OFF GAS FILM COOLER CLEANER

Hardip S. Dhandra
William C. Koch
David C. Burns

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
CONTRACTUAL ORIGIN OF THE INVENTION

The United States Government has rights in this invention pursuant to Contract Number DE-AC07-81NE44139 between the United States Government and West Valley Nuclear Services Co. Inc.

BACKGROUND OF THE INVENTION

The present invention relates generally to the interior cleaning of a tubular member and more particularly to the cleaning of the off gas cooler of a vitrification unit.

Vitrification plants have been designed to solidify radioactive waste resulting from nuclear fuel reprocessing. A vitrification unit mixes radioactive and other waste with the components of borosilicate glass, melts the mixture at high
temperatures for periods of time, and pours it into stainless steel canisters for storage. Due to the radiation and high temperatures, most major components in the unit are remotely removable using only crane mounted equipment. All piping and electrical connections to these components also use crane removable jumpers. All operations are remotely monitored to protect workers and prevent the release of pollutants. In addition to shield windows, operations are monitored by camera.

Any radioactive emissions from the heated mixture in the vitrification unit are drawn by vacuum into the Off Gas Treatment system. The In-cell section of the system can consist of a film cooler, submerged bed scrubber with mist eliminator, and mist eliminator preheaters. Gaseous emissions are quenched, scrubbed to remove radioactive particulate matter, then passed through the mist eliminator to remove liquid droplets. Gases are then heated and passed through the high efficiency mist eliminators to remove submicron particulate matter. From the In-cell treatment section, gases flow into the Ex-cell treatment section for filtration and catalytic reduction.

Substantial operational difficulties have been encountered due to radioactive particulate matter precipitating in the In-cell Off Gas Treatment piping. Plugging of the pipes has resulted in premature termination of a run, with increased risk of release of emissions and endangerment of workers. There is a need to remove particle build-up during operation to avoid premature termination of operations which the present invention addresses.
SUMMARY OF THE INVENTION

An object of the present invention is to clean the interior surfaces of a tubular member.

Another object is to continually clean the tubular member without disassembling the piping in order to limit likelihood of release of radioactive matter and pollutants into the environment or cause worker contamination.

Another object is to continually clean the piping during operation of the unit.

Another object of the present invention is to provide a pipe cleaning apparatus in a radioactive environment.

Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

Briefly, the invention is an apparatus for cleaning interior surfaces of a tubular member while the member is in use. The invention comprises a brush and shaft assembly joined to a second shaft assembly which provides rotary motion. The second shaft assembly is joined to a means for providing linear motion. By means of linear and rotary motion the brush is propelled along the interior surface of the tubular member, removing particulate deposit as it travels the length of the member.
The apparatus may also have a set of brushes attached to the internal wall of the housing for cleaning the brush and shaft assembly. The second shaft assembly may have a roller nut bearing to provide rotary motion and have a grooved shaft to fit within the nut bearing. The linear motion may be provided by pneumatic cylinders connected to a wheel assembly. The wheel assembly transfers the linear motion to the second shaft assembly while allowing the second shaft assembly to rotate.

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the preferred embodiment of the present invention and, together with the description, serve to explain the principals of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated in the drawings, wherein:

Figure 1 is a partial cut away elevation view of a cleaning apparatus for a tubular member.

Figure 2 is a cut away elevation view of the cleaning apparatus of Figure 1 rotated 90°.

Figure 3 is an enlarged sectional view of a portion of the cleaning apparatus of Figure 2, further enlarged to Figures 3A and 3B.

Figure 4 is a perspective view, partially broken away, of a roller nut bearing.

Figure 5 is an enlarged sectional view of the upper portion of the cleaning apparatus of Figure 2.
DETAILED DESCRIPTION OF THE INVENTION

Figure 1 shows a cleaning apparatus 11 and 12. The film cooler is shown as a partial cut away elevation view to disclose both the rest position 13 and the extended position 15 of the brush 14. As the brush assembly travels linearly between 13 and 15, the brush assembly rotates against the inside walls of the film cooler, thereby dislodging precipitated particulate matter from the inside walls of the film cooler. The dislodged matter falls into the vitrification unit (not shown) located directly under the film cooler. Vortex cooling air introduced through inlet 16 aids in forcing the dislodged matter into the vitrification unit.

Figure 1 shows the connector for instrument air 17 and the lifting bail 18. The instrument air operates the pneumatic cylinders 28 shown in Figure 2. The pneumatic cylinders provide linear motion to the brush. The connectors 16 and 17, as are all piping components, are designed to be removed and replaced by a remote control crane. The lifting bail 18 allows the entire cleaning apparatus to be removed or replaced as a unit thereby lessening the opportunity for the release of radioactive emissions.

Figures 2, 3A, and 3B show the brush assembly 14 comprising a cylinder 19 able to withstand temperatures of 1150°C and radiation of 10,000 R/HR and four perpendicular sets of bristles of the same material 20 radiating outwardly to such a length that the bristles contact the inner surface of the film cooler. The brush assembly is attached to the first shaft 22 by a bolt and cotter pin 21. The shaft, bolt and cotter pin are also made of the same durable material. Attached to the interior
wall of the housing 24 in such a manner that the bristles make contact with the surface of the first shaft 22 is a circular brush 23 with a plurality of radial bristles also of material able to withstand temperatures of 1150° C and radiation of 10,000 R/HR. The circular brush removes any particulate matter on the first shaft.

The first shaft 22 is connected to the second shaft 26 by a weld joint 25. The second shaft 26 has a longitudinal spiral groove running along its outer surface. Above the weld joint the second shaft is encased in a roller nut bearing 27. Figure 4 shows an expanded view of the bearing. Roller bearings 29 fit between the internal wall of the roller nut bearing and the inner wall of the spiral groove of the second shaft as shown in Figure 3. As the second shaft passes through the roller nut bearing, the roller bearings cause the shaft to rotate. This rotary motion is translated along the first shaft to the brush assembly thereby causing the brush to rotate. The rotatory motion of the brush removes particulate matter from the walls of the film cooler.

The second shaft 26 is connected to the wheel assembly 30 by bearing 31 as shown in Figure 5. This bearing allows the second shaft to rotate within rigid support bracket 32 of the wheel assembly. Support bracket 32 is connected by bolts 33 to the wheel track 34. The wheel track provides alignment and support for the linear movement of the shafts and brush assembly as the wheels 35 travel linearly along the track. The support plate 36 is also connected to the wheel assembly by bearing 31.

Pneumatic cylinder rods 37, shown in Figure 2, are connected to the support plate. Linear motion provided by the cylinders 28 is transferred via the support plate to the
wheel assembly and shafts to propel the brush along the interior of the tubular member.

The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiment was chosen and described in order to best explain the principals of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
ABSTRACT

An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.