
by

J. Chase

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

DOE Contract No. DE-AC09-96SR18500

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.
SANITARY LANDFILL GROUNDWATER MONITORING REPORT (U)

FOURTH QUARTER 1998 AND 1998 SUMMARY

Publication Date: March 1999

Key Words
Chloroethylene (vinyl chloride)
LFW wells
Tetrachloroethylene
Trichloroethylene

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-96SR18500
Sanitary Landfill

Fourth Quarter 1998 and 1998 Summary
SANITARY LANDFILL GROUNDWATER MONITORING REPORT (U)

FOURTH QUARTER 1998 AND 1998 SUMMARY

Publication Date: March 1999

Key Words
Chloroethene (vinyl chloride)
LFW wells
Tetrachloroethylene
Trichloroethylene

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-96SR18500
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.
SANITARY LANDFILL
GROUNDWATER MONITORING
REPORT (U)

FOURTH QUARTER 1998

Publication Date: March 1999

Key Words
Chloroethene (vinyl chloride)
LFW wells
Tetrachloroethylene
Trichloroethylene

Westinghouse Savannah River Company
Savannah River Site
Aiken, SC 29808

Prepared for the U.S. Department of Energy under Control Contract No. DE-AC09-96SR18500
Abstract

A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program.

Iron (total recoverable), chloroethene (vinyl chloride) and 1,1-dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1998. Trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethene, 1,4-dichlorobenzene, sulfide, pH, trichlorofluoromethane, benzene, dichloromethane (ethylene chloride), a common laboratory contaminant, tetrachloroethylene, tritium, aluminum (total recoverable), dichlorodifluoromethane, cis-1,2-dichloroethylene, and arsenic (total recoverable) also exceeded standards in one or more wells.

The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 153 ft/year during first quarter 1998 and 164 ft/year during fourth quarter 1998.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Discussion</td>
<td>5</td>
</tr>
<tr>
<td>Groundwater Monitoring Data</td>
<td>5</td>
</tr>
<tr>
<td>Integrity of the Monitoring Well Network</td>
<td>5</td>
</tr>
<tr>
<td>Analytical Results Exceeding Standards</td>
<td>6</td>
</tr>
<tr>
<td>Time-Trend Data</td>
<td>8</td>
</tr>
<tr>
<td>Water Levels</td>
<td>8</td>
</tr>
<tr>
<td>Groundwater Flow Directions and Rates</td>
<td>8</td>
</tr>
<tr>
<td>Upgradient Versus Downgradient Results</td>
<td>9</td>
</tr>
<tr>
<td>1998 Summary</td>
<td>10</td>
</tr>
<tr>
<td>References Cited</td>
<td>11</td>
</tr>
<tr>
<td>Errata</td>
<td>12</td>
</tr>
<tr>
<td>Appendix A - Final Primary Drinking Water Standards</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B - Flagging Criteria</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C - Figures</td>
<td>C-1</td>
</tr>
<tr>
<td>Appendix D - Groundwater Monitoring Results Tables</td>
<td>D-1</td>
</tr>
<tr>
<td>Appendix E - Data Quality/Usability Assessment</td>
<td>E-1</td>
</tr>
<tr>
<td>Appendix F - Time Series Plot</td>
<td>F-1</td>
</tr>
<tr>
<td>Appendix G - Hydrographs</td>
<td>G-1</td>
</tr>
</tbody>
</table>
List of Figures

1. Location of the Sanitary Landfill at the Savannah River Site .. C-3
2. Boundaries of Original Sanitary Landfill and Expansions and Locations of Monitoring Wells at the Sanitary Landfill .. C-4
3. Chloroethene Concentrations at the Sanitary Landfill, First Quarter 1998 C-5
4. Chloroethene Concentrations at the Sanitary Landfill, Fourth Quarter 1998 C-6
5. Trichloroethylene Concentrations at the Sanitary Landfill, First Quarter 1998 C-7
6. Trichloroethylene Concentrations at the Sanitary Landfill, Fourth Quarter 1998 C-8
7. Tritium Concentrations at the Sanitary Landfill, First Quarter 1998 C-9
8. Tritium Concentrations at the Sanitary Landfill, Fourth Quarter 1998 C-10
9. Piezometric Surface Map of the Steed Pond Aquifer (Water Table) at the Sanitary Landfill, First Quarter 1998 .. C-11
10. Piezometric Surface Map of the Steed Pond Aquifer (Water Table) at the Sanitary Landfill, Fourth Quarter 1998 .. C-12
11. Regional Correlation of Hydrostratigraphic and Lithostratigraphic Nomenclature .. C-13
List of Tables

1. Maximum Levels of Constituents Exceeding the Final Primary Drinking Water Standards ... D-3
2. Maximum Levels of Constituents Exceeding Other Flag 2 Criteria D-7
3. Groundwater Monitoring Results for Individual Wells D-13
Fourth Quarter 1998 Data Review

This report contains analytical data for samples taken during Fourth Quarter 1998 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Mechanical failure prevented sample collection and analysis of the groundwater at well LFW10A.

Key to Reading the Tables

The following abbreviations may appear in the data tables:

Constituents

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-HPCDD</td>
<td>1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HPCDF</td>
<td>1,2,3,4,6,7,8-heptachlorodibenzo-p-furan</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HXCDD</td>
<td>1,2,3,4,7,8-hexachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>1,2,3,4,7,8-HXCDF</td>
<td>1,2,3,4,7,8-hexachlorodibenzo-p-furan</td>
</tr>
<tr>
<td>Lindane</td>
<td>gamma-benzene hexachloride</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>1,2,3,7,8-PCDD</td>
<td>1,2,3,7,8-pentachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>1,2,3,7,8-PCDF</td>
<td>1,2,3,7,8-pentachlorodibenzo-p-furan</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>specific conductance</td>
</tr>
<tr>
<td>TCDD</td>
<td>tetrachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td>TCDF</td>
<td>tetrachlorodibenzo-p-furan</td>
</tr>
</tbody>
</table>

Laboratories

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Laboratory Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>Clemson Technical Center, Inc.</td>
</tr>
<tr>
<td>EM</td>
<td>Environmental Protection Department/ Environmental Monitoring Section (EPD/EMS) Laboratory</td>
</tr>
<tr>
<td>GE and GP</td>
<td>General Engineering Laboratories</td>
</tr>
<tr>
<td>SC</td>
<td>Savannah River Technology Center</td>
</tr>
<tr>
<td>SP</td>
<td>Spencer Testing Services, Inc.</td>
</tr>
<tr>
<td>TM</td>
<td>TMA/Eberline</td>
</tr>
<tr>
<td>WA and WS</td>
<td>Roy F. Weston, Inc.</td>
</tr>
</tbody>
</table>

Sampling Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>blank sample was collected</td>
</tr>
<tr>
<td>C</td>
<td>well was pumping continuously</td>
</tr>
<tr>
<td>D</td>
<td>well was dry</td>
</tr>
<tr>
<td>E</td>
<td>equipment blank was collected</td>
</tr>
<tr>
<td>I</td>
<td>well went dry during sampling; insufficient water to collect all samples</td>
</tr>
<tr>
<td>L</td>
<td>well went dry before sampling began; only depth to water can be determined</td>
</tr>
</tbody>
</table>

Sampling Codes (cont'd)

Sanitary Landfill | 1 | Fourth Quarter 1998 and 1998 Summary
P inaccessibility or mechanical failure prevented sample
collection and field analysis of the water
S no water in standpipe; for water level events only
X well went dry during purging; samples collected after well
 recovered

Sampling Methods

B sample collected using an open-bucket bailer
P sample collected using a bladder pump
S sample collected using a single-speed centrifugal
downhole pump
V sample collected using a variable-speed pump

Units

E exponential notation (e.g., 1.1E-09 = 1.1 x 10^-9 =
 0.0000000011)
mg/L milligrams per liter
msl mean sea level
MSL million structures per liter
NTU turbidity unit
pCi/L picocuries per liter
pCi/mL picocuries per milliliter
pH pH unit
µg/L micrograms per liter
µS/cm microsiemens per centimeter

Other

CS carbon steel
D primary drinking water standard (PDWS) column in data
 tables
GS groundwater protection standard column in data tables
H holding time column in data tables
Mod modifier column in data tables
PDWS primary drinking water standard
PVC polyvinyl chloride
TOC top of casing

Holding Times

Standard analytical methods include a limit, called holding time, on the maximum elapsed time
between sample collection and extraction or analysis by the laboratory. In the data tables, a large
bullet (*) in the H (holding time) column indicates that holding time was exceeded. Analyses
performed beyond holding times may not yield valid results.

The South Carolina Department of Health and Environmental Control allows only 15 minutes to
elapse between sampling and analysis for pH. Thus, only field pH measurements can meet the
holding time criterion; laboratory pH analyses always will exceed it.
The laboratory procedure used for the determination of specific conductance allows one day to elapse between sampling and analysis. Thus, laboratory specific conductance measurements may exceed the holding time criterion.
Data Rounding

Constituent results in analytical results tables that appear to equal the final PDWS but are not marked in the D (exceeded the final PDWS or screening level) column are below the final PDWS in the database. Values stored in the database contain more significant digits than the reported results. Apparent discrepancies in the tables are due to the rounding of reported results.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific quality assurance/quality control information either at the same time as analytical results or in a quarterly summary. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data usability. Result modifiers designed by the Environmental Protection Department/Environmental Monitoring Section and provided to the primary laboratories are defined below. These modifiers appear in the data tables under the column Mod.

The lettered modifiers are based on EPA's STORET codes.

Result Modifier

(Blank) Data are not qualified. Numbers should be interpreted exactly as reported.

A Value reported is the mean of two or more determinations.

I The value in the result field is the instrument reading, not the sample quantification limit. Always used with the result qualifier U.

J Value is estimated because quantitation in the sample or in associated quality control samples did not meet specifications.

L Value is off-scale high. The actual value is not known but is known to be greater than the value shown.

M Presence of the analyte is verified but not quantified.

R Result was rejected because performance requirements in the sample analysis or associated quality control analyses were not met.

T Analyte was not detected; if present, it was below the criteria for detection.

U Material analyzed for but not detected. Analytical result reported is less than the sample quantitation limit.

V Analyte was detected in an associated method blank.

Result Modifier (cont'd)
<table>
<thead>
<tr>
<th>Y</th>
<th>Result was obtained from an unpreserved or improperly preserved sample. Data may not be accurate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Result may be an underestimation of the true value due to analytical bias.</td>
</tr>
<tr>
<td>2</td>
<td>Result may be an overestimation of the true value due to analytical bias.</td>
</tr>
<tr>
<td>3</td>
<td>The associated result may be of poor precision (high variability) due to analytical bias.</td>
</tr>
<tr>
<td>4</td>
<td>Result is associated with QA results indicating matrix interference.</td>
</tr>
<tr>
<td>6</td>
<td>The associated result is from a reanalysis performed out of holding time due to problems with an earlier analysis.</td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY.
Executive Summary

The Sanitary Landfill at the Savannah River Site (SRS) is composed of the original 32-acre landfill, plus expansion areas to the north and south that add 16 and 22 acres, respectively, to the facility. The landfill is subject to the requirements of the Resource Conservation and Recovery Act and is subject to the South Carolina Department of Health and Environmental Control (SCDHEC) Domestic Waste Permit DWP-087A and the Sanitary Landfill groundwater quality assessment plan.

A maximum of fifty-three wells of the LFW series monitored the groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill during 1998. These wells sampled quarterly for selected indicator parameters, inorganics, radionuclides, volatile organics, and other constituents to comply with the Sanitary Landfill groundwater quality assessment plan and as part of the SRS Groundwater Monitoring Program. No new wells were abandoned or installed in 1998.

During 1998, samples analyzed from 32 of the 53 monitoring wells (60 percent) exhibited levels of benzene, chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,2-dichloroethane, 1,4-dichlorobenzene, aluminum (total recoverable), lead (total recoverable), mercury (total recoverable), tetrachloroethylene, trichloroethylene, or tritium that exceeded their final Primary Drinking Water Standards (PDWS).

Aluminum (total recoverable), iron (total recoverable), chloroethene, and 1,1-Dichloroethane were the most widespread constituents exceeding standards during 1998. Aluminum and iron, occurred in concentrations that exceeded its final PDWS in 17 wells. Chloroethene occurred in concentrations that exceeded its final PDWS in 13 wells; 1,1-Dichloroethane exceeded its final PDWS in 12 wells during the year. Trichlorofluoromethane exceeded its final PDWS in 10 wells during the year. Dichloromethane (Methylene chloride) was elevated in 8LFW wells; Trichloroethylene was elevated in 7 wells, Dichlorodifluoromethane was elevated in 6 wells, Benzene was elevated in 4 wells, 1,2-Dichloroethane, pH, Tetrachloroethylene, and Tritium was elevated in 3 wells. The remaining elevated constituents occurred with less frequency during the year. These results are similar to the results for 1997.

The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill during first and fourth quarters was to the southeast (universal transverse Mercator coordinates) toward Upper Three Runs Creek. Estimated flow rates in this aquifer during the same periods were 153 ft/year during first quarter 1998 and 164 ft/year during fourth quarter 1998. These directions and flow rates are very similar to directions and flow rates during 1997.
Introduction

The Sanitary Landfill (740-G) (Figures 1 and 2, Appendix C) is located southwest of Road C, about midway down the slope from the Aiken Plateau to Upper Three Runs Creek. The following description outlines important events in the history of the landfill:

- The original 32-acre landfill began receiving sanitary waste, including paper and paper products, plastics, scrap metal, rubber, food waste, glass, packing material, miscellaneous construction debris, empty paint cans, and other nonradioactive waste materials in 1974.
- On June 12, 1978, the South Carolina Department of Health and Environmental Control (SCDHEC) issued permit DWP-087 to the U.S. Department of Energy (DOE) for the operation of the Sanitary Landfill for inert and domestic solid waste disposal.
- On September 9, 1986, SCDHEC issued permit DWP-087A which allowed expansion areas to the north and south of the original 32-acre landfill, adding 16 and 22 acres, respectively (WSRC, 1993).
- The original landfill was filled to capacity in early 1987 (WSRC, 1990).
- In 1988, the Sanitary Landfill was placed on the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) list because elevated levels of hazardous constituents were detected in the groundwater beneath the facility (WSRC, 1990).
- A groundwater quality assessment plan for the Sanitary Landfill was submitted to SCDHEC in 1990 (WSRC, 1990).
- As a result of Settlement Agreement 91-51-SW, effective August 24, 1991, the Sanitary Landfill became subject to RCRA requirements because wipes and rags contaminated with RCRA-listed solvents were disposed there.
- As a result of RCRA permit investigation, the U.S. Environmental Protection Agency (EPA) removed the Sanitary Landfill from the RFI/RI unit list in August 1991.
- The Northern Expansion began operations in mid-1992 when the Southern Expansion was filled (WSRC, 1993).
- SRS submitted a closure plan (rev. 0) for the Sanitary Landfill to SCDHEC on February 28, 1993. Based on comments received from the SCDHEC, a revised closure plan (rev. 1) was submitted in January 1994. Additional comments were received from SCDHEC in August 1995; the closure plan was revised in response to these comments and the Sanitary Landfill Closure Plan (rev. 2) was submitted in October 1995. This revision was released for public comment on November 6, 1995. The public comment period ended on December 6, 1995. There were no comments received during the public comment period. SCDHEC granted conditional approval of the Sanitary Landfill Closure Plan (rev. 2) in December 1995. In order to meet the conditions of the approval, SRS submitted revised pages to the Sanitary Landfill Closure Plan in February 1996. In addition, installation of the geosynthetic closure cap, as specified in the approved Closure Plan, was initiated in February 1996. The Sanitary Landfill was certified closed on October 26, 1997.
- A RCRA Part B post-closure care permit application was submitted to SCDHEC on March 31, 1993.
A modification to the Sanitary Landfill groundwater quality assessment plan was approved by SCDHEC in November 1993. The modified plan included further characterization studies and proposed the installation of additional monitoring wells. Thirty-two new monitoring wells were sampled for the first time during second quarter 1994.

The Northern Expansion, the last open portion of the Sanitary Landfill, ceased actual operations on November 1, 1994.

A RCRA style closure was completed over the central and southern portions of the landfill in April 1997.

Two horizontal remediation wells were completed on the southern and western sides of the landfill in February 1998.

The SRS Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) samples the monitoring wells at the Sanitary Landfill quarterly for selected parameters. The Environmental Restoration Department provides quarterly reports of the monitoring results to SCDHEC to meet regulatory requirements.
Discussion

Groundwater Monitoring Data

Groundwater samples were collected from the LFW wells during December 1997 for first quarter 1998, during March for second quarter 1998, during June for third quarter 1998 and during September for fourth quarter 1998.

The WSRC sampling procedure requires evacuation of a minimum of two well volumes and stabilization of pH, specific conductance, and turbidity prior to sample collection. Stability is established when a minimum of three successive measurements, taken for each stability parameter within a given time period, are within a specified tolerance range. If a well pumps dry before two well volumes are purged or before stabilization is achieved, it must be revisited within 24 hours for the data to be considered from a single sampling event. On the second visit within 24 hours, samples are taken without purging or stability measurements; thus, these samples may not be representative of groundwater quality.

Throughout 1998, samples from wells at the Sanitary Landfill were analyzed for selected indicator parameters, inorganics, radionuclides, volatile organics, and other constituents. For simplicity, results that equaled or exceeded standards are described as exceeding standards, above standards, or as elevated. These following standards were used in this report:

- The Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or drinking water screening levels, as established by the U. S. EPA (Appendix A)
- The South Carolina final PDWS for lead (Appendix A)
- SRS flagging criteria based on PDWS, Secondary Drinking Water Standards, or method detection limits (Appendix B)

The final PDWS for individual analytes provided in Appendix A may not always match the SRS flagging criteria provided in Appendix B. The final PDWS are used as guidelines in this compliance report to meet regulatory requirements; the flagging criteria are used by EPDIEMS to identify relative levels of constituents in the groundwater and as guides for scheduling groundwater sampling.

Integrity of the Monitoring Well Network

A maximum of fifty-three wells of the LFW series monitored groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill (Figure 2, Appendix C) during 1998. Fourteen wells were installed between 1981 and 1984, 17 wells were installed around the southern and northern expansions in late 1986, and 26 additional wells were installed in 1991. Between December 1993 and February 1994, 32 additional LFW wells were installed southeast of the southern expansion. During January 1996, fifty-five wells were deleted from analyses according to the Groundwater Quality Assessment Plan Amendment. Of these fifty-five wells, four are still being monitored in order to comply with SCDHEC Subtitle D regulations for the interim Sanitary Landfill. The designated background wells at the Sanitary Landfill are wells LFW29, 30, and 31, and well cluster LFW43.

SRS rehabilitates and replaces wells that do not produce representative groundwater samples. A complete record of well installations, replacements, and abandonments at the Sanitary Landfill is provided in the EPDIEMS well inventory. During 1998, no wells were abandoned or replaced.
Table 3 (Appendix D) lists the number of well volumes purged from each of the LFW series wells during each quarter 1998 and provides samples codes (I, P, X, etc. [see Appendix D front matter]) that describes unusual sampling events. Although not all wells were sampled during every quarter, there were no unusual sampling events recorded in 1998. Mechanical failure was the reason for missing. Sampling events.

