is about 0.54m long, with 60 periods of length 0.88cm; the peak current is about 
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320 ampere, with normalized emittance of the electron beam in this peak current portion of 

the bunch a4bout 0.7 mm-mad; the electron beam energy is 34 MeV. Thus the gain length 

is calculated to be about 0.11 m , Le., the wiggler has 4.9 gain lengths. The slippage is 60x 

lpm = 60pm, and the coherence length is 60p/,/& x 4.9 = 401.1, from eq.(2). The pulse 

length is measured to be about 4ps, i.e. , about 1300pm, hence the fluctuation ow/ (W)  is 

calculated from eq.(l) to be 440/1300 17%. This is consistent with the measured fluctu- 

ation of about 15%, considering that the pulse shape is actually not a step function and the 

calculated beam size is not really large enough to be at the ID limit. 

We remark here that if the current is increased and the pulse length remains the same, 

the gain length and coherence length should be reduced, so the fluctuation should be less. 

However, this is incorrect if the bunch shape is not a step function. For a nonuniform bunch 

profile, the effective bunch length is determined by the peak current portion of the electron 

pulse, because the gain is much higher at this part of the bunch, and most of the radiation 

energy is contributed by this part. Therefore, as the current increases, it may happen that 

the effective bunch length decreases, and the relative fluctuation increases, depending on the 

specific details of the electron bunch profile. Hence applying eq.(l) yields insight into the 

electron distribution. When the electron distribution possesses a nmow, high current peak, 

the fluctuation formula can be used to estimate the peak width. 

In the following, we shall first give a brief review of the guided mode expansion. Then, we 

shall derive the intensity fluctuation formula for pulse energy, followed by a simple formula 

for a correlation function in the single shot frequency spectrum. 

2. A Brief Review of the Start-up Noise in Guided Modes 

In our 3D start-up calculation [2] we considered an electron distribution without energy 

spread and with zero angular spread, i.e., we assumed a beam with zero emittance. We showed 

that in the exponential growth regime the electric field of the output radiation can be written 
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as a sum of contributions from each individual electron. The spontaneous radiation from each 

of the electrons is amplified by the FEL interaction to contribute to the sum. The contribution 

of each electron is represented by a green’s function g with the source point located at the 

electron j (see eq.(5.8) of [2]): 

where r = IC,+ with IC, the wiggler wavenumber, and z is the longitudinal position in the 

wiggler; C = ( I C ,  + k,)z - w,t is the ponderomotive phase of the system with IC, = w,/c the 

radiation wavenumber and t the time; 2 = d m ?  is the scaled transverse position (see 

eq.(2.20) of [2]); no is the electron density; b = 21Cw~,(k,+ICw) M 2kwk: and K = ni2c$ with 

po the vacuum permeability, 70 the beam energy, and A, the vector potential of the wiggler 

(see eq.(5.5-5.6) of [2]). 

The green’s function is found by solving a third-order partial differential equation, which 

describes the FEL interaction. The green’s function is longitudinally Fourier transformed in 

the frequency domain, and then transversely expanded in terms of the guided modes (eq.(5.11) 

of [2]): 

where Gn is the Fourier transform of the green’s function of the guided mode n, 411 = -is the 

relative frequency detunning, $n is the guided mode function [5], which can be found by solving 

an eigenvalue problem similar to the Schroedinger equation but with complex eigenvalues. We 

remark that the index n is used here to  abbreviate a set of discrete indices, for example, it 

could be actually a set like {m, I} with m the azimuthal node number and I the radial node 

number. We use n=O to denote the fundamental mode with the highest growth rate. 

For a beam with a transverse step function profile, the guided mode problem is solved [2]. 

For this case, an important parameter is the scaled beam size E. This is defined by eq.(6.13) 
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of reference [2] as Zi= 2 p d a & ,  where & is the radius of the step profile; and p the Pierce 

parameter [6], the growth rate per wiggler period in 1-D theory, defined by: 

with no the particle density, 20 = 377Q the vacuum impedance, K the wiggler parameter, and 

y the electron energy, [ J q  the Bessel factor, which is equal to 1 if the wiggler is helical,= we 

assumed in [2]. Once the value of Zi is given, we can calculate Gn(qll, T) and the mode function 

lCIn(q11, ??), as described in detail by [2]. The physical meaning of the scaled beam size is that 

Zi2 is about equal to the ratio of the Rayleigh range of an optical gaussian beam with the same 

beam waist as the electron beam size, over the 1D e-folding length of an electron beam with 

the same current density. If the beam size is SufEciently large so that i5 >> 1, the diffraction 

effect is negligible, and the power e-folding length approaches the 1D limit LG = Xw/(4nAp). 

