Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs. Final Report, April 17, 1991--May 31, 1997

PDF Version Also Available for Download.

Description

From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. … continued below

Physical Description

247 p.

Creation Information

Grigg, R. B. & Schechter, D. S. February 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 62 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

Physical Description

247 p.

Notes

OSTI as DE98000471

Source

  • Other Information: PBD: Feb 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • February 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Jan. 15, 2021, 4:45 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 62

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Grigg, R. B. & Schechter, D. S. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs. Final Report, April 17, 1991--May 31, 1997, report, February 1, 1998; Socorro, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc695927/: accessed March 30, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen