Correlation of flame speed with stretch in turbulent premixed methane/air flames

PDF Version Also Available for Download.

Description

In the flamelet approach of turbulent premixed combustion, the flames are modeled as a wrinkled surface whose propagation speed, termed the {open_quotes}displacement speed,{close_quotes} is prescribed in terms of the local flow field and flame geometry. Theoretical studies suggest a linear relation between the flame speed and stretch for small values of stretch, S{sub L}/S{sub L}{sup 0} = 1 - MaKa, where S{sub L}{sup 0} is the laminar flame speed, Ka = {kappa}{delta}{sub F}/S{sub L}{sup 0} is the nondimensional stretch or the Karlovitz number, and Ma = L/{delta}{sub F} is the Markstein number. The nominal flame thickness, {delta}{sub F}, is determined ... continued below

Physical Description

5 p.

Creation Information

Chen, J.H. & Im, Hong G. November 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the flamelet approach of turbulent premixed combustion, the flames are modeled as a wrinkled surface whose propagation speed, termed the {open_quotes}displacement speed,{close_quotes} is prescribed in terms of the local flow field and flame geometry. Theoretical studies suggest a linear relation between the flame speed and stretch for small values of stretch, S{sub L}/S{sub L}{sup 0} = 1 - MaKa, where S{sub L}{sup 0} is the laminar flame speed, Ka = {kappa}{delta}{sub F}/S{sub L}{sup 0} is the nondimensional stretch or the Karlovitz number, and Ma = L/{delta}{sub F} is the Markstein number. The nominal flame thickness, {delta}{sub F}, is determined as the ratio of the mass diffusivity of the unburnt mixture to the laminar flame speed. Thus, the turbulent flame model relies on an accurate estimate of the Markstein number in specific flame configurations. Experimental measurement of flame speed and stretch in turbulent flames, however, is extremely difficult. As a result, measurement of flame speeds under strained flow fields has been made in simpler geometries, in which the effect of flame curvature is often omitted. In this study we present results of direct numerical simulations of unsteady turbulent flames with detailed methane/air chemistry, thereby providing an alternative method of obtaining flame structure and propagation statistics. The objective is to determine the correlation between the displacement speed and stretch over a broad range of Karlovitz numbers. The observed response of the displacement speed is then interpreted in terms of local tangential strain rate and curvature effects. 13 refs., 3 figs.

Physical Description

5 p.

Notes

OSTI as DE97054452

Subjects

Keywords

STI Subject Categories

Source

  • 1997 fall technical meeting of the Eastern State Section of the Combustion Institute: chemical physical processes in combustion, Hartford, CT (United States), 27-28 Oct 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97054452
  • Report No.: SAND--97-8689C
  • Report No.: CONF-9710112--
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 555263
  • Archival Resource Key: ark:/67531/metadc695872

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Nov. 15, 2015, 5:02 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, J.H. & Im, Hong G. Correlation of flame speed with stretch in turbulent premixed methane/air flames, article, November 1, 1997; United States. (digital.library.unt.edu/ark:/67531/metadc695872/: accessed November 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.