A manufacturing method for multi-layer polysilicon surface-micromachining technology

PDF Version Also Available for Download.

Description

An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

Physical Description

6 p.

Creation Information

Sniegowski, J.J. & Rodgers, M.S. January 1, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

Physical Description

6 p.

Notes

OSTI as DE98002723

Source

  • 1998 Government microcircuit applications conference, Arlington, VA (United States), 16 Mar 1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98002723
  • Report No.: SAND--98-0067C
  • Report No.: CONF-980328--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 634062
  • Archival Resource Key: ark:/67531/metadc696002

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 14, 2016, 7:51 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Sniegowski, J.J. & Rodgers, M.S. A manufacturing method for multi-layer polysilicon surface-micromachining technology, article, January 1, 1998; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc696002/: accessed November 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.