Exploring the $^{18}\text{F}(p,\gamma)^{19}\text{Ne}$ Gateway to the Formation of Heavy Elements in Hot Stars.

1Argonne National Laboratory; 2Hebrew University, Jerusalem; 3University of Wisconsin, Madison, WI; 4Northwestern University, Evanston, IL

Abstract

An upper limit to the production of ^{19}Ne through the $^{18}\text{F}(p,\gamma)$ reaction at the recently discovered s-wave resonance has been determined. The limit implies that in a hot stellar environment ($T_9 > 0.5$) this reaction is not a significant gateway from the hot CNO cycle towards the production of heavier elements in stars.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The isotope ^{18}F ($T_{1/2}=110\text{ min}$) plays an important role in our understanding of explosive nucleosynthesis. ^{18}F is produced in the hot CNO cycle [1] and is the stepping stone to the formation of 19Ne which in turn is the gateway to the rp process [2] where in a series of (p,γ) reactions nuclei up to ^{56}Ni and beyond are produced. In a hot stellar environment 18Ne can be generated either via the 18F$(p,\gamma)^{19}$Ne reaction or through radiative capture of ^{4}He on 15O with 15O produced via the 18F(p,α) reaction. As pointed out in Ref. 3 the 18F(p,α) and 18F(p,γ) reactions are also important for controlling the production of the rare oxygen isotope 18O. The positive Q-value for the (p,α) reaction on 18F is the reason that no OF cycle exists in nature, since it allows a breakout from the cyclic reaction path 16O$(p,\gamma)^{17}$F$(\beta^+)^{17}$O$(p,\gamma)^{18}$F$(p,\gamma)^{18}$Ne$(\beta^+)^{19}$F$(p,\alpha)^{16}$O towards 15O before the final 19F$(p,\alpha)^{16}$O reaction is reached.

Calculations of the astrophysical reaction rates [4-6] for the 18F$(p,\alpha)^{15}$O and 18F$(p,\gamma)^{19}$Ne reactions have been published over the last 30 years. The spin values for the levels used in these computations were taken mainly from the mirror nucleus 19F. No s-wave resonance was included since no $\ell_p=0$ state in 19Ne or 18F was expected at the relevant excitation energy of $\sim 7\text{ MeV}$. It was therefore a surprise when in two recent experiments [7,8] evidence for a $3/2^+$ $(\ell_p=0)$ state in 19Ne was found which dominates the astrophysical reaction rate in 18F$(p,\alpha)^{15}$O at temperatures $T_\beta > 0.5$ [9]. Such an s-wave resonance could also play an important role for producing 19Ne through proton capture and for this reason we have carried out the first investigation of the $p(^{18}\text{F},^{19}\text{Ne})\gamma$ reaction.

The experiment was performed at the ATLAS accelerator system of Argonne National Laboratory using a two-accelerator method for generating the radioactive 18F ion beam [10,11]. The 18F material was produced at the cyclotron of the University of Wisconsin via the 18O$(p,n)^{18}$F reaction, flown to Argonne National Laboratory and installed in the negative ion source of the ATLAS tandem injector.

Because of the relatively small cross sections (typically of the order of tens of μb) and the low γ-detection efficiency ($<1\%$), measurements of (p,γ) cross sections usually require high beam intensities. In order to compensate for the low intensities available with today's radioactive ion beams, new techniques with considerably higher detection efficiencies are needed. An additional difficulty in experiments with radioactive 18F beams is the presence of a strong contaminant from the isobar 18O.
To improve the detection efficiency for radiative capture reactions we have used the Fragment Mass Analyzer (FMA) [12] installed at the ATLAS accelerator. The FMA is a combination of one magnetic and two electric dipoles which disperse the particles according to \(p/q \) and \(E/q \), respectively. Since the electric rigidity of the \((p,\gamma)\) reaction products is lower than that of the beam particles by about 5\%, the primary beam is stopped at a collimator located after the first electric dipole. The subsequent magnetic and electric dipoles provide for additional suppression of scattered beam particles and for the transport of the reaction products to the focal plane of the FMA where the ions are dispersed by \(m/q \) and detected in a position-sensitive parallel-grid avalanche counter. This detector is followed by a large-volume ionization chamber for \(Z \) identification. With this arrangement, a suppression factor for the incident beam relative to the \((p,\gamma)\) reaction products of \(10^{12} \) is achieved. Details of the experimental techniques will be published in a forthcoming paper [13]. A similar principle, involving a Wien filter combined with an additional magnetic dipole [14], has been used previously for measurements with stable beams.

The efficiency of the FMA and its detector system for radiative capture reactions was determined by measuring an excitation function for the \(p^{(18}\text{O},^{19}\text{F})\gamma \) reaction around the \(\ell_{p}=0 \) resonance in \(^{19}\text{F} \) at \(E_{cm}=799 \) keV [15]. Beams of \(< 0.5 \) pA of 13-17 MeV \(^{18}\text{O} \) from the tandem accelerator were used on 80-100 \(\mu \)g/cm\(^2\) \(\text{CH}_2 \) targets. In order to minimize beam induced changes in target thickness, a target wobbler was used that distributed the 3 mm beam spot over a \(\sim 1 \) cm diameter ring. The hydrogen content of the target was monitored by measuring the recoil proton yield in the course of the experiment in two monitor detectors mounted at scattering angles of \(\pm 30^\circ \).

