A COMPARISON OF TWO ALUMINIZING METHODS
FOR CORROSION PROTECTION IN THE WET SEAL OF
MOLTEN CARBONATE FUEL CELLS*

Ira Bloom, J. Ernesto Indacochea, and Michael Krumpelt
Electrochemical Technology Program
Chemical Technology Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439
Phone: (630) 252-4516 Fax: (630) 252-4176

Thomas G. Benjamin
MC-Power Corporation
8040 S. Madison
Burr Ridge, Illinois 60521
Phone: (630) 986-8040 Fax: (630) 986-8153

Paper prepared for the 32nd Intersociety Energy Conversion Engineering Conference
Honolulu, Hawaii
July 27 - August 1, 1997

May 1997

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
During testing, the cell potential was maintained at 800 mV at 650 °C for 500 h. After the test, the samples were cleaned with dilute acetic acid and mounted for metallography.

Scanning-electron-microscopy (SEM) analyses were performed to characterize the microstructure of each coupon. Energy dispersive analysis of X-rays (EDX) was used to assess the interdiffusion of the steel and aluminizing layers. The compositions were calculated from the observed ratio of the metals. X-ray diffraction (XRD) was used to identify the phases present on, and immediately below, the surface of the sample.

RESULTS AND DISCUSSION

As-received Coupons

A serrated microstructure was seen at the Al/SS interface in both types of samples (see Fig. 2). The thickness of the interfacial layer was about 1.5-3.0 μm. The microstructure of set 1 samples consisted of a duplex structure on the SS base metal. Analyses by XRD showed that the outer layer consisted of Al and the inner layer consisted of iron aluminides. The EDX and XRD analyses showed that the bulk of the inner layer consisted of Fe₂Al₅; FeAl₃ was found near the Al/SS interface (Fig. 3).

The microstructure of set 2 samples consisted of a single layer of iron aluminides. The EDX analysis showed that the bulk of the layer consisted of Fe₂Al₅; FeAl₃ was present at the Al/SS interface. The different phase distribution between sets 1 and 2 is due to the differences in the aluminizing process.

During the aluminizing process, Cr and Ni also diffuse into the aluminizing layer. As expected, the concentrations of these species are greatest at the interface. For example, the concentrations are 8 and 10 wt% for Ni and Cr, respectively, in the set 2 samples. No aluminum was found in the SS substrate.

In-cell Test

After 500 h of in-cell testing, different intermetallic phases were seen metallographically between the two sets of coupons. No microstructural differences were seen between the samples from the fuel gas inlet and gas outlet. The EDX analyses of set 1 coupons revealed the following intermetallic phases: Feₐ, Fe₂Al₅, Fe₃AI, and Fe₂Al₃ (see Fig. 4). Similar analyses of set 2 coupons revealed only FeAl and Fe₂Al₅.

The set 1 samples did not show significant corrosion after the test. The thickness of the aluminum layer remained unchanged and no noticeable corrosion scale developed. A closer examination of these samples showed a rough surface (Fig. 4). The surface texture was first thought to be from the aluminizing process. In the thermal-spray process, aluminum droplets strike the surface of the steel, producing a rough texture due to droplet splattering. Samples of set 2 showed a similar phenomenon, that is, a rough texture on the outer surface of the aluminizing layer (Figs. 5a and 5b). However, the slurry-coating process produces a smooth surface; thus, the observed texture cannot be from the set 2 aluminizing process. The texture of the set 2 sample goes farther into the deposit than that of the set 1 sample: it penetrates a distance of 15-25 μm.

The EDX results from the regions near the electrolyte of set 1 and set 2 samples show that the atomic ratios of the metals are different. The ratio of Fe:Al:Cr:Ni is 2.3:10:1:1 for set 1 and 3.5:9:1:1 for set 2. The high Fe concentration in set 2 is expected because its bulk composition began the experiment as FeAl₃. The high Fe concentration in the aluminizing layer may be the cause of the greater corrosion damage in set 2 coupons.

The phase distributions are different in the two types of coupons, as shown by XRD (see Figs. 6a and 6b for sets 1 and 2, respectively). The phases present in both samples are α- and γ-LiₐAl₂O₃, Cr₄Al₉, Fe₂Al₅, Fe₃Al, FeAl, and an unknown phase. The ratio of the phases was calculated using the intensity of the diffraction peaks at 2θ = 18.7, 22.5, 43.2, 42.8, and 44.1°, respectively. These ratios are given in Table 1 and indicate which species provide corrosion protection.

<table>
<thead>
<tr>
<th>Intensity Ratio</th>
<th>α-γ-LiₐAl₂O₃</th>
<th>Fe₂Al₅,Fe₃Al</th>
<th>FeAl₃,Fe₄Al₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1</td>
<td>0.7</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Set 2</td>
<td>2.0</td>
<td>2.7</td>
<td>14.7</td>
</tr>
</tbody>
</table>

FeAl and/or Fe₃Al.

Initially, the electrolyte tile consisted of α-LiAl₂O₃ + (Li,K)₂CO₃. The greater amount of α-LiₐAl₂O₃ on set 2 samples as compared to that on set 1 samples indicates greater oxidation of the aluminizing layer. However, a corresponding Fe-containing product from the reaction was not observed (e.g., LiFeO₂). An explanation is that the Fe-containing product spilled off or came off during the acetic acid cleaning.

We found that the lithium aluminates are easily removed by soaking the sample in 50% nitric acid for about 1 minute (XRD evidence). Thus, the lithium aluminates are present on the surface and are not tenacious; the other peaks present in the XRD before the washing are still there afterwards.

The high concentration of Fe-containing phases present in set 2 is more important than the presence of lithium aluminates. As stated earlier, the bulk of set 2 coating material initially consisted of FeAl₃. The distribution of phases shown in Table 1 indicates the equilibrium composition of FeAl₃ and Type 310S SS. Since the FeAl/Fe₃Al-type materials predominate, they may be responsible for the corrosion behavior of the set 2 material. Separate experiments on the corrosion behavior of the Fe- and Cr-containing phases given in Table 1 are necessary to determine which is the most corrosion resistant (i.e., protective) coating material.

CONCLUSIONS

Examination of set 1 and 2 samples reveals an initially serrated interface that consists of iron aluminides. Resolvable changes in the bulk microstructure occurred after about 500 h. No corrosion layer growth was observed, but some of the aluminum deposit formed Fe-Al phases in both coupons.

The XRD patterns of FeAl and Fe₃Al are too similar to be differentiated here. The exact patterns are found on JCPDS Card Numbers 33-0020 and 45-1203, respectively.
Fig. 2. Typical serrated layer found at the Al/SS interface of all as-received samples. This micrograph is from a set 2 coupon before exposure.

Fig. 3. Micrograph of Al/SS interface of a set 1 coupon before in-cell test showing the locations of the spot analyses.

Fig. 4. Micrograph of aluminizing layer on a set 1 coupon after 500 h of in-cell test. Air was the cover gas; sample was placed in the fuel exhaust section of wet seal.

Fig. 5a. Micrograph of aluminizing layer on a set 2 coupon after 500 h of in-cell test. Air was the cover gas; sample was placed in the anode exhaust section of the wet seal.