Analytical Results Exceeding Standards

Results for analytes that exceeded the final PDWS (Appendix A) during each quarter 1998 are summarized in Table 1 (Appendix D) and described in the following text. The text includes the maximum level for each constituent in parentheses following the well in which it was detected.

During first quarter 1998, 19 of the 53 LFW wells contained elevated constituents.

- 1,1-Dichloroethane was elevated in 15 wells: LFW10A (maximum concentration at 172 µg/L), 21, 58D, 60C, 60D, 61D, 62C, 62D, 65D, 67C, 67D, and 69D.
- 1,2-Dichloroethane was elevated in 3 wells: LFW43B (maximum concentration at 7.5 µg/L), 62C, 62D.
- 1,4-Dichlorobenzene was elevated in one well: LFW620 (maximum concentration of 86 µg/L).
- Benzene was elevated in 3 wells: LFW62D (maximum concentration at 25.6 µg/L), 10A and 67C.
- Chloroethene was elevated in 12 wells: LFW10A (maximum concentration at 34.8 µg/L), 6R, 18, 21, 36R, 58D, 60C, 62D, 63D, 64D, and 69D.
- Dichlorofluoromethane was elevated in 6 wells: LFW 58D, 61D, LFW59D (maximum concentration at 38.5 µg/L), 62D, 63D, 67C, and 67D.
- Dichloromethane (Methylene Chloride) was elevated in 3 wells: LFW10A (maximum concentration at 100 µg/L), 61D and 63D.
- Iron (total recoverable) was elevated in one well: LFW62D maximum concentration of 34.5 µg/L.
- Mercury (total recoverable) was elevated at two wells: LFW60D, and 62C (maximum concentration of 3.21 µg/L).
- Tetrachloroethylene was elevated in 2 wells: LFW58D, and 61D (maximum concentration of 8.31 µg/L).
- Trichloroethylene was elevated in 7 wells: LFW58D, 61D, 62C, 62D (maximum concentration at 34.5 µg/L), 65D; 67C, and 67D.
- Trichlorofluoromethane was elevated in 7 wells: LFW10A, 58D, 61D, 62D, 63D, 65D, and 67D (maximum concentration at 40.1 µg/L).
- Tritium was elevated in 2 wells: LFW10A (maximum concentration of 27.71 pCi/mL), and 67C.
During second quarter 1998, 15 of the 53 LFW wells contained elevated constituents.

- 1,1-Dichloroethane was elevated in 6 wells: LFW10A, (maximum concentration at 130 µg/L), 21, 61D, 65D, 67C, and 67D.
- Benzene was elevated in 2 wells: LFW10A and 67C (maximum concentration at 8.9 µg/L).
- Chloroethene was elevated in 10 wells: LFW6R, 10A (maximum concentration at 24 µg/L), 18, 21, 36R, 60C, 63D, 64D, 67C and 69D.
- Dichlorodifluoromethane was elevated in 4 wells: LFW61D, 63D (maximum concentration at 190 µg/L), 67C, and 67D.
- Dichloromethane (methylene chloride) was elevated in 5 wells: LFW8R, 10A (maximum concentration at 190 µg/L), 21, 63D, and 67D.
- Trichloroethylene was elevated in 4 wells: LFW61D, 65D, 67C, and 67D (maximum concentration at 17 µg/L).
- Trichlorofluoromethane was elevated in 7 wells: LFW6R (maximum concentration of 34 µg/L), 10A, 31, 63D, 65D, 67C, and 67D.
- Tritium was elevated in well LFW67C with maximum activity level of 25.4 pCi/mL.

During third quarter 1998, 30 of the 53 LFW wells contained elevated constituents.

- 1,1-Dichloroethane was elevated in 9 wells: LFW10A (maximum concentration at 200 µg/L), 21, 58D, 60C, 61D, 62D, 65D, 67C, and 67D.
- 1,4-Dichlorobenzene was elevated in well LFW58D, with a concentration of 170 µg/L.
- Aluminum (total recoverable) was elevated in 16 wells: LFW66D, 58D, 59D, 60D, 61D, 62D, 63B, 63C, 64C (maximum concentration at 731 µg/L), 65B, 67B, 67D, 69C, 69D, 71B, and 71C.
- Benzene was elevated in 4 wells: LFW10A, 58D (maximum concentration at 24 µg/L) 62D and 67C.
- Chloroethene (vinyl chloride) was elevated in 12 wells: LFW6R, 8R, 10A, 21, 36R, 58D (maximum concentration at 40 µg/L), 60C, 62D, 63D, 64D, 67C, and 69D.
- Dichlorodifluoromethane was elevated in 6 wells: LFW58D, 61D, 62D, 63D (maximum concentration at 20 µg/L), 67C, and 67D.
- Dichloromethane (methylene chloride) was elevated at 3 wells: LFW10A (maximum concentration at 59.6 µg/L), 58D, and 62D.
- Iron (total recoverable) was elevated at 15 wells: LFW6R, 8R, 10A, 18, 21, 36R, 56D, 58D, 60C, 60D, 61D, 62D, 67C (maximum concentration at 65300 µg/L), 68D, and 69D.
- Trichloroethylene was elevated in 5 wells: LFW58D, (maximum concentration at 16 µg/L), 61D, 62D, 67C, and 67D.
• Trichlorofluoromethane was elevated in 8 wells: LFW6R (maximum concentration at 37 μg/L), 31, 58D, 62D, 63D, 65D, 67C and 67D.

• Tritium was elevated in 3 wells: LFW10A, 61D, and 67C (maximum activity level of 25.56 pCi/mL).

During fourth quarter 1998, 15 of the 53 LFW wells contained elevated constituents.

• 1,1-dichloroethane was elevated in 8 wells: LFW10A (maximum concentration of 151 μg/L), 21, 58D, 61D, 62D, 65D, 67C, and 67D.

• 1,1-Dichloroethylene was elevated at well LFW67D with a concentration of 1.69 μg/L.

• 1,4-Dichlorobenzene was elevated at well LFW58D, with a concentration of 173 μg/L.

• Aluminum (total recoverable) was elevated at 3 wells: LFW32C, 59D, and 62D (maximum concentration of 861 μg/L).

• Arsenic was elevated at well LFW67C with a concentration of 68.8 μg/L.

• Benzene was elevated in 4 wells: LFW10A, 58D (maximum concentration of 13.3 μg/L), 62d, and 67C.

• Chloroethene (vinyl chloride) was elevated in 6 wells: LFW8R, 10A, 21, 58D, 67C (maximum concentration at 41.3 μg/L), and 69D.

• Cis-1,2-Dichloroethylene was elevated in 2 wells: LFW62D, and 67C (maximum concentration of 201 μg/L).

• Dichlorodifluoromethane was elevated in 5 wells: LFW58D (maximum concentrations of 27.7 μg/L), 61D, 63D, 67C, and 67D.

• Dichloromethane (methylene chloride) was elevated in well LFW62D with a concentration of 10.3 μg/L.

• Iron (total recoverable) was elevated in 11 wells: LFW8R, 10A, 18, 21, 58D, 59D, 61D, 62D, 67C (maximum concentration of 60200 μg/L), 67D, and 69D.

• Tetrachloroethylene was elevated in well LFW62D with a concentration of 7.05 μg/L.

• Trichloroethylene was elevated in 6 wells: LFW58D, 61D, 62D (maximum concentration at 19.2 μg/L), 65D, 67C, and 67D.

• Trichlorofluoromethane was elevated at 7 wells: LFW31 (maximum concentration at 39.9 μg/L), 58D, 61D, 62D, 63D, 65D, and 67D.

• Tritium was elevated in 2 wells: LFW10A and 67C (maximum activity level of 34.53 pCi/mL).

Results for analytes that exceeded other SRS Flag 2 criteria (appendix B) during fourth quarter 1998 are summarized in Table 2 (Appendix D).
Table 3 (Appendix D) shows the results during each quarter of 1998 for all of the constituents. The analytical laboratories that conducted the analyses, the dilution factors used in the analyses, and the analyses that received modifiers (which help define the laboratory accuracy and precision) or that exceeded the EPA-approved holding times listed in Table 3 are for fourth quarter 1998 data only. Constituents results in Table 3 that appear to equal the final PDWS but are not marked in the ST column (exceeded the final PDWS or screening level) are below the final PDWS in the database. Database results, the results that are compared to the final PDWS, contain more significant digits than the results given in this report. Apparent discrepancies are the result of the rounding of reported results.

In addition to the results tables, Appendix D provides definitions of the abbreviations and modifiers used in the results tables as well as descriptions of holding times, data rounding, and data qualification practices. Appendix E provides a general assessment of the quality and usability of EPD/EMS data.

Isoconcentration maps of chloroethene, trichloroethylene, and tritium for first and fourth quarters 1998 are presented in Figures 3 through 8 (Appendix C).

Time-Trend Data

Water Levels

Hydrographs showing the water elevations through time for wells at the Sanitary Landfill are provided in Appendix G. The average water elevations in the Steed Pond Aquifer (Water Table) for each quarter of 1997 and 1998 are presented below.

Average Water Elevations at the Sanitary Landfill

<table>
<thead>
<tr>
<th>Quarter</th>
<th>Average Water Elevation (ft msl)</th>
<th>Average Water Elevation (ft msl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1997</td>
<td>1998</td>
</tr>
<tr>
<td>First</td>
<td>141.4</td>
<td>143.4</td>
</tr>
<tr>
<td>Second</td>
<td>145.3</td>
<td>150.3</td>
</tr>
<tr>
<td>Third</td>
<td>142.1</td>
<td>143.4</td>
</tr>
<tr>
<td>Fourth</td>
<td>143.0</td>
<td>145.5</td>
</tr>
</tbody>
</table>
Groundwater Flow Directions and Rates

Historically, the groundwater flow direction in the Steed Pond Aquifer (Water Table) hydrostratigraphic unit beneath the Sanitary Landfill has been to the southeast (Universal Transverse Mercator [UTM] coordinates) toward Upper Three Runs Creek. During the first and fourth quarters 1998, the flow direction was to the southeast (Figures 9 and 10, Appendix C). Figure II presents the regional correlation of hydrostratigraphic and lithostratigraphic nomenclature.

Horizontal flow rate calculations provide estimates of the transport rate of constituents originating from the Sanitary landfill. Flow rates are estimated using the following equation:

\[
\text{Flow (ft}/\text{day}) = \frac{\text{Hydraulic Conductivity} \times \text{Effective Porosity} \times \text{Change in Head}}{\text{Horizontal Distance}}
\]

where the hydraulic conductivity \(K_h\) constant is 10 ft/day, the effective porosity value is 20 percent, the change in head is \(dh\), and the horizontal distance along each flow direction arrow is \(dl\).

Flow path length is calculated to the nearest 50 ft. Flow rate per day is calculated to two significant figures, then multiplied by 365 and rounded to two significant figures for the flow rate per year. Flow rate estimated vary depending upon the vertical gradient between wells, the size of the area under consideration, the number of data points, and the length and location of the flow path. Because these are inferred or estimated parameters, flow rate estimates should be considered accurate to an order of magnitude only.

The approximate groundwater flow rate in the Steed Pond Aquifer (Water Table) during first quarter 1998 was estimated as follows (Figure 9, Appendix C):

\[
10 \times 16 = 0.42 \text{ ft/day} \\
0.20 \times 365 = 153 \text{ ft/year}
\]

The approximate groundwater flow rate in the Steed Pond Aquifer (Water Table) during fourth quarter 1998 is estimated as follows (Figure 10, Appendix C):

\[
10 \times 12 = 0.45 \text{ ft/day} \\
0.20 \times 1337 = 164 \text{ ft/year}
\]

Upgradient versus Downgradient Results

Wells LFW 43B, 43C, and 43D, at the northern end of the Sanitary Landfill, are designated upgradient wells for the Steed Pond Aquifer (Water Table). All remaining Steed Pond Aquifer (Water Table) wells monitor downgradient or sidegradient water quality (Figures 2, 9, and 10, Appendix C). 1,2-Dichloroethane, and pH constituents exceeded their final PDWS during the first quarter period in LFW 43B well.

1,1-Dichloroethene, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (total recoverable), Arsenic (total recoverable), Benzene. Chloroethene (Viny chloride), Cis-1,2-Dichloroethene, Dichlorodifluoromethane, Dichloromethane (Methylene chloride), Iron (total recoverable), Mercury (total recoverable), Ph, Sulfide, Tetrachloroethene, Trichloroethylene, Trichlorofluoromethane, and Tritium were elevated in one or more of the downgradient or sidegradient wells during the year.
recoverable), Mercury (total recoverable), Ph, Sulfide, Tetrachloroethylene, Trichloroethylene, Trichlorofluoromethane, and Tritium were elevated in one or more of the downgradient or sidegradient wells during the year.

Wells LFW 32, 74C, 74D, 75C, and 75D are upgradient wells, which are monitored to meet the requirements ofSubtitle D of the SCDHEC permit (nonhazardous solid waste) for the Interim Sanitary Landfill. These wells are monitored for the Solid Waste Program and are not part of the 48 well monitoring network. However, information provided by these wells is germane to the groundwater monitoring scheme for the Sanitary Landfill. None of the constituents exceeded their final PDWS in wells LFW32, 74C, 74D, 75C, and 75D.
1998 Summary

During first quarter 1998, 19 of the 53 LFW wells contained levels of 1,1-Dichloroethane, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Benzene, Chloroethene (Vinyl chloride), Dichlorodifluoromethane, Dichloromethane (Methylene chloride), Iron and (total recoverable), Mercury (total recoverable), Tetrachloroethylene, Trichloroethylene, Trichlorofluoromethane, and Tritium that exceeded the final PDWS in the groundwater beneath the Sanitary Landfill. Elevated levels of 1,1-Dichloroethane and Chloroethene (Vinyl chloride) occurred most frequently: 1,1-Dichloroethane exceeded its PDWS in 3 wells, with the highest concentration in well LFW10A at 172 ug/L; chloroethene exceeded the final PDWS in 12 wells, with the maximum concentration detected in well LFW10A at 34.8 ug/L. The remaining constituents were elevated in 7 or fewer wells during first quarter.

Elevated levels of 1,1-Dichloroethane, Benzene, Chloroethene (Vinyl chloride), Dichlorodifluoromethane, Dichloromethane (Methylene chloride), Trichloroethylene, Trichlorofluoromethane, and Tritium exceeded their final PDWS in one or more of 15 wells at the Sanitary Landfill during second quarter 1997. Chloroethene and trichlorofluoromethane exceeded its PDWS in 7 wells, with the highest concentration in well LFW6R at 34 ug/L. The remaining constituents were elevated in 6 or fewer wells during second quarter.

During third quarter 1998, 30 of the 53 LFW wells contained levels of chloroethene, trichloroethylene, benzene, 1,4-dichlorobenzene, tetrachloroethylene, tritium, and mercury that exceeded the final PDWS in the groundwater beneath the Sanitary Landfill. Elevated levels of chloroethene and trichloroethylene occurred most frequently: chloroethene exceeded the final PDWS in 11 wells, with the maximum concentration detected in well LFW58D at 45.5 ug/L; trichloroethylene exceeded its PDWS in 8 wells, with the highest concentration in well LFW59D at 26.4 ug/L. The remaining constituents were elevated in 3 or fewer wells during third quarter.

Elevated levels of Iron (total recoverable), 1,1-Dichloroethane, Trichlorofluoromethane, Chloroethene (Vinyl chloride), Dichlorodifluoromethane, Trichloroethylene, Benzene, Aluminum (total recoverable), Cis-1,2-Dichloroethylene, Tritium, 1,4-Dichlorobenzene, Arsenic (total recoverable), Dichloromethane (Methylene chloride), and Tetrachloroethylene exceeded the final PDWS in 9 wells, with the highest concentration in well LFW10A at 151 ug/L. The remaining constituents were elevated in 6 or fewer wells during fourth quarter.

The analytical results for 1998 are similar to the results for 1997. One of the constituents (pH for well LFW43B) exceeded their final PDWS in the upgradient wells LFW43B, 43C, and 43D. And none of the constituents exceeded their final PDWS in the Interim Sanitary Landfill wells LFW32, 74C, 74D, 75C, and 75D.

The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (UTM coordinates) toward Upper Three Runs Creek. The flow rate in this aquifer during first quarter 1998 was estimated to be approximately 124 ft/year and during fourth quarter 1998, it was estimated at approximately 200 ft/year. Flow directions during 1998 were very similar to 1997 findings. However, the rate of flow increased approximately 44% during the fourth quarter of 1998 over 1997.
References Cited

Errata

Result values for earlier quarters presented in this report may differ from the values for those same quarters presented in earlier reports because some reanalysis may have been performed by the laboratories after the reports were printed.

Fourth Quarter 1998:
- No errata have been reported.
Appendix A

Final Primary Drinking Water Standards
Final Primary Drinking Water Standards

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Level</th>
<th>Status</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Aldicarb *</td>
<td>µg/L</td>
<td>3</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Aldicarb sulfone *</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Aldicarb sulfoxide *</td>
<td>µg/L</td>
<td>4</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Antimony</td>
<td>µg/L</td>
<td>6</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Arsenic</td>
<td>µg/L</td>
<td>50</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Fibers/L</td>
<td>7,000,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/L</td>
<td>3</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/L</td>
<td>2,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Benzene</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>µg/L</td>
<td>0.2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Beryllium</td>
<td>µg/L</td>
<td>4</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>µg/L</td>
<td>6</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Bromoform</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>2-sec-Butyl-4,6-dinitrophenol</td>
<td>µg/L</td>
<td>7</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Cadmium</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>µg/L</td>
<td>40</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Chloroform</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Chloroethylene (Vinyl chloride)</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Chromium</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
<td>1,300</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Cyanide</td>
<td>µg/L</td>
<td>200</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Dihloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>70</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>70</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Dicarbonyl methane</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>2,4-Dichlorophenoxyacetic acid</td>
<td>µg/L</td>
<td>70</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Diquat dibromide *</td>
<td>µg/L</td>
<td>400</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Endothall *</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Endrin</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>µg/L</td>
<td>700</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Fluoride</td>
<td>µg/L</td>
<td>4,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Glyphosate *</td>
<td>µg/L</td>
<td>700</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Gross alpha *</td>
<td>pCi/L</td>
<td>1.5E+01</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/L</td>
<td>0.4</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>µg/L</td>
<td>0.2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
</tbody>
</table>

Sanitary Landfill

A 3

Fourth Quarter 1998 and 1998 Summary
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Level</th>
<th>Status</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexachlorobenzene</td>
<td>µg/L</td>
<td>1</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>µg/L</td>
<td>50</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Lead</td>
<td>µg/L</td>
<td>50</td>
<td>Final</td>
<td>SCDHEC, 1981</td>
</tr>
<tr>
<td>Lindane</td>
<td>µg/L</td>
<td>0.2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Mercury</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>µg/L</td>
<td>40</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Nickel</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Nitrate as nitrogen</td>
<td>µg/L</td>
<td>10,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Nitrate-nitrite as nitrogen</td>
<td>µg/L</td>
<td>10,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Nitrite as nitrogen</td>
<td>µg/L</td>
<td>1,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Nonvolatile beta</td>
<td>pCi/L</td>
<td>5E+01</td>
<td>Interim Final</td>
<td>EPA, 1977</td>
</tr>
<tr>
<td>Oxamyl a</td>
<td>µg/L</td>
<td>200</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1016</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1221</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1232</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1242</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1248</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1254</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1260</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>PCB 1262</td>
<td>µg/L</td>
<td>0.5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>µg/L</td>
<td>1</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Picloram b</td>
<td>µg/L</td>
<td>500</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Selenium</td>
<td>µg/L</td>
<td>50</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Simazine b</td>
<td>µg/L</td>
<td>4</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Strontium-89/90 *</td>
<td>pCi/L</td>
<td>8E+00</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Strontium-90 *</td>
<td>pCi/L</td>
<td>8E+00</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Styrene</td>
<td>µg/L</td>
<td>100</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>2,3,7,8-TCDD</td>
<td>µg/L</td>
<td>0.0003</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Thallium</td>
<td>µg/L</td>
<td>2</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Toluene</td>
<td>µg/L</td>
<td>1,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>µg/L</td>
<td>3</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>µg/L</td>
<td>50</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>µg/L</td>
<td>70</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>µg/L</td>
<td>200</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>5</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Tritium</td>
<td>pCi/mL</td>
<td>2E+01</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
<tr>
<td>Xylenes</td>
<td>µg/L</td>
<td>10,000</td>
<td>Final</td>
<td>EPA, 1993</td>
</tr>
</tbody>
</table>

Note: Final PDWS were assigned to alachlor, aldicarb, aldicarb sulfone, aldicarb sulfoxide, atrazine, carbofuran, dalapon, di(2-ethylhexyl) adipate, diquat dibromide, endothall, glyphosate, oxamyl, picloram, and simazine in the SRS Groundwater Monitoring Program for the first time beginning first quarter 1994.

- At present, EMS does not perform this analysis because the constituent is not in the current contract.
- The standard given is for gross alpha including radium-226 but excluding radon and uranium.
- For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.
References

THIS PAGE LEFT BLANK INTENTIONALLY.
Appendix B

Flagging Criteria
THIS PAGE LEFT BLANK INTENTIONALLY.
Flagging Criteria

The Savannah River Site Environmental Protection Department/Environmental Monitoring Section (EPDIEMS) flagging criteria are as follows:

- Flag 2 criteria for constituents equal the Safe Drinking Water Act (SDWA) final Primary Drinking Water Standards (PDWS), the SDWA proposed PDWS, or the SDWA Secondary Drinking Water Standards (SDWS). If a constituent does not have a drinking water standard, the Flag 2 criterion equals 10 times the method detection limit (MDL) calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.

- Flag 1 criteria for constituents equal one-half of the final PDWS, one-half the proposed PDWS, or one-half the SDWS. If a constituent does not have a drinking water standard, the Flag 1 criterion equals 5 times the MDL calculated as the 90th percentile detection limit obtained recently by one of the primary analytical laboratories.

- Flag 0 criteria are assigned to constituent levels below Flag 1 criteria, constituent levels below the sample detection limits, or constituents having no flagging criteria.

The following parameters are exceptions to the flagging rules:

- EPDIEMS sets flagging criteria for specific conductance and pH. No flags are set for alkalinity, calcium, carbonate, magnesium, potassium, silica, sodium, total dissolved solids, total phosphates (as P), and total phosphorus. Analyses for these parameters are conducted as part of the biennial comprehensive analyses or by special request.

- Aesthetic parameters such as color, corrosivity, Eh, odor, surfactants, and turbidity are not assigned flagging criteria but are analyzed by special request.

- Common laboratory contaminants and cleaners such as dichloromethane (methylene chloride), ketones, phthalates, and toluene are not assigned flagging criteria unless they have primary drinking water standards. These constituents are analyzed by special request.

Analyte Unit Flag 1 Flag 2 Source

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Acetone</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2-Acetylanilinofluorene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Acrolein</td>
<td>µg/L</td>
<td>100</td>
<td>200</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>µg/L</td>
<td>100</td>
<td>200</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Actinium-228</td>
<td>pCi/L</td>
<td>1.64E+03</td>
<td>3.27E+03</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Aldicarb b</td>
<td>µg/L</td>
<td>1.5</td>
<td>3</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Aldicarb sulfone b</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Aldicarb sulfoxide b</td>
<td>µg/L</td>
<td>2</td>
<td>4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Alkalinity (as CaCO₃)</td>
<td></td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPDIEMS</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Aluminum</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Aluminum, dissolved</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Analyte</td>
<td>Unit</td>
<td>Flag 1</td>
<td>Flag 2</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Americium-241</td>
<td>pCi/L</td>
<td>3.17E+00</td>
<td>6.34E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Americium-243</td>
<td>pCi/L</td>
<td>3.19E+00</td>
<td>6.37E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Ammonia</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>APHA Method 417B</td>
</tr>
<tr>
<td>Ammonia nitrogen</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>EPA Method 350.1</td>
</tr>
<tr>
<td>Aniline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Anthracene</td>
<td>µg/L</td>
<td>3</td>
<td>6</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Antimony</td>
<td>µg/L</td>
<td>3</td>
<td>6</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Antimony, dissolved</td>
<td>µg/L</td>
<td>3</td>
<td>6</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td>µg/L</td>
<td>3</td>
<td>6</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Antimony-125</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Araneic</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Arsenic</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Arsenic, dissolved</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Fibers/L</td>
<td>3,500,000</td>
<td>7,000,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/L</td>
<td>1.5</td>
<td>3</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Azobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 625</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/L</td>
<td>1,000</td>
<td>2,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Barium, dissolved</td>
<td>µg/L</td>
<td>1,000</td>
<td>2,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>µg/L</td>
<td>1,000</td>
<td>2,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Barium-140</td>
<td>pCi/L</td>
<td>4.5E+01</td>
<td>9E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Benzene</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>alpha-Benzen hexachloride</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>beta-Benzen hexachloride</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>delta-Benzene hexachloride</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Benzidine</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>µg/L</td>
<td>0.05</td>
<td>0.1</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Benzo[fluoranthene]</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Benzo[g,h,i]pyrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>1,4-Benzoquinone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Benzy alcohol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Beryllium</td>
<td>µg/L</td>
<td>2</td>
<td>4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Beryllium, dissolved</td>
<td>µg/L</td>
<td>2</td>
<td>4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td>µg/L</td>
<td>2</td>
<td>4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Beryllium-7</td>
<td>pCi/L</td>
<td>3E+03</td>
<td>6E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy) methane</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Bis(2-chloroethyl) ether</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl) ether</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Bis(chloromethyl) ether</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>µg/L</td>
<td>3</td>
<td>6</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Bismuth-214</td>
<td>pCi/L</td>
<td>9.4E+03</td>
<td>1.89E+04</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Boron</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Boron, dissolved</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Boron, total recoverable</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Bromide</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 300.0</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Bromoform</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Butylbenzyl phthalate</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
</tbody>
</table>

Sanitary Landfill | B4 | Fourth Quarter 1998 and 1998 Summary |
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-sec-Butyl-4,6-dinitrophenol</td>
<td>µg/L</td>
<td>3.5</td>
<td>7</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Calcium</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Calcium, dissolved</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
<tr>
<td>Calcium, total recoverable</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>µg/L</td>
<td>20</td>
<td>40</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>pCi/L</td>
<td>1E+03</td>
<td>2E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Carbonate</td>
<td></td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Cerium-141 ¹</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Cerium-144</td>
<td>pCi/L</td>
<td>1.31E+02</td>
<td>2.61E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Cesium-134 ²</td>
<td>pCi/L</td>
<td>4.07E+01</td>
<td>8.13E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Chlordane</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chloride</td>
<td>µg/L</td>
<td>125,000</td>
<td>250,000</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>4-Chloro-m-cresol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chloroethyl vinyl ether</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>µg/L</td>
<td>1,000</td>
<td>2,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chromium</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chromium, dissolved</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Chromium-51 ¹</td>
<td>pCi/L</td>
<td>3E+03</td>
<td>6E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Cobalt</td>
<td>µg/L</td>
<td>20</td>
<td>40</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Cobalt, dissolved</td>
<td>µg/L</td>
<td>20</td>
<td>40</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Cobalt, total recoverable</td>
<td>µg/L</td>
<td>20</td>
<td>40</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Cobalt-57</td>
<td>pCi/L</td>
<td>5E+02</td>
<td>1E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Cobalt-58 ²</td>
<td>pCi/L</td>
<td>4.5E+03</td>
<td>9E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>pCi/L</td>
<td>5E+01</td>
<td>1E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Color</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Copper, dissolved</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EP/EMS</td>
</tr>
<tr>
<td>m-Cresol (3-Methylphenol)</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>o-Cresol (2-Methylphenol)</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>p-Cresol (4-Methylphenol)</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Curium-242</td>
<td>pCi/L</td>
<td>6.65E+01</td>
<td>1.33E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Curium-243</td>
<td>pCi/L</td>
<td>4.15E+00</td>
<td>8.3E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Curium-243/244 ³</td>
<td>pCi/L</td>
<td>4.15E+00</td>
<td>8.3E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
</tbody>
</table>

Sanitary Landfill

B 5

Fourth Quarter 1998 and 1998 Summary
Analyte Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalapon</td>
<td>µg/L</td>
<td>100</td>
<td>200</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>p,p'-DDD</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>p,p'-DDT</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Diallate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Dibenz[a]anthracene</td>
<td>µg/L</td>
<td>0.15</td>
<td>0.3</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>µg/L</td>
<td>0.025</td>
<td>0.05</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>µg/L</td>
<td>300</td>
<td>600</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>µg/L</td>
<td>37.5</td>
<td>75</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>µg/L</td>
<td>3.5</td>
<td>7</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>35</td>
<td>70</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4-Dichlorophenoxycetic acid</td>
<td>µg/L</td>
<td>35</td>
<td>70</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Di(2-ethylhexyl) adipate</td>
<td>µg/L</td>
<td>200</td>
<td>400</td>
<td>Final PDWS (EPA, 1993)</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>p-Dimethylaminobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>p-(Dimethylamino)ethylbenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>7,12-Dimethylbenz[a]anthracene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>3,3'-Dimethylbenzidine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>a,a-Dimethylphenylethylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4-Dimethyl phenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>1,3-Dinitrobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
</tbody>
</table>

Sanitary Landfill
B 6
Fourth Quarter 1998 and 1998 Summary
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endosulfan I</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Endothall b</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Endrin</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>µg/L</td>
<td>350</td>
<td>700</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Ethyl methanesulfonate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Europium-152</td>
<td>pCi/L</td>
<td>3E+01</td>
<td>6E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Europium-154</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Europium-155</td>
<td>pCi/L</td>
<td>3E+02</td>
<td>6E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Fanphin</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Fluorene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Fluoride</td>
<td>µg/L</td>
<td>2,000</td>
<td>4,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Glypiaosate b</td>
<td>µg/L</td>
<td>350</td>
<td>700</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>pCi/L</td>
<td>7.5E+00</td>
<td>1.5E+01</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/L</td>
<td>0.2</td>
<td>0.4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>µg/L</td>
<td>0.1</td>
<td>0.2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Heptachlor dibenzo-p-dioxin</td>
<td>µg/L</td>
<td>0.00325</td>
<td>0.0065</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>isomers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-HFCDD</td>
<td>µg/L</td>
<td>0.00325</td>
<td>0.0065</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>µg/L</td>
<td>0.00025</td>
<td>0.00045</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Hexachlorodibenzophenephenol</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>isomers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,7,8-HXCD</td>
<td>µg/L</td>
<td>0.00225</td>
<td>0.0045</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Hexachlorodibenzophenephenol</td>
<td>µg/L</td>
<td>0.002</td>
<td>0.004</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Hexachlorophene</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Hexachloropropene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Indeno[1,2,3-c,d]pyrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Iodine</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>APHA Method 415A</td>
</tr>
<tr>
<td>Iodine-129</td>
<td>pCi/L</td>
<td>5E-01</td>
<td>1E+00</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Iodine-131</td>
<td>pCi/L</td>
<td>1.5E+00</td>
<td>3E+00</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td>µg/L</td>
<td>75</td>
<td>150</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Iron</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
</tbody>
</table>

Sanitary Landfill B 7 Fourth Quarter 1998 and 1999 Summary
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron, dissolved</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>µg/L</td>
<td>150</td>
<td>300</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Iron-55</td>
<td>pCi/L</td>
<td>1E+03</td>
<td>2E+03</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Iron-59</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>µg/L</td>
<td>500</td>
<td>1000</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Isodrin</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Isosafrole</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Kepone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Lanthanum-140</td>
<td>pCi/L</td>
<td>3E+01</td>
<td>6E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Lead</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Magnesium</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Magnesium, dissolved</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Magnesium, total recoverable</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Manganese</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Manganese, dissolved</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Manganese, total recoverable</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (SCDHEC, 1981)</td>
</tr>
<tr>
<td>Mercury</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Mercury, dissolved</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Methapyrilene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>µg/L</td>
<td>20</td>
<td>40</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>3-Methylchloranthrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2-Methyl-4,6-dinitrophenol</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Methyl iso-butyl ketone</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Methyl methanesulfonate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2-Methyl-naphthalene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Molybdenum, dissolved</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Molybdenum, total recoverable</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1-Naphthylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Neptunium-237</td>
<td>pCi/L</td>
<td>3.53E+00</td>
<td>7.06E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Nickel</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Nickel, dissolved</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Nickel, total recoverable</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Nickel-59</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Nickel-63</td>
<td>pCi/L</td>
<td>2.5E+01</td>
<td>5E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Niobium-95</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Nitrate as nitrogen</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Nitrate-nitrite as nitrogen</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Analyte</td>
<td>Unit</td>
<td>Flag 1</td>
<td>Flag 2</td>
<td>Source</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Nitrite as nitrogen</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>m-Nitroaniline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>o-Nitroaniline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>p-Nitroaniline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Nitrogen by Kjeldahl method</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>EPA Method 351.2</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>4-Nitroquinoline-1-oxide</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosodi-n-butylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosodiethylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosodipropylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosomethylethylamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosomorpholine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosopiperdine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>N-Nitrosopyrrolidine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Nonvolatile beta</td>
<td>pCIL</td>
<td>2.5E+01</td>
<td>5E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Octachlorodibenzo-p-dioxin isomers</td>
<td>µg/L</td>
<td>0.005</td>
<td>0.005</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Octachlorodibenzo-p-furan isomers</td>
<td>µg/L</td>
<td>0.005</td>
<td>0.005</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Odor</td>
<td></td>
<td>No flag</td>
<td>No flag</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 413.1</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>µg/L</td>
<td>100</td>
<td>200</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Parathion</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Parathion methyl</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>PCB 1016</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1221</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1232</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1242</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1248</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1254</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1260</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>PCB 1262</td>
<td>µg/L</td>
<td>0.25</td>
<td>0.5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Pentachlorodibenzo-p-dioxin isomers</td>
<td>µg/L</td>
<td>0.00275</td>
<td>0.0055</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Pentachlorodibenzo-p-furan isomers</td>
<td>µg/L</td>
<td>0.00275</td>
<td>0.0055</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>1,2,3,7,8-PCDD</td>
<td>µg/L</td>
<td>0.00275</td>
<td>0.0055</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>1,2,3,7,8-PCDF</td>
<td>µg/L</td>
<td>0.00275</td>
<td>0.0055</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>µg/L</td>
<td>0.3</td>
<td>1</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td>8</td>
<td>10</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>pH</td>
<td>pH</td>
<td>4</td>
<td>3</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Phenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Analyte</td>
<td>Unit</td>
<td>Flag 1</td>
<td>Flag 2</td>
<td>Source</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Phenols</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>EPA Method 420.1</td>
</tr>
<tr>
<td>p-Phenylenediamine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Phorate</td>
<td>µg/L</td>
<td>0.5</td>
<td>1</td>
<td>EPA Method 8080</td>
</tr>
<tr>
<td>Picloram (^b)</td>
<td>µg/L</td>
<td>250</td>
<td>500</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td>pCi/L</td>
<td>3.51E+00</td>
<td>7.02E+00</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>pCi/L</td>
<td>3.11E+01</td>
<td>6.21E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Plutonium-239/240 (^e)</td>
<td>pCi/L</td>
<td>3.11E+01</td>
<td>6.22E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Plutonium-240</td>
<td>pCi/L</td>
<td>3.11E+01</td>
<td>6.26E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Plutonium-241 (^e)</td>
<td>pCi/L</td>
<td>3.13E+01</td>
<td>6.26E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Plutonium-242 (^e)</td>
<td>pCi/L</td>
<td>3.27E+01</td>
<td>6.54E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Potassium</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Potassium, dissolved</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Potassium, total recoverable</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Potassium-40</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Proposed PDWS (EPA, 1986)</td>
</tr>
<tr>
<td>Promethium-144</td>
<td>pCi/L</td>
<td>5E+01</td>
<td>1E+02</td>
<td>EPA Method 901.1</td>
</tr>
<tr>
<td>Promethium-146</td>
<td>pCi/L</td>
<td>5E+01</td>
<td>1E+02</td>
<td>EPA Method 901.1</td>
</tr>
<tr>
<td>Promethium-147</td>
<td>pCi/L</td>
<td>2.62E+03</td>
<td>5.24E+03</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Promethium-147</td>
<td>pCi/L</td>
<td>2.62E+03</td>
<td>5.24E+03</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Pronamid</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Propanitrile</td>
<td>µg/L</td>
<td>1,000</td>
<td>2,000</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Pyrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Pyridine</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Radium (alpha-emitting) (^f)</td>
<td>pCi/L</td>
<td>1E+01</td>
<td>2E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Radium-226</td>
<td>pCi/L</td>
<td>1E+01</td>
<td>2E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Radium-228</td>
<td>pCi/L</td>
<td>1E+01</td>
<td>2E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Radon-222</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Ruthenium-103 (^e)</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Ruthenium-106</td>
<td>pCi/L</td>
<td>1.5E+01</td>
<td>3E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Safrone</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Selenium</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Selenium, dissolved</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Silica</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Silica, dissolved</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Silica, total recoverable</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Silver</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Silver, dissolved</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Simazine (^b)</td>
<td>µg/L</td>
<td>2</td>
<td>4</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Sodium</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Sodium, dissolved</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Sodium, total recoverable</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>Sodium-22</td>
<td>pCi/L</td>
<td>2.33E+02</td>
<td>4.66E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Specific conductance</td>
<td>µS/cm</td>
<td>250</td>
<td>500</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Strontium-89</td>
<td>pCi/L</td>
<td>1E+01</td>
<td>2E+01</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Strontium-89/90 (^e)</td>
<td>pCi/L</td>
<td>4E+00</td>
<td>8E+00</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>pCi/L</td>
<td>4E+00</td>
<td>8E+00</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Styrene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Sulfate</td>
<td>µg/L</td>
<td>200,000</td>
<td>400,000</td>
<td>Proposed PDWS (EPA, 1990)</td>
</tr>
<tr>
<td>Sulfide</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 9030</td>
</tr>
<tr>
<td>Sulfatepp</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Surfactants</td>
<td>µg/L</td>
<td>No flag</td>
<td>No flag</td>
<td>Source set by EPD/EMS</td>
</tr>
<tr>
<td>2,3,7,8-TCDD</td>
<td>µg/L</td>
<td>0.000015</td>
<td>0.00003</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>2,3,7,8-TCDF</td>
<td>µg/L</td>
<td>0.002</td>
<td>0.004</td>
<td>EPA Method 8280</td>
</tr>
</tbody>
</table>

Sanitary Landfill

WSRC-TR-99-00011
Unclassified
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>Flag 1</th>
<th>Flag 2</th>
<th>Source*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technetium-99</td>
<td>pCi/L</td>
<td>4.5E+02</td>
<td>9E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Tetrachlorodibenzo-p-dioxin isomers</td>
<td>µg/L</td>
<td>0.00225</td>
<td>0.0045</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>Tetrachlorodibenzo-p-furan isomers</td>
<td>µg/L</td>
<td>0.002</td>
<td>0.004</td>
<td>EPA Method 8280</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Thallium</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Thallium, dissolved</td>
<td>µg/L</td>
<td>1</td>
<td>2</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Thallium, total recoverable</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Thionazin</td>
<td>µg/L</td>
<td>6.25E+01</td>
<td>1.25E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Thorium-228</td>
<td>pCi/L</td>
<td>3.96E+01</td>
<td>7.92E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Thorium-230</td>
<td>pCi/L</td>
<td>4.4E+01</td>
<td>8.8E+01</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Thorium-232</td>
<td>pCi/L</td>
<td>2E+02</td>
<td>4.01E+02</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Thorium-234</td>
<td>pCi/L</td>
<td>10</td>
<td>20</td>
<td>EPA Method 282.2</td>
</tr>
<tr>
<td>Tin</td>
<td>µg/L</td>
<td>10</td>
<td>20</td>
<td>EPA Method 282.2</td>
</tr>
<tr>
<td>Total carbon</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total coliform</td>
<td>µg/L</td>
<td>0</td>
<td>0</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total hydrocarbons</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total inorganic carbon</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total organic halogens</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total organic nitrogen</td>
<td>µg/L</td>
<td>500</td>
<td>1,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total petroleum hydrocarbons</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>EPA Method 418.1</td>
</tr>
<tr>
<td>Total phosphates (as P)</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>µg/L</td>
<td>1.5</td>
<td>3</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>µg/L</td>
<td>25</td>
<td>50</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>µg/L</td>
<td>35</td>
<td>70</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>µg/L</td>
<td>100</td>
<td>200</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenoxyacetic acid</td>
<td>µg/L</td>
<td>2.5</td>
<td>5</td>
<td>EPA Method 8150</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>O,O,O-Triethyl phosphorothioate</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>1,3,5-Trinitrobenzene</td>
<td>µg/L</td>
<td>50</td>
<td>100</td>
<td>EPA Method 8270</td>
</tr>
<tr>
<td>Tritium</td>
<td>pCi/mL</td>
<td>1E+01</td>
<td>2E+01</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Turbidity</td>
<td>µg/L</td>
<td>10</td>
<td>20</td>
<td>Set by EPD/EMS</td>
</tr>
<tr>
<td>Uranium</td>
<td>µg/L</td>
<td>10</td>
<td>20</td>
<td>Proposed PDWS (EPA, 1991)</td>
</tr>
<tr>
<td>Substance</td>
<td>Unit</td>
<td>Lower Limit</td>
<td>Upper Limit</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Uranium, dissolved</td>
<td>µg/L</td>
<td>10</td>
<td>20</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium, total recoverable</td>
<td>µg/L</td>
<td>10</td>
<td>20</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium alpha activity</td>
<td>pCi/L</td>
<td>1.5E+01</td>
<td>3E+01</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium-233/234</td>
<td>pCi/L</td>
<td>6.9E+00</td>
<td>1.38E+01</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium-234</td>
<td>pCi/L</td>
<td>6.95E+00</td>
<td>1.39E+01</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium-235</td>
<td>pCi/L</td>
<td>7.25E+00</td>
<td>1.45E+01</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Uranium-238</td>
<td>pCi/L</td>
<td>7.3E+00</td>
<td>1.46E+01</td>
<td>Proposed POWS (EPA, 1991)</td>
</tr>
<tr>
<td>Vanadium</td>
<td>µg/L</td>
<td>40</td>
<td>80</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Vanadium, dissolved</td>
<td>µg/L</td>
<td>40</td>
<td>80</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>µg/L</td>
<td>40</td>
<td>80</td>
<td>EPA Method 6010</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>µg/L</td>
<td>5</td>
<td>10</td>
<td>EPA Method 8240</td>
</tr>
<tr>
<td>Xylenes</td>
<td>µg/L</td>
<td>5,000</td>
<td>10,000</td>
<td>Final PDWS (EPA, 1993a)</td>
</tr>
<tr>
<td>Yttrium-88</td>
<td>pCi/L</td>
<td>5E+01</td>
<td>1E+02</td>
<td>EPA Method 901.1</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
<td>2,500</td>
<td>5,000</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Zinc, dissolved</td>
<td>µg/L</td>
<td>2,500</td>
<td>5,000</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td>µg/L</td>
<td>2,500</td>
<td>5,000</td>
<td>SDWS (EPA, 1993b)</td>
</tr>
<tr>
<td>Zinc-65</td>
<td>pCi/L</td>
<td>1.5E+02</td>
<td>3E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Zirconium-95</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
<tr>
<td>Zirconium/Niobium-95</td>
<td>pCi/L</td>
<td>1E+02</td>
<td>2E+02</td>
<td>Interim Final PDWS (EPA, 1977)</td>
</tr>
</tbody>
</table>

* References for methods are in Appendix E; references for dated sources are at the end of this appendix.
* EMS is currently unable to perform this analysis.
* EMS discontinued monitoring this radionuclide because it is inappropriate for the SRS Groundwater Monitoring Program.
* EPD/EMS set this flagging criterion using the 1991 proposed PDWS because the final PDWS in 1977 may have been in error.
* For double radionuclide analyses where each separate radionuclide has its own standard, the more stringent standard is used.
* The applied standard is for radium-226.
* The primary maximum contaminant level range for turbidity is 1-5 NTU, which is inappropriate for the SRS Groundwater Monitoring Program.

References

Appendix C

Figures
Figure 1. Location of the Sanitary Landfill at the Savannah River Site.
Legend
- LFW Wells
- SRS Areas

Notes:

SANITARY LANDFILL
SINGLE WELLS AND WELL CLUSTERS
STEED POND AQUIFER (WATER TABLE)

Figure 2. Boundaries of the Original Sanitary Landfill Expansion and Location of the Monitoring Wells at the Sanitary Landfill.
Figure 3. Chloroethene (Vinyl Chloride) Concentrations at the Sanitary Landfill, First Quarter 1998.
Figure 4. Chloroethene (Vinyl Chloride) Concentrations at the Sanitary Landfill, Fourth Quarter 1998.

Sanitary Landfill

C-6

Fourth Quarter 1998 & 1998 Summary
Figure 5. Trichloroethylene Concentrations at the Sanitary Landfill, First Quarter 1998.

Notes:
- Primary Drinking Water Standards: 5 ug/L.
- All wells without values are either "U" (non-detect) or "J" (Estimated) and Non-Decision Data.
- Contour Interval: 10 & 20 ug/L.
Figure 6. Trichloroethylene Concentrations at the Sanitary Landfill, Fourth Quarter 1998.
Figure 7. Tritium Activities at the Sanitary Landfill, First Quarter 1998.
Notes:
Primary Drinking Water Standards: 20 Pd/ML
All wells without values are either "U" (non Detect) or "J" (Estimated) and Non Decision Data.
Due to limited data points no contouring was attempted.

Legend
- LFW Wells
- SRS Areas

SANITARY LANDFILL
TRITIUM ACTIVITIES
STEED POND AQUIFER (WATER TABLE)
4058

Figure 8. Tritium Activities at the Sanitary Landfill, Fourth Quarter 1998.
Flow Rate = 153 ft/yr
dh = 16 ft
dl = 1908 ft

Figure 9. Piezometric Surface of the Steed Pond (Water Table) at the Sanitary Landfill, First Quarter 1998.
Flow Rate = 164 ft/yr
\(dh = 12 \) ft
\(dl = 1337 \) ft

Figure 10. Piezometric Surface of the Steed Pond (Water Table) at the Sanitary Landfill, Fourth Quarter 1998.
Figure 11. Regional Correlation of Hydrostratigraphic and Lithographic
Appendix D

Tables
THIS PAGE LEFT BLANK INTENTIONALLY.
Fourth Quarter 1998 Data Review

This report contains analytical data for samples taken during Fourth Quarter 1998 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

Mechanical failure prevented sample collection and analysis of the groundwater at well LFW1O.

Key to Reading the Tables

The following abbreviations may appear in the data tables:

Constituents

- 1,2,3,4,6,7,8-HPCDD
- 1,2,3,4,6,7,8-HPCDF
- 1,2,3,4,7,8-HXCDD
- 1,2,3,4,7,8-HXCDF
- Lindane
- PCB
- 1,2,3,7,8-PCDD
- 1,2,3,7,8-PCDF
- Sp. Conductance
- TCDD
- TCDF

Laboratories

- CN: Clemson Technical Center, Inc.
- EM: Environmental Protection Department/ Environmental Monitoring Section (EPD/EMS) Laboratory
- GE and GP: General Engineering Laboratories
- SC: Savannah River Technology Center
- SP: Spencer Testing Services, Inc.
- TM: TMA/Eberline
- WA and WS: Roy F. Weston, Inc.

Sampling Codes

- B: blank sample was collected
- C: well was pumping continuously
- D: well was dry
- E: equipment blank was collected
- I: well went dry during sampling; insufficient water to collect all samples
- L: well went dry before sampling began; only depth to water can be determined
- P: inaccessibility or mechanical failure prevented sample collection and field analysis of the water
- S: no water in standpipe; for water level events only

Sanitary Landfill: D 3
Sampling Codes (cont’d)
X well went dry during purging; samples collected after well recovered

Sampling Methods
B sample collected using an open-bucket bailer
P sample collected using a bladder pump
S sample collected using a single-speed centrifugal downhole pump
V sample collected using a variable-speed pump

Units
E exponential notation (e.g., 1.1E-09 = 1.1 × 10^-9 = 0.0000000011)
mg/L milligrams per liter
msl mean sea level
MSL million structures per liter
NTU turbidity unit
pCi/L picocuries per liter
pCi/mL picocuries per milliliter
pH pH unit
µg/L micrograms per liter
µS/cm microsiemens per centimeter

Other
CS carbon steel
D primary drinking water standard (PDWS) column in data tables
GS groundwater protection standard column in data tables
H holding time column in data tables
Mod modifier column in data tables
PDWS primary drinking water standard
PVC polyvinyl chloride
TOC top of casing

Holding Times

Standard analytical methods include a limit, called holding time, on the maximum elapsed time between sample collection and extraction or analysis by the laboratory. In the data tables, a large bullet (*) in the H (holding time) column indicates that holding time was exceeded. Analyses performed beyond holding times may not yield valid results.

The South Carolina Department of Health and Environmental Control allows only 15 minutes to elapse between sampling and analysis for pH. Thus, only field pH measurements can meet the holding time criterion; laboratory pH analyses always will exceed it.

The laboratory procedure used for the determination of specific conductance allows one day to elapse between sampling and analysis. Thus, laboratory specific conductance measurements may exceed the holding time criterion.
Data Rounding

Constituent results in analytical results tables that appear to equal the final PDWS but are not marked in the D (exceeded the final PDWS or screening level) column are below the final PDWS in the database. Values stored in the database contain more significant digits than the reported results. Apparent discrepancies in the tables are due to the rounding of reported results.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific quality assurance/quality control information either at the same time as analytical results or in a quarterly summary. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data usability. Result modifiers designed by the Environmental Protection Department/Environmental Monitoring Section and provided to the primary laboratories are defined below. These modifiers appear in the data tables under the column Mod. The lettered modifiers are based on EPA’s STORET codes.

<table>
<thead>
<tr>
<th>Result Modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Blank)</td>
<td>Data are not qualified. Numbers should be interpreted exactly as reported.</td>
</tr>
<tr>
<td>A</td>
<td>Value reported is the mean of two or more determinations.</td>
</tr>
<tr>
<td>I</td>
<td>The value in the result field is the instrument reading, not the sample quantification limit. Always used with the result qualifier U.</td>
</tr>
<tr>
<td>J</td>
<td>Value is estimated because quantitation in the sample or in associated quality control samples did not meet specifications.</td>
</tr>
<tr>
<td>L</td>
<td>Value is off-scale high. The actual value is not known but is known to be greater than the value shown.</td>
</tr>
<tr>
<td>M</td>
<td>Presence of the analyte is verified but not quantified.</td>
</tr>
<tr>
<td>R</td>
<td>Result was rejected because performance requirements in the sample analysis or associated quality control analyses were not met.</td>
</tr>
<tr>
<td>T</td>
<td>Analyte was not detected; if present, it was below the criteria for detection.</td>
</tr>
<tr>
<td>U</td>
<td>Material analyzed for but not detected. Analytical result reported is less than the sample quantitation limit.</td>
</tr>
<tr>
<td>V</td>
<td>Analyte was detected in an associated method blank.</td>
</tr>
<tr>
<td>Y</td>
<td>Result was obtained from an unpreserved or improperly preserved sample. Data may not be accurate.</td>
</tr>
</tbody>
</table>
Result Modifier (cont'd)

1 Result may be an underestimation of the true value due to analytical bias.

2 Result may be an overestimation of the true value due to analytical bias.

3 The associated result may be of poor precision (high variability) due to analytical bias.

4 Result is associated with QA results indicating matrix interference.

6 The associated result is from a reanalysis performed out of holding time due to problems with an earlier analysis.
THIS PAGE LEFT BLANK INTENTIONALLY.
Table 1. Maximum Levels of Constituents Exceeding the Final Primary Drinking Water Standards

Steed Pond Aquifer (Water Table)

<table>
<thead>
<tr>
<th>Well</th>
<th>Constituent</th>
<th>Units</th>
<th>1Q98</th>
<th>2Q98</th>
<th>3Q98</th>
<th>4Q98</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFW6R</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>2.54</td>
<td>2.4</td>
<td>4</td>
<td>NA</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>488</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>---</td>
<td>34</td>
<td>37</td>
<td>---</td>
<td>J</td>
</tr>
<tr>
<td>LFW8R</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>10.4</td>
<td>---</td>
<td>7.2</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (methylene chloride)</td>
<td>µg/L</td>
<td>---</td>
<td>---</td>
<td>8.3</td>
<td>---</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>24000</td>
<td>43900</td>
<td></td>
</tr>
<tr>
<td>LFW10A</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>172</td>
<td>130</td>
<td>200</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>µg/L</td>
<td>7.44</td>
<td>7</td>
<td>11</td>
<td>9.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>34.8</td>
<td>24</td>
<td>36</td>
<td>27.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>---</td>
<td>100</td>
<td>190</td>
<td>59.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>36600</td>
<td>37000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>23.6</td>
<td>19</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>pCi/mL</td>
<td>27.71</td>
<td>---</td>
<td>20.33</td>
<td>23.87</td>
<td></td>
</tr>
<tr>
<td>LFW18</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>3.24</td>
<td>2.8</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>11500</td>
<td>15600</td>
<td></td>
</tr>
<tr>
<td>LFW21</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>79.2</td>
<td>40</td>
<td>62</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>3.24</td>
<td>5.1</td>
<td>6.8</td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>---</td>
<td>---</td>
<td>5.4</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>15600</td>
<td>19900</td>
<td></td>
</tr>
<tr>
<td>LFW31</td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>---</td>
<td>12</td>
<td>28</td>
<td>39.9</td>
<td></td>
</tr>
<tr>
<td>LFW32C</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>52.7</td>
<td>J</td>
</tr>
<tr>
<td>LFW36R</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>19.6</td>
<td>22</td>
<td>13</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>29700</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LFW43B</td>
<td>1,2-Dichloroethane</td>
<td>µg/L</td>
<td>7.5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>LFW56D</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>83.1</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>330</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LFW59D</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>145</td>
<td>119</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Iron, (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>---</td>
<td>358</td>
<td></td>
</tr>
</tbody>
</table>

Sanitary Landfill D 8 Fourth Quarter 1998 and 1998 Summary
<table>
<thead>
<tr>
<th>Well</th>
<th>Constituent</th>
<th>Units</th>
<th>1Q98</th>
<th>2Q98</th>
<th>3Q98</th>
<th>4Q98</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFW58D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>67.7</td>
<td>NA</td>
<td>140</td>
<td>92.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>µg/L</td>
<td>9.9</td>
<td>NA</td>
<td>170</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>630</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>µg/L</td>
<td>--</td>
<td>NA</td>
<td>24</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>7.95</td>
<td>NA</td>
<td>40</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>5.44</td>
<td>NA</td>
<td>24</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane</td>
<td>µg/L</td>
<td>--</td>
<td>NA</td>
<td>--</td>
<td>8.6</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>(Methylene chloride)</td>
<td>µg/L</td>
<td>--</td>
<td>NA</td>
<td>35</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>12.7</td>
<td>NA</td>
<td>7980</td>
<td>17900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>2.87</td>
<td>4.1</td>
<td>5.7</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>3760</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LFW60C</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>12.7</td>
<td>---</td>
<td>13</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>2.87</td>
<td>4.1</td>
<td>5.7</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>---</td>
<td>3760</td>
<td>NA</td>
</tr>
<tr>
<td>LFW60D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>18.1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>649</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>---</td>
<td>NA</td>
<td>531</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury (total recoverable)</td>
<td>µg/L</td>
<td>2.48</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>LFW61D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>75.9</td>
<td>46</td>
<td>49</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>203</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>38.5</td>
<td>17</td>
<td>17</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane</td>
<td>µg/L</td>
<td>---</td>
<td>14</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Methylene chloride)</td>
<td>µg/L</td>
<td>---</td>
<td>NA</td>
<td>23000</td>
<td>19200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>23000</td>
<td>19200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>µg/L</td>
<td>8.31</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>26.2</td>
<td>10</td>
<td>12</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>14.8</td>
<td>---</td>
<td>---</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>µCi/mL</td>
<td>---</td>
<td>---</td>
<td>2.39</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>LFW62C</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>45.7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td>µg/L</td>
<td>5.22</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury (total recoverable)</td>
<td>µg/L</td>
<td>3.21</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>13.2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>LFW62D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>119</td>
<td>NA</td>
<td>82</td>
<td>79.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td>µg/L</td>
<td>5.38</td>
<td>NA</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>µg/L</td>
<td>86</td>
<td>NA</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>369</td>
<td>861</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>µg/L</td>
<td>25.6</td>
<td>NA</td>
<td>12</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>15.6</td>
<td>NA</td>
<td>5.2</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>19.9</td>
<td>NA</td>
<td>12</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>11</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Methylene chloride)</td>
<td>µg/L</td>
<td>--</td>
<td>NA</td>
<td>35.4</td>
<td>660</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>35.4</td>
<td>660</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>µg/L</td>
<td>---</td>
<td>NA</td>
<td>---</td>
<td>7.05</td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>Constituent</td>
<td>Units</td>
<td>1Q98</td>
<td>2Q98</td>
<td>3Q98</td>
<td>4Q98</td>
<td>Modifiers</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>LFW62D</td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>34.5</td>
<td>NA^b</td>
<td>12</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>17.25</td>
<td>NA^b</td>
<td>26</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cis-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>NA^b</td>
<td>75.2</td>
<td></td>
</tr>
<tr>
<td>LFW63B</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>437</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td>LFW63C</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>105</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td>LFW63D</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>9.89</td>
<td>12</td>
<td>7.1</td>
<td>---^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>21.4</td>
<td>28</td>
<td>20</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>---^a</td>
<td>10</td>
<td>8</td>
<td>---^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>24.9</td>
<td>27</td>
<td>18</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>LFW64C</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>731</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td>LFW64D</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>20.2</td>
<td>5.5</td>
<td>9.14</td>
<td>---^a</td>
<td></td>
</tr>
<tr>
<td>LFW65B</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>281</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td>LFW65D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>22.2</td>
<td>14</td>
<td>14</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>9.77</td>
<td>5.7</td>
<td>---^a</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>25.7</td>
<td>16</td>
<td>14</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>LFW67B</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>---^a</td>
<td>---^a</td>
<td>315</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td>LFW67C</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>147</td>
<td>120</td>
<td>140</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic (total recoverable)</td>
<td>µg/L</td>
<td>---^a</td>
<td>---^a</td>
<td>---^a</td>
<td>68.8</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>µg/L</td>
<td>10.2</td>
<td>8.9</td>
<td>8.4</td>
<td>7.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>---^a</td>
<td>3.9</td>
<td>3.3</td>
<td>41.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>14.2</td>
<td>19</td>
<td>11</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>65300</td>
<td>60200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>14.4</td>
<td>16</td>
<td>14</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>---^a</td>
<td>21</td>
<td>15</td>
<td>---^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>pCi/mL</td>
<td>26.91</td>
<td>25.4</td>
<td>33.83</td>
<td>34.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cis-1,2-Dichloroethylene</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>NA^b</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>LFW67D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>31.8</td>
<td>43</td>
<td>26</td>
<td>31.8</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td>µg/L</td>
<td>---^a</td>
<td>---^a</td>
<td>---^a</td>
<td>1.69</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>54.2</td>
<td>NA^b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>µg/L</td>
<td>18.2</td>
<td>25</td>
<td>12</td>
<td>18.2</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>µg/L</td>
<td>---^a</td>
<td>---^a</td>
<td>49</td>
<td>---^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>---^a</td>
<td>71.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>µg/L</td>
<td>12.2</td>
<td>17</td>
<td>7.4</td>
<td>11.6</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>µg/L</td>
<td>40.1</td>
<td>11</td>
<td>11</td>
<td>21.9</td>
<td>J</td>
</tr>
<tr>
<td>LFW68D</td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA^b</td>
<td>NA^b</td>
<td>1790</td>
<td>NA^b</td>
<td></td>
</tr>
</tbody>
</table>

Sanitary Landfill D 10 Fourth Quarter 1998 and 1998 Summary
<table>
<thead>
<tr>
<th>Well</th>
<th>Constituent</th>
<th>Units</th>
<th>1Q98</th>
<th>2Q98</th>
<th>3Q98</th>
<th>4Q98</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFW69C</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>321</td>
<td>NA</td>
</tr>
<tr>
<td>LFW69D</td>
<td>1,1-Dichloroethane</td>
<td>µg/L</td>
<td>10.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>110</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>µg/L</td>
<td>18.5</td>
<td>7.8</td>
<td>17</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>Iron (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>3140</td>
<td>629</td>
</tr>
<tr>
<td>LFW71B</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>309</td>
<td>NA</td>
</tr>
<tr>
<td>LFW71C</td>
<td>Aluminum (total recoverable)</td>
<td>µg/L</td>
<td>NA</td>
<td>NA</td>
<td>90.1</td>
<td>NA</td>
</tr>
</tbody>
</table>
Table 2. Maximum Levels of Constituents Exceeding Other Flag 2 Criteria

<table>
<thead>
<tr>
<th>Well</th>
<th>Constituent</th>
<th>Units</th>
<th>1Q98</th>
<th>2Q98</th>
<th>3Q98</th>
<th>4Q98</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFW31</td>
<td>pH</td>
<td>PH</td>
<td>NA</td>
<td>---*</td>
<td>NA</td>
<td>5.37</td>
<td></td>
</tr>
<tr>
<td>LFW32C</td>
<td>PH</td>
<td>PH</td>
<td>NA</td>
<td>---*</td>
<td>NA</td>
<td>5.33</td>
<td>J</td>
</tr>
<tr>
<td>LFW43B</td>
<td>pH</td>
<td>pH</td>
<td>5.27</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The groundwater samples are unfiltered. Therefore, the results for metals are for total recoverable metals. The modifier column applies to fourth quarter 1997 data only.

---* = analyzed but not above final PDWS
NA = not analyzed
Table 3. Groundwater Monitoring Results for Individual Wells

WELL: LFW 6R

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 84413.9</td>
<td>33.286 Deg N</td>
<td>154.3 - 134.3 ft msl</td>
<td>170.2 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45194.0</td>
<td>81.712 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE DATE</th>
<th>12/01/97</th>
<th>03/12/98</th>
<th>06/12/98</th>
</tr>
</thead>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>150.65</td>
<td>153.46</td>
<td>152.35</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>17.35</td>
<td>14.54</td>
<td>15.65</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td>4.9</td>
<td>4.6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>42</td>
<td>85</td>
<td>34</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>17</td>
<td>16</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3.3</td>
<td>1.6</td>
<td>1.1</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.61580</td>
<td>4.85293</td>
<td>3.61337</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.15</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><3.92</td>
<td><4.1</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>14.3</td>
<td>7.6</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><.4</td>
<td><.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter1998.

Sanitary Landfill D-13 Fourth Quarter 1998 and Annual Summary
WELL: LFW 6R

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td>.83</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td>4.3</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>2.56</td>
<td>2.4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>4.8</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><4.75</td>
<td><2.5</td>
<td><2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>5.79</td>
<td>3.83</td>
<td>7.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td>21.9</td>
<td><5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>.08</td>
<td>.13</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>3.31</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>1.46</td>
<td>34</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><1.11</td>
<td>1950</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><11.62</td>
<td><11.62</td>
<td><11.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-14 Fourth Quarter 1998 and Annual Summary
WELL: LFW 8R

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 83949.0</td>
<td>32.286 Deg N</td>
<td>154.9 - 134.9 ft msl</td>
<td>170.6 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45414.6</td>
<td>81.710 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

12/02/97 03/16/98 06/10/98 09/15/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>147.08</td>
<td>149.07</td>
<td>148.13</td>
<td>148.23</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>21.4</td>
<td>19.41</td>
<td>20.35</td>
<td>20.25</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.4</td>
<td>6.1</td>
<td>6.1</td>
<td>7.2</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>240</td>
<td>110</td>
<td>120</td>
<td>200</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>21</td>
<td>22.4</td>
<td>21.3</td>
<td>22</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>19</td>
<td>29</td>
<td>46</td>
<td>75</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.8</td>
<td>.9</td>
<td>1.6</td>
<td>.2</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>5.12400</td>
<td>8.61979</td>
<td>11.1371</td>
<td>8.69387</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td>1.93</td>
<td><5</td>
<td>2.9</td>
<td>3.06</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>3.78</td>
<td><5</td>
<td>2</td>
<td>6.28</td>
<td>1 u</td>
<td>ug/L</td>
<td>EX</td>
<td>6.28</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><7.84</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.6</td>
<td><200</td>
<td>1 U</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td>20.4</td>
<td>10.1</td>
<td>10</td>
<td><37.1</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>12.9</td>
<td>7.4</td>
<td>15.9</td>
<td>11</td>
<td>1 u</td>
<td>ug/L</td>
<td>EX</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Bromadichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-15 Fourth Quarter 1998 and Annual Summary
Analytical Data

Analyte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td>1.6</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><7</td>
<td><9</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>2.21</td>
<td><5</td>
<td>1.4</td>
<td>3.75</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX DDD</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td>6.7</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+ Chloroethene (Vinyl chloride)</td>
<td>10.4</td>
<td><10</td>
<td>7.2</td>
<td>13.3</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX 13.3</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td>1.1</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.58</td>
<td><5</td>
<td>2.1</td>
<td>2.5</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX DDD</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.89</td>
<td><2.4</td>
<td><8.3</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>6.39</td>
<td><1.81</td>
<td>5.29</td>
<td>11.04</td>
<td>1</td>
<td>pCi/L</td>
<td>EX 11.04</td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+ Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td>14.8</td>
<td>24.6</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td>8.34</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX DDD</td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Tritium</td>
<td>0.96</td>
<td>1060</td>
<td><1.08</td>
<td><1.21</td>
<td>1</td>
<td>U</td>
<td>pCi/ml</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX DDD</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flaking, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for Flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 8R

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill | D-17 | Fourth Quarter 1998 and Annual Summary
WELL: LFW 10A

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 84369.6</td>
<td>33.287 Deg N</td>
<td>164.4 - 134.4 ft msl</td>
<td>181.6 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45935.6</td>
<td>81.710 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
- 12/01/97
- 03/16/98
- 06/12/98
- 09/16/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>149.14</td>
<td>151.69</td>
<td>151.66</td>
<td>150.96</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>30.3</td>
<td>27.75</td>
<td>27.78</td>
<td>28.48</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.2</td>
<td>6.2</td>
<td>6.4</td>
<td>6.4</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>420</td>
<td>340</td>
<td>400</td>
<td>320</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>21.5</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>140</td>
<td>16</td>
<td>97</td>
<td>99</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>20.2</td>
<td>2.2</td>
<td>5.1</td>
<td>5.3</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.70480</td>
<td>5.41622</td>
<td>5.73907</td>
<td>4.48590</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

ST Analyte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>+ 1,1-Dichloroethane</td>
<td>172</td>
<td>130</td>
<td>200</td>
<td>151</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td>151</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td>1.6</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>3.62</td>
<td><5</td>
<td>4</td>
<td>3.73</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>28</td>
<td>26</td>
<td>38</td>
<td>43.5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td>43.5</td>
</tr>
<tr>
<td>1,4-Dioxide</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>3.13</td>
<td><10</td>
<td>5.7</td>
<td>5.98</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td>5.98</td>
</tr>
<tr>
<td>Acetone</td>
<td>129</td>
<td>110</td>
<td><32</td>
<td>41.3</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td>41.3</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><20</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>13.5</td>
<td><200</td>
<td><20</td>
<td><20</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>17.7</td>
<td>14.9</td>
<td>16.9</td>
<td><100</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>4.7</td>
<td>2.7</td>
<td>4.1</td>
<td><10</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>+ Benzene</td>
<td>7.44</td>
<td>7</td>
<td>11</td>
<td>9.53</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td>9.53</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>L</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

+ Exceeded holding time for fourth quarter 1998.

Sanitary Landfill

D-18

Fourth Quarter 1998 and Annual Summary

WSRC-TR-99-00011

Unclassified
WELL: LFW 10A

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>ST</th>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Lab/Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td>1.8</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>1.31</td>
<td><5</td>
<td>1.1</td>
<td>1.84</td>
<td>1</td>
<td>J</td>
<td>EX NDD</td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td>10</td>
<td>4.5</td>
<td>5</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>34.8</td>
<td>24</td>
<td>36</td>
<td>27.1</td>
<td>1</td>
<td>ug/L</td>
<td>EX 27.1</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>17.3</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>7.24</td>
<td>2.9</td>
<td>2.6</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+</td>
<td>Dichloromethane (Methylene chloride)</td>
<td><9.93</td>
<td>100</td>
<td>190</td>
<td>59.6</td>
<td>1</td>
<td>ug/L</td>
<td>EX 59.6</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td>1</td>
<td>0.5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>43.5</td>
<td>56</td>
<td>69</td>
<td>65.9</td>
<td>1</td>
<td>ug/L</td>
<td>EX 65.9</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td><1.92</td>
<td>1.48</td>
<td>3.07</td>
<td><.99</td>
<td>1</td>
<td>UI</td>
<td>pC/mL TM < EQL</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+</td>
<td>Iron, total recoverable</td>
<td><100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><5</td>
<td>3.3</td>
<td><100</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><.5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><237</td>
<td>1.50</td>
<td><41</td>
<td>3.63</td>
<td>1</td>
<td>ug/L</td>
<td>EX 36.3</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><152</td>
<td>1.10</td>
<td><170</td>
<td><133</td>
<td>1</td>
<td>ug/L</td>
<td>EX 133</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>4.34</td>
<td>2.7</td>
<td>3.6</td>
<td>2.33</td>
<td>1</td>
<td>J</td>
<td>EX NDD</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>25.3</td>
<td>88</td>
<td>130</td>
<td>133</td>
<td>1</td>
<td>ug/L</td>
<td>EX 133</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>1.78</td>
<td>2.2</td>
<td>2.2</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>23.6</td>
<td>19</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>+</td>
<td>Tritium</td>
<td>27.71</td>
<td>13400</td>
<td>20.33</td>
<td>23.87</td>
<td>1</td>
<td>pC/mL</td>
<td>TM > 20</td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>138</td>
<td>200</td>
<td>250</td>
<td>209</td>
<td>1</td>
<td>ug/L</td>
<td>EX 209</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

Fourth Quarter 1998 and Annual Summary
WELL: LFW 10A

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-20

Fourth Quarter 1998 and Annual Summary
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>151.3</td>
<td>154.1</td>
<td>153.75</td>
<td>153.8</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>30.35</td>
<td>27.55</td>
<td>27.9</td>
<td>27.85</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.8</td>
<td>5.7</td>
<td>6</td>
<td>5.2</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>120</td>
<td>100</td>
<td>110</td>
<td>100</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>19.7</td>
<td>22.6</td>
<td>20.9</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>33</td>
<td>16</td>
<td>29</td>
<td>37</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.6</td>
<td>2.3</td>
<td>.9</td>
<td>1</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.35136</td>
<td>3.01295</td>
<td>5.80878</td>
<td>2.06893</td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>1.02</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2-Dibromochloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>6.31</td>
<td>5.8</td>
<td>2.7</td>
<td>4.94</td>
<td>1 J ug/L</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td>1 U ug/L</td>
<td>EX < EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Acetone</td>
<td><5.38</td>
<td><10</td>
<td><3.6</td>
<td><20</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>14.9</td>
<td><200</td>
<td>1 U ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>18.1</td>
<td>17</td>
<td>12.8</td>
<td><100</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.4</td>
<td>2.5</td>
<td>3.1</td>
<td><10</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U ug/L</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 18

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td>1.79</td>
<td>1.7</td>
<td>.8</td>
<td>1.54</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>3.24</td>
<td>2.8</td>
<td>1.1</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium, total recoverable</td>
<td><1.1</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><5.14</td>
<td><2.7</td>
<td><2.2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross alpha</td>
<td>1.43</td>
<td>-.36</td>
<td>2.14</td>
<td>1.1</td>
<td>pCilL</td>
<td>TM</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td>9.6</td>
<td>4.2</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl ethyl ketone</td>
<td><3.28</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><1.44</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td>2.91</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichloroethylene</td>
<td>1.14</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tritium</td>
<td><2.15</td>
<td>1660</td>
<td><1.29</td>
<td><.57</td>
<td>1 U</td>
<td>pCilL</td>
<td>TM</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 18

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Compliance

- EX: exceeded holding time for fourth quarter 1998.
- < EQL: exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

Sanitary Landfill D-23 Fourth Quarter 1998 and Annual Summary
WELL: LFW 21

SRS Coord.

N 84178.3
E 46149.4

Screen Zone Elevation

167.9 - 137.9 ft msl

Top of Casing

185.1 ft msl

Casing

4" PVC

Pump

S

Formation

U Steed Pond

SAMPLE DATE

12/01/97 03/16/98 06/12/98 09/16/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>147.46</td>
<td>150.16</td>
<td>149.63</td>
<td>149.04</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>35.45</td>
<td>32.75</td>
<td>33.28</td>
<td>33.87</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.2</td>
<td>6.3</td>
<td>6.6</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>300</td>
<td>200</td>
<td>220</td>
<td>200</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>20</td>
<td>22</td>
<td>20.7</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>130</td>
<td>115</td>
<td>83</td>
<td>98</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>4.2</td>
<td>1.5</td>
<td>3.5</td>
<td>4.6</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>6.3842</td>
<td>8.5747</td>
<td>7.6933</td>
<td>3.3286</td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>ST</th>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,1,Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,1,Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>+ 1,1-Dichloroethane</td>
<td>79.2</td>
<td>40</td>
<td>62</td>
<td>55</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td>.79</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td>1.92</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>26.3</td>
<td>16</td>
<td>18</td>
<td>15.4</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><2.98</td>
<td><7</td>
<td><10</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td>20.6</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td>6</td>
<td>5.9</td>
<td>3.8</td>
<td>10</td>
<td>1</td>
<td>ug/L</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>4.29</td>
<td>2.5</td>
<td>2.8</td>
<td>2.29</td>
<td>1</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 21

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td>2.7</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><6</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>2.15</td>
<td>4</td>
<td>2.2</td>
<td>2.25</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Chloroethene</td>
<td><10</td>
<td>3.3</td>
<td>2.9</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>3.24</td>
<td>5.1</td>
<td>6.8</td>
<td>18.8</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>Chlorof orm</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td>1</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><1.7</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td>1.3</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><5.18</td>
<td><4</td>
<td><5.4</td>
<td>4.07</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>34</td>
<td>5.4</td>
<td>10</td>
<td>9.63</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>9.63</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>4.25</td>
<td><.19</td>
<td><3.2</td>
<td>2.3</td>
<td>1</td>
<td>pCi/L</td>
<td>TM</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td>5.6</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>8.4</td>
<td>4.2</td>
<td>9.1</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td>.05</td>
<td>.05</td>
<td><.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionic acid</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>13.9</td>
<td>2</td>
<td>2.6</td>
<td>2.9</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>1.02</td>
<td>.75</td>
<td>1.2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>7.08</td>
<td>3.9</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trifluoromethane</td>
<td><10.2</td>
<td>4120</td>
<td>2.56</td>
<td>3.14</td>
<td>1</td>
<td>pCi/ml</td>
<td>TM</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>98.1</td>
<td>14</td>
<td>29</td>
<td>29.6</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Fluctuating, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for fluctuation criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-25

Fourth Quarter 1998 and Annual Summary
WELL: LFW 21

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td>.941</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WSRC-TR-99-00011
Unclassified

WELL: LFW 23R

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Lonitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 84206.1</td>
<td>33.288 Deg N</td>
<td>138.2 - 118.2 ft msl</td>
<td>170.3 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46512.9</td>
<td>81.708 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

12/05/97 03/16/98 06/12/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>147.37</td>
<td>150.02</td>
<td>149.22</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>20.85</td>
<td>18.2</td>
<td>19</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>4.8</td>
<td>4.6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>30</td>
<td>28</td>
<td>24</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>22</td>
<td>16</td>
<td>16</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>12.6910</td>
<td>2.6963</td>
<td>2.76492</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>24.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Barium, total recoverable</td>
<td>9</td>
<td>6.3</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
++ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-27 Fourth Quarter 1998 and Annual Summary
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>.88</td>
<td>.6</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><4.74</td>
<td><2.7</td>
<td><2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>8.89</td>
<td>4.94</td>
<td>9.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td>.88</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>1.7</td>
<td>1700</td>
<td><.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+
+= exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-28