Figure 1a shows a \(\Delta E-E_{res} \) spectrum measured in the ionization chamber at an \(^{18}\text{O} \) energy of 16 MeV. The field settings of the FMA were chosen to detect the \(^{19}\text{F}^{7+} \) reaction products originating from the \(^{18}\text{O}(p,\gamma) \) reaction. The \(^{18}\text{O} \) particles originate from scattering of the incident beam at various places inside the FMA. The solid lines are the result of a simulation of \(^{19}\text{F} \) and \(^{18}\text{O} \) particles traversing the ionization chamber. They are in excellent agreement with the measured data.

Figure 1b shows the measured cross sections (solid points) as function of the center-of-mass energy in comparison with the results obtained in Ref.16. The over-
all efficiency for detecting the recoil 19F particles is $30 \pm 3\%$. The fraction of the recoiling 19F ions in the 7^+ charge state ($f_q = 55\%$) was determined by measuring a charge state distribution of 19F at the resonance energy. The remaining part of the overall efficiency is due to the acceptance limitations induced by a 1.7 cm wide collimator that was installed after the first electric dipole and to small angle scattering of the particles in the focal plane detector.

A comparison of this excitation function with the results obtained previously[16] shows good agreement. The hatched area in Fig.1b was obtained by averaging a Breit-Wigner resonance with parameters from Ref. 16 over the target thickness of 55 keV. The cross section off resonance ($\sim 20 \mu$b) is dominated by recoil 19F ions from a small fluorine impurity in the target. This is a general problem for radiative capture measurements in inverse kinematics, if they result in stable reaction products that may be present as trace impurities in either beam or target. Since 19Ne has a halflife of only 17.2 s this is not a problem for the 18F(p,γ)19Ne experiment.

The runs with 18F beams were performed at a bombarding energy of $E_{cm} = 670$ keV, i.e. slightly above the s-wave resonance found in the 18F(p,α)15O reaction such that the resonance would fall within the energy range covered by the target thickness. The integrated 18F charge was determined by collecting elastically scattered 18F particles on a circular aperture in the angular range $\Theta_{lab} = 3.6-10^\circ$ and measuring the β^+ activity on the aperture off-line after each run. The time profile of the 18F exposure during the measurement and the cumulative 18F activity was also monitored continuously by measuring the β^+ annihilation radiation from the collimator after the first electric dipole where the primary 18F beam was intercepted.

Five runs with different samples of 18F, each about 300 mCi, were accumulated. The data from these runs were summed and the corresponding ΔE-E_{res} spectrum is shown in Fig.2a. The solid lines are again simulations of the response of the ionization chamber for O, F and Ne ions, respectively. The region where events from the 18F(p,γ)19Ne$^{7+}$ reaction are expected is marked in the figure. There are three events which fall within this region, all of which are located close to the borderline between the Z=9 and 10 events. These three events have been further analyzed using the additional energy loss signal ΔE_1 from the focal plane detector. Figure 2b shows pulse height spectra for these three events (labelled 19Ne) and for 19F and 18O particles, respectively. As can be seen from Fig.2b the three events have
energy loss values very close to the ones observed for 19F ions. Approximating the pulse height distributions by Gaussians one can estimate that the probability that three 19Ne ions giving pulse heights as small or smaller than the observed values is less than 0.003 and we conclude that probably all three of these events are 19F ions. The cross section corresponding to a single 19Ne event is calculated to be 42 μb using the integrated charge of the 18F beam (2.8 pnC) and the detection efficiency which is based on the the measurement of the 18O(p,γ) reaction. Taking 42 μb as the (1σ) limit and the widths Γ_p and Γ_γ for the 3/2$^+$ resonance as given in Ref. 9 an upper limit for the resonance strength $\omega_\gamma \leq 740$ meV and the gamma width $\Gamma_\gamma \leq 3$ eV has been calculated. This upper limit for Γ_γ is comparable to the width obtained for the s-wave resonance populated in the 13N(p,γ)14O reaction [17] but not as low as the limit obtained recently for the system 19Ne + p [18] where considerably higher beam currents were available. A gamma width $\Gamma_\gamma = 3$ eV for the 3/2$^+$ state in 19Ne corresponds to about 2% of the single particle width for an E1 transition and 40% for an M1 transition. Transitions with such strengths have been observed in this mass region [15].