We call this the large beam size limit. 

For the sake of simplicity, we shall not give the speciilc expression of these mode functions 

(see eq.(6.27) of [2] and the related discussions), but only point out here that the mode 

functions are not orthogonal to each other, even though they are normalized according to 

Notice that in the integrand, the mode function does not take the absolute value. In the large 

beam size limit, these functions become nearly orthogonal to each other. 

The Fourier transform of the green’s function Gn is given by (This expression is not limited 

to step function profile): 
e - a a  (QllIT 

Gn(q17 7) = 
-az(ql l )  [1 - F,(QII)] . 

Again, we shall not give the specific expressions for Rn(qll) and Fn(qll) (see q(6.24-26) and 

the Appendix C and D of [2]), but only point out here that in the large beam size limit ?i >> 1, 
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RO(Q = 0) approaches 2pei2?r/3, so the growth rate Im(Slo(ql = 0)) approaches a p ,  and the 

coefficient 1 - Fo(q = 0) approaches 3. 

Another important point is that Cln(q1), Fn(ql) and &(QII, 2) are smooth functions of the 

detuning 411 near resonance qll = 0. However, the green’s function Gn changes exponentially 

with wiggler distance rdue to the exponential factor, and hence is a sharply peaked function 

of the detuning 411 , of a width 

in the large beam size limit (see eq.6.49 of [2]). This will be used for the calculation of many 

integrals over the detunning qll, where slow varying functions such as $Jn(qll, 3) can be taken 

as constant, and moved outside the integrals. 

Now we return to  the guided mode expansion eq.(4). If the difference of the growth rate 

of different modes is sufficiently large, then at the end of the wiggler, the fundamental mode 

with the highest growth rate will dominate over other modes, and the sum will be dominated 

by the term with n=O. In this paper we shall assume this domination of the fundamental 

mode, and use the equations 3 and 4 to derive the intensity fluctuation from pulse to pulse. 

3. The Intensity Fluctuation 

We assume the electron beam pulse shape is a step function with pulse length 1, and the 

slippage distance is much smaller than 1, then the radiation pulse energy is 

where we have changed the variables z and 7 into the scaled variables [ and 2. The scaled 

pulse length is s k,Z. We define the Fourier transform of E ( [ ,  2) by: 
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Then we can rewrite the pulse energy in the frequency domain: 

w = JdqllW(qll)> 

with the energy spectrum 

(9) 

Now it is easy to show that the pulse energy fluctuation is 

(11) 
< w2 > - < w >2 - s s dq;lc(QII > q;) 0: - - - 

[s dqll < Wqll) >] ) 

< w >2 < w >2 

where the angled brackets represent ensemble average over the electron random distributions, 

and C(q11, q/1) is the correlation function 

We need to calculate the averages < W(q11) > and < W(qll)W(qil) >. For this, we first 

calculate the Fourier transform E(qll, 3) of the electric field using its definition eq.(8) and 

the equations eqs.(3, 4). Substituting into eq.( lo),  yields: 

is similar to a normalization factor, but not quite, because the modes are not orthogonal, and 

we have replaced the sum over the modes by a single fundamental mode labeled n=O. The 

ensemble average of eq.(13) over the random distribution of ci eliminates all the terms except 

those with i=j, thus we replace the sum over particle index i and j by Xi, which in turn can 

be replaced by an integral over the electron density distribution dc J d 2 m ( 7 ? ) .  As an 
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example, if we assume the proae function u is a step function in longitudinal and transverse 

directions, then the transverse distribution function is u = 1 inside the beam (z 5 a)  and 

u = 0 outside the beam. In the more general cases we obtain: 

n 

where 

(16) 

Notice that Nl(q1) # N ~ ( Q ) ,  because the integration in N ~ ( Q )  is limited to within the 

electron beam due to the factor ~(3). The product N1(q1)N2(ql) is defined as "overlap 

integral"No0, with an analytical expression given by the eq.(C6) of [2]. 