Fourth Quarter 1998 and Annual Summary
WELL: LFW28

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 86079.6</td>
<td>33.290 Deg N</td>
<td>162.1 - 141.1 ft msl</td>
<td>192.4 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45555.5</td>
<td>81.714 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

02/02/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19.4</td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichoroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acetone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Barium, total recoverable</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>62.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>915</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><5.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 28

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-31

Fourth Quarter 1998 and Annual Summary
SANITARY LANDFILL D-32

<table>
<thead>
<tr>
<th>WELL: LFW 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS Coord.</td>
</tr>
<tr>
<td>N 86318.4</td>
</tr>
<tr>
<td>E 45170.9</td>
</tr>
</tbody>
</table>

SAMPLE DATE

02/06/98
09/26/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>163.57</td>
<td>165.19</td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>44.13</td>
<td>42.51</td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.8</td>
<td>4.7</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>20</td>
<td>24</td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17.4</td>
<td>20.2</td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>4.60407</td>
<td>1.30037</td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Trichloroethane</td>
<td>2.6</td>
<td></td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethylene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acetone</td>
<td><5.6</td>
<td><5.6</td>
<td><5.6</td>
<td><5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acrolein</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Antimony, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Barium, total recoverable</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td>5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bromochloromethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 30

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>20.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>814</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-33 Fourth Quarter 1998 and Annual Summary
WELL: LFW 30

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>10.9</td>
<td><0.15</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-34 Fourth Quarter 1998 and Annual Summary
WELL: LFW 31

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 86262.2</td>
<td>33.290 Deg N</td>
<td>166.0 - 145.0 ft msl</td>
<td>229.3 ft msl</td>
<td>4½ PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 44899.0</td>
<td>81.716 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
12/05/97 02/17/98 06/12/98 09/16/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>160.7</td>
<td>163.55</td>
<td>165.41</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>66.3</td>
<td>63.45</td>
<td>61.59</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.8</td>
<td>5.2</td>
<td>4.5</td>
<td>4.8</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>18</td>
<td>26</td>
<td>29</td>
<td>31</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>20</td>
<td>20.1</td>
<td>19.6</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.2</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>16.5989</td>
<td>3.21694</td>
<td>3.96033</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>t8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td>2.8</td>
<td>3.09</td>
<td>1</td>
<td>J</td>
<td>µg/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>1-Dichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,3,5-Trinitrobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3-Dinitrobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>10.2</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Naphthoquinone</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Naphthylamine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,4,6-Tetrachlorophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5-Trichlorophenol</td>
<td><25.5</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,6-Trichlorophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dichlorophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dimethyl phenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA < EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flaring, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-35 Fourth Quarter 1998 and Annual Summary
WELL: LFW 31

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,4-Dinitrophenol</td>
<td><25.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dinitrotoluene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,6-Dichlorophenol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,6-Dinitrotoluene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Acetylaminofluorene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Chloronaphthalene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Chlorophenol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Methyl-4,6-dinitrophenol</td>
<td><25.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Methylnaphthalene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Naphthylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Nitrophenol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Picoline</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-sec-Butyl-4,6-dinitrophenol</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,3"-Dichlorobenzidine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,3"-Dimethylbenzidine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Methylcholanthrene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Aminobiphenyl</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Bromophenyl phenyl ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Chloro-m-cresol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Chloroaniline</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Chlorophenyl phenyl ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Nitrophenol</td>
<td><25.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Nitroquinoline-1-oxide</td>
<td><20.4</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-Nitro-o-toluidine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,12-Dimethylbenz(a)anthracene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acenaphthene</td>
<td><10.2</td>
<td>1 UJ</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acenaphthylene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><4.88</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td>20 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetophenone</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td>10 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td>20 U</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td>10 U</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td>30.6</td>
<td>200 U</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Aniline</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anthracene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimony, total recoverable</td>
<td><5</td>
<td>35 U</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Aramite</td>
<td><20.4</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td>8 U</td>
<td><8</td>
<td>28 U</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>3.1</td>
<td>5.9 U</td>
<td>5.1</td>
<td>5.6 U</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td>5 U</td>
<td><5</td>
<td>3 U</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW31

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzo(a)anthracene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo(a)pyrene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo(b)fluoranthene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo(g,h,i)perylene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzo(k)fluoranthene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzoic acid</td>
<td><25.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzyl alcohol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
</tr>
<tr>
<td></td>
<td>Bis(2-chloroethoxy) methane</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis(2-chloroethyl) ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis(2-chloroisopropyl) ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis(2-ethylhexyl) phthalate</td>
<td>1.22</td>
<td>1 J</td>
<td>ug/L</td>
<td>WA</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Butylbenzyl phthalate</td>
<td><10.2</td>
<td><5</td>
<td><1 U</td>
<td>ug/L</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><4</td>
<td><1 U</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzilate</td>
<td><10.2</td>
<td><5</td>
<td><1 U</td>
<td>ug/L</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlororform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>1.2</td>
<td>1.2</td>
<td><3</td>
<td>4.1</td>
<td>1 J</td>
<td>ug/L</td>
<td>WA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chrysene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td><7</td>
<td><1 U</td>
<td>ug/L</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>36.9</td>
<td>40.9</td>
<td>1 ug/L</td>
<td>WA</td>
<td>40.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-octyl phthalate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diallate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibenz(a,h)anthracene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibenzo(f,g)thiophene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyl phthalate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimethyl phthalate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-37 Fourth Quarter 1998 and Annual Summary
WELL: LFW 31

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diphenylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methanesulfonate</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>2.6</td>
<td>1.7</td>
<td>7.14</td>
<td>5.99</td>
<td>1</td>
<td>pC/L</td>
<td>TM</td>
<td>5.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobutadiene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorocyclopentadiene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloroethane</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorophene</td>
<td><102</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloropropene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>77.7</td>
<td>214</td>
<td>1</td>
<td>J</td>
<td>WA</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Isophorone</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isosafrole</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><19.3</td>
<td>3.4</td>
<td><17</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td><.5</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methapyrrole</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><2.27</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>WA</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><10</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methanesulfonate</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodi-n-butylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodiethylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodimethylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodiphenylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodipropylamine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomethylhydrazine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomorpholine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopiperidine</td>
<td><51</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopyrrolidine</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naphthalene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td>1.6</td>
<td>1</td>
<td>J</td>
<td>WA</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrobenzene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><10.2</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachloronitrobenzene</td>
<td><51</td>
<td>1</td>
<td>u</td>
<td>L</td>
<td>WA</td>
<td><</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-38 Fourth Quarter 1998 and Annual Summary
WELL: LFW 31

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Phenacetin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Pronamid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Pyrene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Pyridine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Safrole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Specific conductance</td>
<td>23.7</td>
<td></td>
<td></td>
<td>17.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Toluene, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td>12</td>
<td>28</td>
<td>39.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Tritium</td>
<td>1.72</td>
<td><1330</td>
<td><.87</td>
<td><.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Unknown</td>
<td><5.02</td>
<td><5.91</td>
<td><4.42</td>
<td><10.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>.5</td>
<td><6</td>
<td><10</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td>76.1</td>
<td>25.9</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>n,a-Dimethylphenethylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td><.015</td>
<td><.015</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>m-Cresol (3-Methylphenol)</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>m-Nitroaniline</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>o-Cresol (2-Methylphenol)</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>o-Nitroaniline</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>o-Toluidine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>p-Cresol (4-Methylphenol)</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>p-Dimethylaminoazobenzene</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>p-Nitroaniline</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>pH</td>
<td>5.65</td>
<td>5.37</td>
<td></td>
<td><.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

Fourth Quarter 1998 and Annual Summary
WELL: LFW 31

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Sample</th>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF</th>
<th>Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-40 Fourth Quarter 1998 and Annual Summary
WELL: LFW32

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 85836.8 33.289 Deg N 165.3 - 144.3 ft msl 223.7 ft msl 4" PVC S U Steed Pond
E 44935.9 81.715 Deg W

SAMPLE DATE 02/02/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deg C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>4,97261</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-41 Fourth Quarter 1998 and Annual Summary
WELL: LFW 32

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><.79</td>
<td><.79</td>
<td><.79</td>
<td><.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromoethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.2</td>
<td><6.2</td>
<td><6.2</td>
<td><6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
<td>25.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1950</td>
<td>1950</td>
<td>1950</td>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><42.7</td>
<td><42.7</td>
<td><42.7</td>
<td><42.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown 4</td>
<td><30.16</td>
<td><30.16</td>
<td><30.16</td>
<td><30.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 32

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-43

Fourth Quarter 1998 and Annual Summary
WELL: LFW 32C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 85837.8</td>
<td>33.289 Deg N</td>
<td>113.6 - 98.6 ft msl</td>
<td>223.6 ft msl</td>
<td>2 1/8 PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 44923.0</td>
<td>81.715 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
- 02/06/98
- 09/26/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>158.65</td>
<td>160.21</td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>61.45</td>
<td>59.89</td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.2</td>
<td>4.9</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>31</td>
<td>28</td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18.2</td>
<td>13.7</td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>2</td>
<td>1.1</td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>8.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>4.22176</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromochloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,3,5-Trinitrobenzene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,3-Dinitrobenzene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>U</td>
<td><EQL</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1,4-Naphthoquinone</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1-Naphthylamine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2,3,4,6-Tetrachlorophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethyl phenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 U</td>
<td><EQL</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
- * = exceeded holding time for fourth quarter 1998.
- + = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-44 Fourth Quarter 1998 and Annual Summary
WELL: LFW 32C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Dinitrophenol</td>
<td><25.5</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methyl-4,6-dinitrophenol</td>
<td><25.5</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Picoline</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-sec-Butyl-4,6-dinitrophenol</td>
<td><51</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3′-Dichlorobenzidine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3′-Dimethylbenzidine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methylcholanthrene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Aminohiphenyl</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloro-m-cresol</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td><25.5</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Nitroquinoline-1-oxide</td>
<td><20.4</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,12-Dimethylbenz(a)anthracene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Aluminum, total recoverable</td>
<td>52.7</td>
<td>J</td>
<td>ug/L</td>
<td>WA</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aramite</td>
<td><20.4</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 32C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Benzo(a)anthracene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzo(a)pyrene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzo(b)fluoranthe</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzo(g,h,i)perylene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzo(k)fluoranthe</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzoic acid</td>
<td><25.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzy alcohol</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis(2-chloroethoxy) methane</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis(2-chloroethyl) ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis(2-chloroisopropyl) ether</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bis(2-ethylhexyl) phthalate</td>
<td><.805</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Butylbenzyl phthalate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzilate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium, total recoverable</td>
<td>.6</td>
<td>2.6</td>
<td>1 J</td>
<td>ug/L</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chrysene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td>7</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, total recoverable</td>
<td><3</td>
<td>3.4</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyanide</td>
<td><15.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di-n-octyl phthalate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diallyl</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibenzo(a,h)anthracene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibenzo(furan)</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diethyl phthalate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 32C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimethoate</td>
<td><1.02</td>
<td><1.02</td>
<td><1.02</td>
<td><1.02</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Dimethyl phthalate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Diphenylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Disulfoton</td>
<td><1.02</td>
<td><1.02</td>
<td><1.02</td>
<td><1.02</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methanesulfonate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><2.65</td>
<td><2.65</td>
<td><2.65</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Famphur</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Fluorene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachlorobenzene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachlorobutadiene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachlorocyclopentadiene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachloroethene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachlorophene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Hexachloropropene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>152</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isophorone</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Isosafrole</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td><17</td>
<td><17</td>
<td><17</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methapyrile</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methanesulfonate</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodi-n-butylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodimethylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodiphenylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodipropylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomethylethylamine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomorpholine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopiperidine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopyrrolidine</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Naphthalene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrobenzene</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
++ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 32C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O,O,O-Triethyl phosphorothioate</td>
<td><1.02</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion ethyl</td>
<td><1.02</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathion methyl</td>
<td><1.02</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td><51</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td><25.5</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenacetin</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenanthrene</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td><2.04</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td><1.02</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfite</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific conductance</td>
<td>31.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfite</td>
<td><10000</td>
<td>1</td>
<td>UJ</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfite</td>
<td><2.04</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thioniazin</td>
<td><1.02</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin, total recoverable</td>
<td><31</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td><690</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>1.1</td>
<td><6</td>
<td>UJ</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td>10.8</td>
<td>26.4</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td>26.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,a-Dimethylphenethylamine</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Cresol (3-Methylphenol)</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Nitroaniline</td>
<td><25.5</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Cresol (2-Methylphenol)</td>
<td><10.2</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-Nitroaniline</td>
<td><25.5</td>
<td>1</td>
<td>ug/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
+ = exceeded holding time for fourth quarter 1998.
WELL: LFW 32C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>o-Toluidine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>uc/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Cresol (4-Methylphenol)</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>uc/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Dimethylaminoazobenzene</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>uc/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Nitroaniline</td>
<td><25.5</td>
<td>1</td>
<td>U</td>
<td>uc/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Phenylenediamine</td>
<td><10.2</td>
<td>1</td>
<td>U</td>
<td>uc/L</td>
<td>WA</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>5.45</td>
<td></td>
<td></td>
<td></td>
<td>5.33</td>
<td>1</td>
<td>J</td>
<td>pH</td>
<td>WA</td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NDD</td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>158.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>39.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>6.34438</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 34

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethylene</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>27.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><127.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown 6</td>
<td><5.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown 7</td>
<td><11.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
++ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 34

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown 8</td>
<td><38.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>4.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 36R

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 83537.3 33.285 Deg N 141.8 - 121.8 ft msl 168.2 ft msl 2” PVC V U Steed Pond
E 45519.1 81.709 Deg W

SAMPLE DATE 12/01/97 03/16/98 06/10/98 09/15/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>143.61</td>
<td>145.26</td>
<td>144.41</td>
<td>144.46</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>22.55</td>
<td>20.9</td>
<td>21.75</td>
<td>21.7</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.6</td>
<td>6.4</td>
<td>6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>160</td>
<td>200</td>
<td>170</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>19</td>
<td>20.8</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>70</td>
<td>70</td>
<td>73</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3</td>
<td>1.6</td>
<td>1.4</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>7.90897</td>
<td>5.01169</td>
<td>7.40594</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NP</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>5.88</td>
<td>6.3</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-1-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>13.9</td>
<td>25</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><3.38</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>7.7</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>2.5</td>
<td>2.1</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td>.96</td>
<td>.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromofom</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 36R

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>8.64</td>
<td>11</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td>1.2</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><3.29</td>
<td><2</td>
<td><2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>2.99</td>
<td><.61</td>
<td>2.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>8.2</td>
<td><5</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td>1.1</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>1.92</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><3.89</td>
<td>3520</td>
<td>2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td>1.5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 41R

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 83238.3</td>
<td>33.286 Deg N</td>
<td>140.2 - 120.2 ft msl</td>
<td>169.7 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46635.3</td>
<td>81.706 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE 12/04/97 03/12/98 06/08/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>141.6</td>
<td>143.95</td>
<td>142.25</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>26</td>
<td>23.65</td>
<td>25.35</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td>4.4</td>
<td>5</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18</td>
<td>19.9</td>
<td>19.3</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.2</td>
<td>.3</td>
<td>.2</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.63259</td>
<td>2.83059</td>
<td>3.02984</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

1,1,1,2-Tetrachloroethane	<5	<5	<5	<5			
1,1,1-Trichloroethane	1.27	.78	<5	<5			
1,1,2,2-Tetrachloroethane	<5	<5	<5	<5			
1,1,2-Trichloroethane	<5	<5	<5	<5			
1,1-Dichloroethane	2.02	<5	<5	<5			
1,1-Dichloroethylene	<5	<5	<5	<5			
1,2,3-Trichloropropene	<5	<5	<5	<5			
1,2-Dibromo-3-chloropropene	<5	<5	<5	<5			
1,2-Dibromoethane	<5	<5	<5	<5			
1,2-Dichloroethane	<5	<5	<5	<5			
1,2-Dichloropropane	<5	<5	<5	<5			
1,4-Dichlorobenzene	<5	<5	<5	<5			
2-Hexanone	<10	<10	<10	<10			
Acetone	<7.88	<3.8	<10	<10			
Acetonitrile (Methyl cyanide)	<20	<20	<20	<20			
Acrolein	<20	<10	<10	<10			
Acrylonitrile	<5	<20	<5	<5			
Allyl chloride	<10	<10	<10	<10			
Aluminum, total recoverable	<40	<8	<8	<8			
Arsenic, total recoverable	<2.1	<2.1	2.7				
Barium, total recoverable	<5	<5	<5	<5			
Benzene	<5	<5	<5	<5			
Bromodichloromethane	<5	<5	<5	<5			
Bromoform	<5	<5	<5	<5			
Bromomethane (Methyl bromide)	<10	<10	<10	<10			
Cadmium, total recoverable	<4.7	<2	<2	<2			

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 41R

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>1.2</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>3.39</td>
<td>3.2</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><24.6</td>
<td><2.2</td>
<td><2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>2.46</td>
<td><7.8</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><5</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><4.7</td>
<td><5</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>1.1</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>6.88</td>
<td><5</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><2.14</td>
<td>1730</td>
<td><8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><6.89</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-56 Fourth Quarter 1998 and Annual Summary
WELL: LF4 43B

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 86459.2</td>
<td>33.291 Deg N</td>
<td>100.4 - 90.4 ft msl</td>
<td>203.0 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 45240.5</td>
<td>81.716 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

12/08/97 03/16/98 06/08/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>161.75</td>
<td>165.54</td>
<td>165.8</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>39.25</td>
<td>35.46</td>
<td>35.2</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5</td>
<td>5.4</td>
<td>5.2</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>16</td>
<td>18.7</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>0.9</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.82641</td>
<td>3.77442</td>
<td>3.99808</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><1</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td>7.5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><1</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Picoline</td>
<td><1</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetonitrile(Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>3.8</td>
<td>3.7</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-57 Fourth Quarter 1998 and Annual Summary
WELL: LFW 43B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
WELL: LFW 43B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene fluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><.99</td>
<td><1160</td>
<td><.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-59

Fourth Quarter 1998 and Annual Summary
WELL: LFW 43C

SRS Coord.
- Lat/Longitude: 33.291 Deg N
- E 45234.9 Deg W
- Screen Zone: 138.5 - 128.5 ft msl
- Top of Casing: 202.6 ft msl
- Casing: 4" PVC
- Pump: S
- Formation: U Steed Pond

SAMPLE DATE
- 12/05/97
- 03/16/98
- 06/08/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>161.8</td>
<td>165.7</td>
<td>166.05</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>38.7</td>
<td>34.8</td>
<td>34.45</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.8</td>
<td>5</td>
<td>5.2</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>21</td>
<td>16</td>
<td>18.6</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1</td>
<td>.5</td>
<td>.2</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>5.21049</td>
<td>6.86557</td>
<td>3.61394</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><200</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><20</td>
<td><10</td>
<td><20</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.4</td>
<td>6.2</td>
<td>6.2</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill
- **D-60**