This limit for the radiative strength of the 3/2$^+$ resonance allows us to reach significant conclusions about the production of 19Ne in the hot CNO cycle. The upper limit of the astrophysical reaction rate for the 18F(p,γ)19Ne reaction populating the 3/2$^+$ state in 19Ne as function of T_\odot is shown as the dash-dot line in Fig.3a. Also included (dashed line) is the rate for the 18F(p,α)15O reaction which is larger than the corresponding (p,γ) rate by at least a factor of 10^3. The estimated upper limits for other states located in this excitation energy region are shown as dotted lines in Fig. 3a. These estimates were reached assuming the same gamma widths $\Gamma_\gamma = 3$ eV and the Γ_p/Γ values as tabulated in Ref. 9. The upper limit for the total (p,γ) reaction rate is indicated by the thick solid line. A rough estimate for a lower limit for the (p,γ) reaction rate may be provided from a calculation of direct proton capture [16] which is shown as a thin solid line in Fig. 3a. The symbols in Fig.3a at $T_\odot = 0.6$ are calculated (p,γ) reaction rates taken from the literature [4-6] none of which included the new 3/2$^+$ resonance in 19Ne. While consistent with the results from Ref.5, our upper limit for the reaction rate is smaller than the values from Refs. [4,6] by factors of about 3-4.

The controlling factor for the breakout from the hot CNO cycle to the rp-process is the ratio of the reaction rates $R(^{18}$F(p,α))/R(18F(p,γ)). The region allowed for the ratio $R(^{18}$F(p,α))/R(18F(p,γ)) by the present measurement is given by the two
Due to the large value of the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ reaction rate which above $T_9 > 0.5$ is dominated by the recently discovered $3/2^+$ resonance, and a lack of a strong enhancement of proton capture from this resonance, the ratio of the reaction rates is larger than ~ 1000 in this temperature range. This means that at these temperatures the production of ^{19}Ne through the $^{18}\text{F}(p,\gamma)$ reaction can be neglected and the dominant mechanism for generating this isotope is most likely the $^{15}\text{O}(\alpha,\gamma)$ reaction. Also shown by the dashed lines are the results of calculated ratios from Refs. [4-6].

The present work provides the first direct experimental limit for the ratio of the reaction rates between the $^{18}\text{F}(p,\alpha)^{15}\text{O}$ and the $^{18}\text{F}(p,\gamma)^{19}\text{Ne}$ reactions. The large cross section for the first reaction makes the (p,γ) route a small branch for the production of ^{19}Ne at temperatures $T_9 > 0.5$, where this nuclide is produced more effectively via the $^{15}\text{O}(\alpha,\gamma)$ reaction.

The use of the Fragment Mass Analyzer for the measurement of radiative capture reactions in inverse kinematics results in a considerable improvement over gamma detection techniques, especially when the reaction products are unstable. Improvements in beam intensity, which should be possible for less chemically reactive elements, should allow the use of thinner targets and thus the measurement of excitation functions in finer steps.

The authors want to thank J. Truran (University of Chicago) for valuable discussions and J. Greene for his help with the target production and the thickness measurements. This work was supported by the U.S. Department of Energy, Nuclear Physics Division under Contract No. W-31-109-ENG-38, the National Science Foundation and by a University of Chicago/Argonne National Laboratory Collaborative Grant.
References

[13] K. E. Rehm et al., to be published
Figure Captions

Fig. 1. a) $\Delta E - E_{res}$ spectrum measured in the focal plane of the FMA for the $^{18}O(p,\gamma)^{19}F$ reaction. The solid lines are the result of simulations of ΔE vs. E_{res} for different ions.

b) Excitation function for the $^{18}O(p,\gamma)^{19}F$ reaction. The hatched area is calculated with parameters from Ref. 16 including a 26 μb background caused by a small fluorine impurity in the CH$_2$ target.

Fig. 2. a) same as Fig. 1a but measured with a ^{18}F beam containing a considerable ^{16}O contamination. The area where ^{19}Ne events from the $^{18}F(p,\gamma)^{19}Ne$ reaction are expected is encircled.

b) ΔE signals measured in the focal plane counter of the FMA for the three events inside the ^{19}Ne region in comparison with measured ^{19}F and ^{18}O events.

Fig. 3. a) Limits to the astrophysical reaction rate calculated from the resonance strength determined in this experiment (thick solid line). The dashed line is the reaction rate measured for the $^{18}F(p,\alpha)^{15}O$ reaction in Ref. 9. The thin solid line represents a lower limit for the reaction rate given by the direct capture process.

b) Upper and lower limits for the ratio of the reaction rates between the $^{18}F(p,\alpha)^{15}O$ and the $^{18}F(p,\gamma)^{19}Ne$ reactions. Also shown (dashed lines) are the results from previous estimates.
$^{18}\text{O} (p,\gamma)^{19}\text{F}$

$E_{\text{lab}} = 16 \text{ MeV}$

$\Delta E_2 (\text{MeV})$

$E_R (\text{MeV})$

$Z = 9$

$Z = 8$

Fig. 1
Fig. 2

(a) \(^{18}\text{F}(p,\gamma)^{19}\text{Ne}\)

\[E_{\text{lab}} = 13.4 \text{ MeV} \]

Z = 10

(b)

\(^{18}\text{O}\)

\(^{19}\text{F}\)

\(^{19}\text{Ne}\)