The calculation of C(q1,q;I) proceeds in a similar way and leads to 

where 

A rough estimate shows that IC112/C2 is of the order of the number of electrons in the 

beam of length 1, so we can ignore CZ. Next, we replace the sum over particles in C1 by an 

integral as we did previously for W ( q ) :  

To simplify this, we need an approximation: if there is a significant exponential growth, 

the factors ~ G o ( q ~ ~ ) ~ 2 ~ G ~ ( ~ ~ l ) ~ 2  in eq.(17) are sharply peaked around 411 = 0 and qb = 0 with a 

width of aqll (see eq.6), which is smaller than l / N w  even near saturation. Hence, we can take 
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both 411 and qil to be small and within this peak. The function @O(QII, + x ) changes very little 

within the peak width, therefore, we can replace 4; by 411 in the argument of @; and obtain 

where sinc(s) =sin(x)/z. 

Substituting this into eq.(17), we get 

Now we assume the pulse length 1 is long enough so that the width of the sinc function is 

much narrower than the width aqI1 of ~Go(Q) ]  , i.e., l/s << aqil . In other words, we assume 

the bunch length is much longer than one coherence length. Then we can calculate the pulse 

energy fluctuation 

where the integration over qil of eq.(19) was carried out by moving the slowly varying factor 

IGo(q;l)12 outside the integral, and integrating only over the sinc function. Substituting eq.(20) 

and eq.(15) into the eq.(ll), we obtain the relative pulse energy fluctuation when one single 

mode dominates: 

As we mentioned before, the width of the integrand is determined by the Go(q11) factor to 

be aqll, the ”overlap integral” N1(q11)N2(qll) is a slow varying function of qll , and changes very 

little within this width. So we can shift it outside the integrals. The result is a significant 

cancelation of the transverse factors (factors which depend on 2) between the denominator 

and the numerator, where the only remaining 3D effect comes in through the green’s function 
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. , .* 

The integrals in this expression can be calculated using the saddle point method because 

the green's function Go(q11) has a sharp peak around zero detuning, qll = 0. The exponent 

Ro(q11) in Go(q11) can be expanded around zero to 2nd order in qll , and used in the saddle 

point calculation. For example, in the large beam size limit, as explained in eq.(6.41) of [2], 

we write Ro(q1) as 

'0 (qll) = 2pXo 7 

with A0 expanded to second order of A = 2pqll : 

Then using the saddle point approximation, we find 

Thus, eq.(22) is simplified to 
- J;F 

< w > a,,,s' 
-- 

where the bandwidth aqI1 is given in eq.(6) and s = kJ. So using the 1D gain length LG = 

A W / ( 4 7 4 p ) ,  we finally get the eqs.(l,2) given in the Introduction. 

The coherence length is equal to the slippage distance NwX, when the wiggler is about 

2 gain lengths. When it is smaller than 2 gain lengths, there is essentially no gain, so the 

derivation here is not valid, but the result clearly approaches that calculated by the spon- 

taneous radiation theory. In this case eq.(l) is still valid, with the coherence length equal 

the slippage distance NwX,. When the wiggler is longer than 2 gain lengths, the coherence 
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length is reduced. Near saturation, when it is 20 gain lengths long, the eq.(2) shows that the 

coherence length is equal to about one third of the slippage distance. 

Finally, using the correlation function eq.(19) and the single shot spectrum eq.(15), we 

find the relative spectral correlation 

where Aw is the frequency difference between the two detunings qll and qil. 

The last expression can be directly used in comparison with the single shot spectral cor- 

relation experiment in SASE. It is remarkable that this formula does not depend on current 

or gain length, and hence the relative correlation is only determined by the bunch shape. 

As a final remark, we note here that after this work was completed and we had submitted 

the abstract describing the fluctuation formulae, eq.(1,2), we received an article authored by 

Saldin, E.A. Schneidmiller, M.V. Yurkov [7]. The paper carried out a I D  analysis, and for 

1D limit derived many of the results presented here, in particular, an. intensity fluctuation 

formula identical to our eq.(24), and a spectral correlation formula identical to our eq.(25). 
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