Fourth Quarter 1998 and Annual Summary
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><96</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>3.92</td>
<td>2.4</td>
<td>2.3</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>2.35</td>
<td>4.47</td>
<td>3.59</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td>3.7</td>
<td>4.8</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 43C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1.3</td>
<td></td>
<td></td>
<td>1590</td>
<td><0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td><6.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>10.8</td>
<td><0.015</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-62 Fourth Quarter 1998 and Annual Summary
WELL: LFW 43D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 86443.2</td>
<td>33.291 Deg N</td>
<td>170.9 - 150.9 ft msl</td>
<td>202.9 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45244.5</td>
<td>81.716 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
- 12/05/97
- 03/16/98
- 06/09/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>162.1</td>
<td>167.98</td>
<td>164.6</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>38.8</td>
<td>32.92</td>
<td>36.3</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5</td>
<td>5.2</td>
<td>4.8</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>16</td>
<td>19.1</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.8</td>
<td>.6</td>
<td>.6</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>8.89228</td>
<td>11.1054</td>
<td>8.54435</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromochloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><9.01</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td><20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimony, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>6.9</td>
<td>6.6</td>
<td><7.4</td>
<td><7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria. * = exceeded holding time for fourth quarter 1998. ** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>.88</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>2.4</td>
<td><.67</td>
<td><17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><14.8</td>
<td><3.2</td>
<td><1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>1.06</td>
<td><.51</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><6.7</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific conductance</td>
<td>11.6</td>
<td>11.6</td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

*: exceeded holding time for fourth quarter 1998.
**: exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill **D-64** Fourth Quarter 1998 and Annual Summary
WELL: LFW 43D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tritium</td>
<td>.97</td>
<td><853</td>
<td><1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td>5.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-65

Fourth Quarter 1998 and Annual Summary
WELL: LFW 45D

SRS Coord.
N 84217.8
E 45142.0

Lat/Longitude
33.286 Deg N
81.712 Deg W

Screen Zone Elevation
154.7 - 134.7 ft msl

Top of Casing
166.3 ft msl

Casing
4" PVC

Pump
S

Formation
U Steed Pond

SAMPLE DATE
12/04/97 03/12/98 06/09/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>150.1</td>
<td>152.56</td>
<td>151.4</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>14.3</td>
<td>11.84</td>
<td>13</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>5.5</td>
<td>4.8</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>46</td>
<td>42</td>
<td>42</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>12.7</td>
<td>19.2</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1.3</td>
<td>1.5</td>
<td>.7</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>7.22543</td>
<td>6.01733</td>
<td>13.1130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

Analyte

<table>
<thead>
<tr>
<th></th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>12.6</td>
<td>11</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+= exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill
D-66
Fourth Quarter 1998 and Annual Summary

Compliance
WELL: LFW 45D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>3.5</td>
<td><3</td>
<td><3</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.61</td>
<td><2.3</td>
<td><3</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>6.56</td>
<td><1.59</td>
<td>8.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><5</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><7</td>
<td>.13</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>2.09</td>
<td>2</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1.55</td>
<td>1410</td>
<td><1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-67 Fourth Quarter 1998 and Annual Summary
WELL: LFW 47D

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 83838.6 33.285 Deg N 154.7 - 134.9 ft msl 161.7 ft msl 4" PVC S U Steed Pond
E 45150.8 81.711 Deg W

SAMPLE DATE 12/04/97 03/12/98 06/09/98 09/30/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>147</td>
<td>148.85</td>
<td>147.6</td>
<td>147.58</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>12.7</td>
<td>10.85</td>
<td>12.1</td>
<td>12.12</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.4</td>
<td>5.8</td>
<td>5</td>
<td>4.8</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>40</td>
<td>21</td>
<td>38</td>
<td>53</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18</td>
<td>13.1</td>
<td>19.1</td>
<td>22.9</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.7</td>
<td>.6</td>
<td>.8</td>
<td>.6</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>5.83809</td>
<td>2.00703</td>
<td>7.25900</td>
<td>2.90756</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td>1 U</td>
<td><EQL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><10</td>
<td><5.3</td>
<td><10</td>
<td><20</td>
<td><20</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.2</td>
<td>200</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>19.8</td>
<td>11.5</td>
<td>15.3</td>
<td>23</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-68 Fourth Quarter 1998 and Annual Summary
WELL: LFW 47D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td><3</td>
<td>24</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.52</td>
<td><2.1</td>
<td><2.7</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>1.23</td>
<td><.98</td>
<td>.95</td>
<td>1.02</td>
<td>1</td>
<td>pCi/L</td>
<td>TM</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>18.8</td>
<td>151</td>
<td>151</td>
<td></td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><1500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><2</td>
<td><4.4</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Proponitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><.87</td>
<td>938</td>
<td>2.12</td>
<td><1.18</td>
<td>1</td>
<td>U</td>
<td>pCi/ml</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><2</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter1998.

Sanitary Landfill | D-69 | Fourth Quarter 1998 and Annual Summary
WELL: LFW 47D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 48C

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 83856.4 33.285 Deg N 118.2 - 108.2 ft msl 169.3 ft msl 4" PVC S M Steed Pond
E 45413.3 81.710 Deg W

SAMPLE DATE 12/04/97

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>147.01</td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>20.19</td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>5.17942</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethane</td>
<td>4.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,4-Dichlorobenzene</td>
<td>5.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acetone</td>
<td><7.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acrolein</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Acrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Barium, total recoverable</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-71 Fourth Quarter 1998 and Annual Summary
WELL: LFW 48C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>3.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>3.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter1998.

Sanitary Landfill D-72 Fourth Quarter 1998 and Annual Summary
WELL: LFW 56D

<table>
<thead>
<tr>
<th>SBS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 83398.0</td>
<td>33.284 Deg N</td>
<td>151.4 - 151.3 ft msl</td>
<td>158.1 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45306.6</td>
<td>81.709 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
- 12/03/97
- 03/12/98
- 06/09/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>142.84</td>
<td>143.88</td>
<td>143.3</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>13.06</td>
<td>12.02</td>
<td>12.6</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>4.6</td>
<td>4.9</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>15.3</td>
<td>18</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.7</td>
<td>6.2</td>
<td>1.4</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>13.6463</td>
<td>5.15694</td>
<td>6.97784</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><3.2</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>7</td>
<td>5.1</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note:
- Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
- * = exceeded holding time for fourth quarter 1998.
- + = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-73

Fourth Quarter 1998 and Annual Summary
WELL: LFW 56D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>.8</td>
<td>.7</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.62</td>
<td><2.2</td>
<td><1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>1.49</td>
<td><.33</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><47</td>
<td>6.2</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><7</td>
<td><.2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1.3</td>
<td>1080</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td>5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note:
- Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
- * = exceeded holding time for fourth quarter 1998.
- + = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

WSRC-TR-99-00011

Unclassified

Fourth Quarter 1998 and Annual Summary
WELL: LFW 58D

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 82940.6 33.284 Deg N 147.6-127.5 ft msl 167.6 ft msl 4" PVC S U Steed Pond
E 45700.2 81.708 Deg W

SAMPLE DATE
12/02/97 03/16/98 06/08/98 09/14/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>139.7</td>
<td>141.15</td>
<td>140.08</td>
<td>140.09</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>25.9</td>
<td>24.45</td>
<td>25.52</td>
<td>25.51</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.2</td>
<td>5.4</td>
<td>5.6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>140</td>
<td>250</td>
<td>280</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>14</td>
<td>21.5</td>
<td>23.8</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>24</td>
<td>40</td>
<td>47</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>8.8</td>
<td>4.1</td>
<td>2.7</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>.107351</td>
<td>3.65937</td>
<td>13.1647</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>4.28</td>
<td>2.8</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td>67.7</td>
<td>130</td>
<td>92.3</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>92.3</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td>1.96</td>
<td>3.7</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td>2.84</td>
<td><5</td>
<td>1</td>
<td>J</td>
<td>g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloromethane</td>
<td><5</td>
<td>4.7</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td>1.59</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>34.2</td>
<td>170</td>
<td>173</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><10</td>
<td><5.8</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td>639</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td>6.1</td>
<td><8</td>
<td>47.7</td>
<td>1</td>
<td>J</td>
<td>g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>5.9</td>
<td>5.3</td>
<td>6.67</td>
<td>1</td>
<td>J</td>
<td>g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>3.94</td>
<td>24</td>
<td>13.3</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>u</td>
<td>g/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td>3.6</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td>1.6</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>4.93</td>
<td>22</td>
<td>21.7</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>21.7</td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td>2.36</td>
<td>6.7</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ Chloroethene (Vinyl chloride)</td>
<td>7.95</td>
<td>40</td>
<td>15.1</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><2.8</td>
<td>.9</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ Dichlorodifluoromethane</td>
<td>24.6</td>
<td>15</td>
<td>27.7</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td>+ Dichloromethane (Methylene chloride)</td>
<td><21.5</td>
<td><16</td>
<td>8.6</td>
<td>1</td>
<td>J</td>
<td>ugL</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td></td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylenzene</td>
<td><5</td>
<td>.61</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>3.59</td>
<td>3.33</td>
<td>8.36</td>
<td>1</td>
<td>J</td>
<td>pCi/L</td>
<td>TM</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td>11</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td>11.9</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td>.05</td>
<td><.5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td></td>
<td></td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>5.25</td>
<td>2.6</td>
<td>3.47</td>
<td>1</td>
<td>J</td>
<td>ugL</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td>.83</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ Trichloroethylene</td>
<td>13.4</td>
<td>16</td>
<td>16.2</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>+ Trichlorofluoromethane</td>
<td>17.5</td>
<td>34</td>
<td>33.9</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>33.9</td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>8.35</td>
<td>16.76</td>
<td>18.16</td>
<td>1</td>
<td>pCi/ml</td>
<td>TM</td>
<td>18.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>11.4</td>
<td>14</td>
<td>11.8</td>
<td>1</td>
<td>ugL</td>
<td></td>
<td>EX</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ugL</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-76

Fourth Quarter 1998 and Annual Summary
WELL: LFW 58D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>ST</th>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF/Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-77 Fourth Quarter 1998 and Annual Summary
WELL: LFW 59D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 83600.1</td>
<td>33.284 Deg N</td>
<td>149.3 - 129.3 ft msl</td>
<td>167.6 ft msl</td>
<td>4” PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46056.1</td>
<td>81.707 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
12/01/97 03/16/98 06/08/98 09/15/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>141.2</td>
<td>129.4</td>
<td>141.6</td>
<td>142.33</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>24.1</td>
<td>25.9</td>
<td>23.69</td>
<td>22.97</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>4.8</td>
<td>4.2</td>
<td>4.8</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>26</td>
<td>20</td>
<td>23</td>
<td>22</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>21.7</td>
<td>21</td>
<td>20.2</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3.1</td>
<td>5.2</td>
<td>1.6</td>
<td>5.6</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>8.26606</td>
<td>29.2175</td>
<td>10.7469</td>
<td>5.46911</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1,1-Dichloroethane</td>
<td>1.34</td>
<td>1</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>2-Chloroethyl vinyl ether</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Acetone</td>
<td><3.92</td>
<td><10</td>
<td><10</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><200</td>
<td><20</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Acrylonitrile</td>
<td><5</td>
<td><10</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>Aluminum, total recoverable</td>
<td><4.5</td>
<td><4.5</td>
<td><4.5</td>
<td><4.5</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>Arsenic, total recoverable</td>
<td><4.5</td>
<td><4.5</td>
<td><4.5</td>
<td><4.5</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>Barium, total recoverable</td>
<td>5.6</td>
<td>3.9</td>
<td>5.2</td>
<td>5.2</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
</tbody>
</table>

Note: Flaking, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-78 Fourth Quarter 1998 and Annual Summary
WELL: LFW 59D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chloroethylene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><1.1</td>
<td>1.6</td>
<td><3</td>
<td><7.37</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.72</td>
<td><5</td>
<td>5</td>
<td>3.17</td>
<td>1</td>
<td>J</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><3.14</td>
<td><2.5</td>
<td><3</td>
<td><10</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>2.64</td>
<td>1.13</td>
<td>1.47</td>
<td>2.86</td>
<td>1</td>
<td>pCi/l</td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>195</td>
<td>358</td>
<td>358</td>
<td>358</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td><100</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><10</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Pentachloroethylene</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td>12.4</td>
<td>1</td>
<td>J</td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td>.81</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Toluenel</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td>.62</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.94</td>
<td>3</td>
<td>.5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Tritium</td>
<td><20.54</td>
<td>.94</td>
<td>.18</td>
<td><1.44</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><10</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

† = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-79 Fourth Quarter 1998 and Annual Summary
WELL: LFW 59D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
++ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-80 Fourth Quarter 1998 and Annual Summary
WELL: LFW 60C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82529.6</td>
<td>33.283 Deg N</td>
<td>108.3 - 98.3 ft msl</td>
<td>157.2 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 45711.9</td>
<td>81.707 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th></th>
<th>12/02/97</th>
<th>03/16/98</th>
<th>06/05/98</th>
</tr>
</thead>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.6</td>
<td>136.53</td>
<td>135.8</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>19.5</td>
<td>18.57</td>
<td>19.3</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.2</td>
<td>6.2</td>
<td>5.6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>89</td>
<td>74</td>
<td>84</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>19</td>
<td>20.8</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>4</td>
<td>1.5</td>
<td>2.7</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.78569</td>
<td>9.52508</td>
<td>10.4706</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td>12.7</td>
<td>9.3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>8.01</td>
<td>7.3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><5.3</td>
<td><10</td>
<td><3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>7.1</td>
<td>5.2</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td>.55</td>
<td>.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td>2.9</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+= exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 60C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.4</td>
<td>1.5</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>2.87</td>
<td>4.1</td>
<td>5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><1.3</td>
<td>.6</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td>1.7</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.6</td>
<td><5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><8.42</td>
<td><2.6</td>
<td><2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>1.34</td>
<td><.81</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><47</td>
<td>7.9</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td>.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>2</td>
<td>1.2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>3.8</td>
<td><5</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>2.38</td>
<td>1870</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>1.3</td>
<td>1.2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-82 Fourth Quarter 1998 and Annual Summary
WELL: LFW 60D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82531.5</td>
<td>33.283 Deg N</td>
<td>143.8 - 123.8 ft msl</td>
<td>157.1 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45722.3</td>
<td>81.707 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12/04/97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03/16/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06/09/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09/16/98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>136.2</td>
<td>137.5</td>
<td>136.32</td>
<td>136.72</td>
</tr>
<tr>
<td>Depth to water</td>
<td>19</td>
<td>17.7</td>
<td>18.88</td>
<td>18.48</td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td>5.2</td>
<td>4.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>50</td>
<td>20</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>19</td>
<td>18.5</td>
<td>19.7</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Turbidity</td>
<td>8.5</td>
<td>.8</td>
<td>12.8</td>
<td>2</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>.106601</td>
<td>5.66760</td>
<td>.105714</td>
<td>.205721</td>
</tr>
<tr>
<td>Sampling code</td>
<td>NX</td>
<td>NVX</td>
<td>NX</td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>18.1</td>
<td>3.8</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><20</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><50</td>
<td><500</td>
<td>1</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><50</td>
<td><50</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>649</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td><100</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>10.1</td>
<td>4.7</td>
<td>5.8</td>
<td>10</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: * = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td>10 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td>1.89</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>2.6</td>
<td><3</td>
<td><3</td>
<td>10 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>5.63</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.77</td>
<td><3.1</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>1.32</td>
<td><.97</td>
<td>1.16</td>
<td>.95</td>
<td>ugiL</td>
<td>TM</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>531</td>
<td><200</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>15.9</td>
<td><5</td>
<td>17.9</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td>2.48</td>
<td>.22</td>
<td>.17</td>
<td>.22</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td>500 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>50 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>200 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td>200 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td>200 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td>200 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>1</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>4.45</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>15.2</td>
<td><5</td>
<td>2.93</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>4.6</td>
<td>1350</td>
<td>2.08</td>
<td>1.7</td>
<td>pCi/ml</td>
<td>TM</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><2</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

Fourth Quarter 1998 and Annual Summary
WELL: LFW 60D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><20</td>
<td></td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 61D

SRS Coord.
- N 83089.1
- E 46471.1

Screen Zone Elevation
- 150.4 ft
- 130.3 ft

Top of Casing
- 168.3 ft

Casing
- 4" PVC

Pump
- S

Formation
- U Steed Pond

SAMPLE DATE
- 12/02/97
- 03/16/98
- 06/12/98
- 09/15/98

FIELD DATA

Analyte

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>142.64</td>
<td>145.51</td>
<td>143.16</td>
<td>143.4</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>23.76</td>
<td>20.89</td>
<td>23.24</td>
<td>23</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.2</td>
<td>5.5</td>
<td>5.7</td>
<td>5.7</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>260</td>
<td>160</td>
<td>130.4</td>
<td>120</td>
<td>us/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>20.4</td>
<td>20.9</td>
<td>21.9</td>
<td>deg C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>121</td>
<td>43</td>
<td>32</td>
<td>44</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3.5</td>
<td>2.1</td>
<td>2.7</td>
<td>1.8</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>19.2690</td>
<td>7.12748</td>
<td>7.22949</td>
<td>4.67480</td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

Analyte

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>5.86</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,1-Trichloroethane</td>
<td>2.77</td>
<td>8.4</td>
<td>8</td>
<td>5.86</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1,1-Dichloroethane</td>
<td>75.9</td>
<td>46</td>
<td>49</td>
<td>59.1</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,1-Dichloroethylene</td>
<td>2.39</td>
<td><25</td>
<td>4.2</td>
<td>3.73</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2-Dichloropropane</td>
<td>2.78</td>
<td><25</td>
<td><5</td>
<td>1.68</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1</td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,4-Dichlorobenzene</td>
<td>3.71</td>
<td><25</td>
<td>.87</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Chloroethyl vinyl ether</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Hexanone</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><43.9</td>
<td><50</td>
<td><4.9</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><100</td>
<td><20</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><50</td>
<td><10</td>
<td><50</td>
<td>1</td>
<td>u</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>u</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>u</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td>16.4</td>
<td><8</td>
<td>203</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td>16.4</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>4.7</td>
<td>8.9</td>
<td>10.6</td>
<td>12.8</td>
<td>1</td>
<td>u</td>
<td>ug/L</td>
<td>EX</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>2.28</td>
<td><25</td>
<td>.56</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

