Thermodynamics of insulated pressure vessels for vehicular hydrogen storage

PDF Version Also Available for Download.

Description

This paper studies the application of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels can store liquid hydrogen (LH2); low-temperature (90 K) compressed hydrogen (CH2); or ambient temperature CH2. In this analysis, hydrogen temperatures, pressures and venting losses am calculated for insulated pressure vessels fueled with LH2 or with low-temperature CH2, and the results are compared to those obtained in low-pressure LH2 tanks. Hydrogen losses are calculated as a function of daily driving distance during normal operation; as a function of time during long periods of vehicle inactivity; and as a function of initial vessel temperature during fueling. ... continued below

Physical Description

16 p.

Creation Information

Aceves, S.M. & Berry, G.D. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper studies the application of insulated pressure vessels for hydrogen-fueled light-duty vehicles. Insulated pressure vessels can store liquid hydrogen (LH2); low-temperature (90 K) compressed hydrogen (CH2); or ambient temperature CH2. In this analysis, hydrogen temperatures, pressures and venting losses am calculated for insulated pressure vessels fueled with LH2 or with low-temperature CH2, and the results are compared to those obtained in low-pressure LH2 tanks. Hydrogen losses are calculated as a function of daily driving distance during normal operation; as a function of time during long periods of vehicle inactivity; and as a function of initial vessel temperature during fueling. The number of days before any venting losses occur is also calculated as a function of the daily driving distance. The results show that insulated pressure vessels have packaging characteristics comparable to those of conventional, low-pressure LH2 tanks (low weight and volume), with greatly improved dormancy and much lower boil-off. Insulated pressure vessels used in a 17 km/l (40 mpg) car do not lose any hydrogen when the car is driven at least 15 km/day in average. Since almost all cars are driven for longer distances, most cars would never lose any hydrogen. Losses during long periods of parking are also relatively small. Due to their high-pressure capacity, these vessels would retain about a third of their full charge even after a very long dormancy, so that the owner would not risk running out of fuel. If an insulated pressure vessel reaches ambient temperature, it can be cooled down very effectively by fueling it with LH2 with no losses during fueling. The vessel has good thermal performance even when thermally insulated with inexpensive microsphere insulation. In addition, the insulated pressure vessels greatly ease fuel availability and infrastructure requirements, since it would be compatible with both compressed and cryogenic hydrogen reveling.

Physical Description

16 p.

Notes

OSTI as DE98051280

Other: FDE: PDF; PL:

Source

  • International mechanical engineering congress and exposition, Dallas, TX (United States), 16-21 Nov 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98051280
  • Report No.: UCRL-JC--128388
  • Report No.: CONF-971115--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 629976
  • Archival Resource Key: ark:/67531/metadc696132

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 10, 2017, 2:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Aceves, S.M. & Berry, G.D. Thermodynamics of insulated pressure vessels for vehicular hydrogen storage, article, June 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc696132/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.