WSRC-TR-99-00011

Unclassified

Fourth Quarter 1998 and Annual Summary

D-86
WELL: LFW 61D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Analysis</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td>1.63</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7</td>
<td>1.2</td>
<td><3</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>38.5</td>
<td>17</td>
<td>17</td>
<td>18.7</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>18.7</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><9.31</td>
<td><14</td>
<td><4.6</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>19.9</td>
<td><25</td>
<td>2.1</td>
<td>3.3</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>2.2</td>
<td>2.1</td>
<td>4.32</td>
<td>5.78</td>
<td>1 pCi/L</td>
<td>TM</td>
<td>5.78</td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td><100</td>
<td><500</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><5</td>
<td>6.2</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><7</td>
<td><2</td>
<td>.06</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><25</td>
<td><5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><80.1</td>
<td><50</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><17.2</td>
<td><60</td>
<td><1.8</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><25</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><20</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><50</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>8.31</td>
<td>2.2</td>
<td>3.1</td>
<td>3.94</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Toluene</td>
<td>6.12</td>
<td><25</td>
<td>.68</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>26.2</td>
<td>10</td>
<td>12</td>
<td>14.4</td>
<td>1 ug/L</td>
<td>EX</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>14.8</td>
<td><25</td>
<td>7.1</td>
<td>16</td>
<td>1 ug/L</td>
<td>EX</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>3.64</td>
<td>3020</td>
<td>2.39</td>
<td>2.56</td>
<td>1 pCi/ml</td>
<td>TM</td>
<td>2.56</td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><25</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td>104</td>
<td><25</td>
<td>15</td>
<td>17.3</td>
<td>1 ug/L</td>
<td>EX</td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 61D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><25</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><25</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-88 Fourth Quarter 1998 and Annual Summary
WELL: LFW 62C

SRS Coord. Lat/Latitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 83012.7 33.284 Deg N 118.4 - 108.4 ft msl 165.5 ft msl 4" PVC S M Steed Pond
E 45906.7 81.707 Deg W

SAMPLE DATE 12/02/97

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,1-Dichloroethane</td>
<td>45.6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,1-Dichloroethylene</td>
<td>1.62</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,2-Dichloroethane</td>
<td>5.22</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,2-Dichloropropane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,4-Dichlorobenzene</td>
<td>35.9</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Acrolein</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Arsenic, total recoverable</td>
<td></td>
<td><4.1</td>
<td><4.1</td>
<td><4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Barium, total recoverable</td>
<td></td>
<td><10.4</td>
<td><10.4</td>
<td><10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Benzene</td>
<td></td>
<td>3.14</td>
<td>3.14</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><4.7</td>
<td><4.7</td>
<td><4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 62C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>11.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><22.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>6.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td>3.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>4.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
*+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 62D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82991.6</td>
<td>33.284 Deg N</td>
<td>147.6 - 127.6 ft msl</td>
<td>164.8 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45922.9</td>
<td>81.707 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
12/03/97 03/16/98 06/12/98 09/15/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>141.05</td>
<td>143.4</td>
<td>141.5</td>
<td>141.79</td>
<td>ft msl</td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>21.55</td>
<td>19.2</td>
<td>21.1</td>
<td>20.81</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.4</td>
<td>5.3</td>
<td>4.3</td>
<td>5.2</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>420</td>
<td>110</td>
<td>130</td>
<td>88</td>
<td>μS/cm</td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>15</td>
<td>19.3</td>
<td>26.5</td>
<td>24</td>
<td>deg. C</td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>18.9</td>
<td>2</td>
<td>13.2</td>
<td>14.5</td>
<td>NTU</td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>0.097405</td>
<td>2.54065</td>
<td>0</td>
<td>.186015</td>
<td>well volumes</td>
<td></td>
</tr>
<tr>
<td>Sampling code</td>
<td>NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>2.99</td>
<td>2.1</td>
<td>2.13</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>+ 1,1-Dichloroethane</td>
<td>119</td>
<td>82</td>
<td>79.1</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX 79.1</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>3.15</td>
<td>2.3</td>
<td>2.86</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>5.38</td>
<td>3.8</td>
<td>3.74</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>2.1</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>86</td>
<td>66</td>
<td>59</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX 59</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>U</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td><500</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>+ Aluminum, total recoverable</td>
<td>369</td>
<td>369</td>
<td>369</td>
<td>369</td>
<td>1</td>
<td>ug/L</td>
<td>EX 86I</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><8</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>7.8</td>
<td>4.3</td>
<td>6.5</td>
<td>7.22</td>
<td>1</td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>+ Benzene</td>
<td>25.6</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>u</td>
<td>ug/L</td>
<td>EX 11</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX <EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 62D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td>5.43</td>
<td>4.6</td>
<td>8.92</td>
<td>1</td>
<td>ng/L</td>
<td>EX</td>
<td>8.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>23.9</td>
<td>21</td>
<td>21.8</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>21.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td>3.79</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td>15.6</td>
<td>7.8</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>5.2</td>
<td><3</td>
<td>2.1</td>
<td><6.96</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><26.2</td>
<td><13</td>
<td>10.3</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>6.5</td>
<td>1.72</td>
<td>3.91</td>
<td>7.67</td>
<td>1</td>
<td>pCi/L</td>
<td>TM</td>
<td>7.67</td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>660</td>
<td>1970</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>1970</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>8.6</td>
<td>5.2</td>
<td>4.1</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td>.526</td>
<td>.1</td>
<td>.16</td>
<td>.352</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><200</td>
<td><1</td>
<td><1</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>+</td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>+</td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>+</td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Tetrachloroethylene</td>
<td>3.43</td>
<td>3.5</td>
<td>7.05</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>7.05</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Trichloroethylene</td>
<td>18</td>
<td>12</td>
<td>19.3</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>19.3</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Trichlorofluoromethane</td>
<td>34.5</td>
<td>26</td>
<td>27.9</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>17.25</td>
<td>10200</td>
<td>8.37</td>
<td>10.69</td>
<td>1</td>
<td>pCi/ml</td>
<td>TM</td>
<td>10.69</td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>28.4</td>
<td>8.1</td>
<td>9.31</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-92 Fourth Quarter 1998 and Annual Summary
WELL: LFW 62D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>I</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>I</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><20</td>
<td><20</td>
<td>I</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 63B

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82740.8</td>
<td>76.1 - 66.1 ft msl</td>
<td>167.8 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>L Steed Pond</td>
</tr>
<tr>
<td>E 45550.7</td>
<td>81.708 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

12/03/97 03/12/98 06/05/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>137.8</td>
<td>138.97</td>
<td>138.15</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>28.1</td>
<td>26.93</td>
<td>27.75</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>3.4</td>
<td>2.8</td>
<td>4</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>66</td>
<td>54</td>
<td>58</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>6</td>
<td>.4</td>
<td>.5</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.48542</td>
<td>3.75134</td>
<td>4.61749</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>437</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>6</td>
<td>5.9</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td>.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 63B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>.87</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><24.8</td>
<td><2.3</td>
<td><2.3</td>
<td><2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>9.51</td>
<td>3.02</td>
<td>5.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td>1.2</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorotrifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td><3.1</td>
<td><249</td>
<td><2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 63C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82746.1</td>
<td>33.283 Deg N</td>
<td>106.2 - 96.2 ft msl</td>
<td>168.1 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 45559.2</td>
<td>81.708 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

- 12/03/97
- 03/11/98
- 06/05/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>137.64</td>
<td>138.9</td>
<td>138.05</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>28.36</td>
<td>27.1</td>
<td>27.95</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>3.6</td>
<td>4.4</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>19</td>
<td>19.9</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.2</td>
<td>.3</td>
<td>.5</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.08099</td>
<td>6.53310</td>
<td>10.6829</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromooethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><=5</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.7</td>
<td>3.7</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-96 Fourth Quarter 1998 and Annual Summary
WELL: LFW 63C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.82</td>
<td><2</td>
<td><2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>6.38</td>
<td>1.12</td>
<td>4.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1.19</td>
<td>907</td>
<td><.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-97 Fourth Quarter 1998 and Annual Summary
Analytical Data

<table>
<thead>
<tr>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF/Mod</th>
<th>Unit</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td>4.9</td>
<td>3.2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>4.34</td>
<td>10</td>
<td>6.1</td>
<td>1.78</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>10.1</td>
<td>12</td>
<td>7.5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><5</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.3</td>
<td>3.4</td>
<td>3.2</td>
<td>3.66</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX NDD</td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-98 Fourth Quarter 1998 and Annual Summary
WELL: LFW 63D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>STN</th>
<th>Date</th>
<th>Mass</th>
<th>Analysis</th>
<th>Low Limit</th>
<th>Method</th>
<th>Unit</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1Q1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2Q1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3Q1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4Q1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DF Mod</td>
<td>Unit</td>
<td>Lab</td>
<td>Filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5 <5</td>
<td><5 <5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td><10 <10</td>
<td><10 <10</td>
<td><10</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7 <2</td>
<td><2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>4.22</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chloroethene</td>
<td><10 <10</td>
<td><10 <10</td>
<td><10</td>
<td>U</td>
<td>ug/L</td>
<td>EX < EQL</td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td>9.89</td>
<td>12</td>
<td>7.1</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5 1.6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td>1.48 <10</td>
<td><10</td>
<td>3.75</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7 <3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Dichromochloromethane</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Dichromomethane (Methylene bromide)</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>21.4 28 20</td>
<td>18.1</td>
<td>1</td>
<td>j</td>
<td>ug/L</td>
<td>EX</td>
<td>18.1</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.74 <10</td>
<td><8</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>1.83 <.31</td>
<td>1.04</td>
<td>.99</td>
<td>1 pCi/L</td>
<td>TM</td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>12.1 <21.8</td>
<td><21.8</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100 <100</td>
<td><100</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47 3.9</td>
<td>8.4</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7 .05</td>
<td>.05</td>
<td><.5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10 <10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10 <12</td>
<td><12</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Pentachloroethene</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66 <5</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5 <2</td>
<td><2</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Styrene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5 1</td>
<td>1.2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Toluene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5 2.3</td>
<td>2.4</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>24.9 27</td>
<td>18</td>
<td>11.6</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>9.84</td>
</tr>
<tr>
<td>Tritium</td>
<td>1.99 1710</td>
<td><.59</td>
<td><.78</td>
<td>1 U</td>
<td>pCi/ml</td>
<td>TM</td>
<td>EQL</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10 <5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5 <5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
</tbody>
</table>

*Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-99

Fourth Quarter 1998 and Annual Summary
WELL: LFW 63D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>u g/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>u g/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>u g/L</td>
<td>EX</td>
<td><EQL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 64C

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 82744.8 | 33.283 Deg N | 93.0 - 83.0 ft msl | 152.2 ft msl | 2" PVC | V | M Steed Pond
E 45271.3 | 81.708 Deg W |

SAMPLE DATE

<table>
<thead>
<tr>
<th>Date</th>
<th>12/03/97</th>
<th>03/12/98</th>
<th>06/08/98</th>
</tr>
</thead>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>137.65</td>
<td>138.41</td>
<td>137.75</td>
<td>ft msl</td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>12.35</td>
<td>11.59</td>
<td>12.25</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>3.4</td>
<td>3.2</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>82</td>
<td>64</td>
<td>77</td>
<td>uS/cm</td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>16.3</td>
<td>18.2</td>
<td>deg. C</td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>.2</td>
<td>.4</td>
<td>.2</td>
<td>NTU</td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.35965</td>
<td>3.81031</td>
<td>2.35551</td>
<td>well volumes</td>
<td></td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>8.1</td>
<td>6.5</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td>7.5</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-101 Fourth Quarter 1998 and Annual Summary
WELL: LFW 64C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td>≤10</td>
<td>≤10</td>
<td>≤10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>≤7</td>
<td>.7</td>
<td>≤3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td>≤6.5</td>
<td>≤2.1</td>
<td>≤2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>13.51</td>
<td>5.74</td>
<td>10.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>≤7</td>
<td><10</td>
<td>≤10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td>≤100</td>
<td>≤100</td>
<td>≤100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>≤47</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td>≤7</td>
<td>≤2</td>
<td>≤2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td>≤50</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td>≤66</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td>≤5</td>
<td>≤2</td>
<td>≤2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>≤6</td>
<td>≤524</td>
<td>≤.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td>≤10</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td>≤5</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td>≤20</td>
<td>≤5</td>
<td>≤5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-102

Fourth Quarter 1998 and Annual Summary
WELL: LFW 64D

SRS Coord.

<table>
<thead>
<tr>
<th>North</th>
<th>East</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82737.8</td>
<td>E 45200.7</td>
<td>135.2 - 115.2 ft msl</td>
<td>152.2 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
</tbody>
</table>

SAMPLE DATE

- 12/02/97
- 03/12/98
- 06/08/98
- 09/15/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>137.8</td>
<td>138.75</td>
<td>138.05</td>
<td>138.07</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>12.4</td>
<td>11.45</td>
<td>12.15</td>
<td>12.13</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.4</td>
<td>5.2</td>
<td>4.9</td>
<td>5.2</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>62</td>
<td>42</td>
<td>48</td>
<td>55</td>
<td>us/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>19.2</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.7</td>
<td>.3</td>
<td>.3</td>
<td>.7</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>11.8977</td>
<td>9.54608</td>
<td>17.6670</td>
<td>2.94213</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td>5.49</td>
<td>2.2</td>
<td>3.8</td>
<td>3.33</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>17.5</td>
<td>5.1</td>
<td>7.5</td>
<td>8.49</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>8.49</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><4.5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td>24.4</td>
<td>200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Barium, total recoverable</td>
<td>8.8</td>
<td>6.1</td>
<td>6.9</td>
<td>5.89</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-103

Fourth Quarter 1998 and Annual Summary
WELL: LFW 64D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td>.4</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>8.5</td>
<td>1.7</td>
<td>2.6</td>
<td>3.25</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Chloroethene (Vinyl chloride)</td>
<td>20.2</td>
<td>5.5</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>9.14</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td>1.3</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><1.1</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>1.69</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.57</td>
<td><2.4</td>
<td><3</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>1.29</td>
<td>.45</td>
<td>1.26</td>
<td>1.43</td>
<td>1</td>
<td>pCi/L</td>
<td>TM 1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>4.3</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td>.05</td>
<td><.2</td>
<td><.5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrite</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Propionitrite</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>17.29</td>
<td>6930</td>
<td>6.69</td>
<td>8.19</td>
<td>1</td>
<td>pCi/ml</td>
<td>TM 8.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-104

Fourth Quarter 1998 and Annual Summary
WELL: LFW 64D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 65B

SRS Coord.
- N 82589.2
 - 33.284 Deg N
 - 63.5 - 53.5 ft msl
- E 46061.8
 - 81.706 Deg W
 - 148.2 ft msl

Coord.
- 46061.8
 - 81.706 Deg W
 - 46061.8

N 82589.2
- 33.284 Deg N
 - 63.5 - 53.5 ft msl

SAMPLE DATE
- 12/03/97
- 06/04/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.8 ft msl</td>
<td>135.7 ft msl</td>
<td>10.4 ft msl</td>
<td>51 ft msl</td>
<td>ft</td>
</tr>
<tr>
<td>Depth to water</td>
<td>10.3</td>
<td>4.2</td>
<td>0</td>
<td>2</td>
<td>pH</td>
</tr>
<tr>
<td>pH</td>
<td>51</td>
<td>20.9</td>
<td>0</td>
<td>2.67627</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>10.3</td>
<td>4.2</td>
<td>0</td>
<td>12/03/97</td>
<td>deg. C</td>
</tr>
<tr>
<td>Water temperature</td>
<td>51</td>
<td>20.9</td>
<td>0</td>
<td>12/03/97</td>
<td>mg/L</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>10.3</td>
<td>4.2</td>
<td>0</td>
<td>12/03/97</td>
<td>NTU</td>
</tr>
<tr>
<td>Turbidity</td>
<td>51</td>
<td>20.9</td>
<td>0</td>
<td>12/03/97</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>0</td>
<td>2</td>
<td>12/03/97</td>
<td>2</td>
<td>NP</td>
</tr>
<tr>
<td>Sampling code</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>1Q 1998</th>
<th>2Q 1998</th>
<th>3Q 1998</th>
<th>4Q 1998</th>
<th>DFM/Mod</th>
<th>Unit</th>
<th>Lab Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-106

Fourth Quarter 1998 and Annual Summary
WELL: LFW 65B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyle chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>1.6</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>7.37</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td>47.4</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>5.7</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propinonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><-.72</td>
<td><-.72</td>
<td><-.72</td>
<td><-.72</td>
<td><-.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 65C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82592.9</td>
<td>33.284 Deg N</td>
<td>96.1 - 86.1 ft msl</td>
<td>148.2 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 46064.4</td>
<td>81.706 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12/03/97</td>
<td>03/11/98</td>
<td>06/04/98</td>
<td></td>
</tr>
</tbody>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.6</td>
<td>136.85</td>
<td>135.75</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>10.5</td>
<td>9.25</td>
<td>10.35</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>3.8</td>
<td>4.4</td>
<td>4.6</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>17</td>
<td>20.2</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.3</td>
<td>.3</td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.48157</td>
<td>8.76845</td>
<td>5.42005</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2,3-Trichloropropylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Barium, total recoverable</td>
<td>8.6</td>
<td>7.8</td>
<td>8.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td>.6</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
/ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-108

Fourth Quarter 1998 and Annual Summary
WELL: LFW 65C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>.9</td>
<td>1.4</td>
<td>.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.42</td>
<td><2.1</td>
<td><2.3</td>
<td><2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>6.32</td>
<td><.39</td>
<td>5.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td>15.6</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>.72</td>
<td><410</td>
<td><.22</td>
<td><.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 65D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82598.4</td>
<td>33.284 Deg N</td>
<td>131.5 - 111.5 ft msl</td>
<td>148.4 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46071.8</td>
<td>81.706 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

12/03/97 03/12/98 06/09/98 09/14/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>136.35</td>
<td>138.35</td>
<td>136.35</td>
<td>136.4</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>9.95</td>
<td>7.95</td>
<td>9.95</td>
<td>9.9</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4</td>
<td>4.6</td>
<td>4.6</td>
<td>4.7</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>22</td>
<td>20</td>
<td>24</td>
<td>23</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>15</td>
<td>18.3</td>
<td>20.8</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3</td>
<td>5</td>
<td>.7</td>
<td>.5</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.48880</td>
<td>6.73996</td>
<td>10.1815</td>
<td>11.9693</td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF/Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>3.24</td>
<td><5</td>
<td>1.6</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>+ 1,1-Dichloroethane</td>
<td>22.2</td>
<td>14</td>
<td>14</td>
<td>10.8</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>10.8</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>1.03</td>
<td><5</td>
<td>.74</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>.983</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1.71</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDd</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td><1000</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>36.7</td>
<td><200</td>
<td><200</td>
<td></td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.2</td>
<td>3.1</td>
<td>3.5</td>
<td>4.33</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDd</td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* Exceeded holding time for fourth quarter 1998.
+ Exceeded screening level or final primary drinking water standard for fourth quarter 1998.
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td>.6</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><7</td>
<td>1.1</td>
<td>4.29</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>9.9</td>
<td>7.1</td>
<td>4.5</td>
<td>9.02</td>
<td>1 ug/L</td>
<td>EX</td>
<td>9.02</td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.72</td>
<td><3.5</td>
<td><3.2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>1.37</td>
<td><.97</td>
<td>1.62</td>
<td>1.47</td>
<td>1 J</td>
<td>pC/L</td>
<td>TM</td>
<td>NDD</td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>16.8</td>
<td>121</td>
<td>1</td>
<td>1</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>7.8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7</td>
<td>.07</td>
<td>.09</td>
<td><.5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>3.97</td>
<td>1.9</td>
<td>1.3</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
</tr>
<tr>
<td>+ Trichloroethylene</td>
<td>9.77</td>
<td>5.7</td>
<td>4.8</td>
<td>5.09</td>
<td>1 ug/L</td>
<td>EX</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>+ Trichlorofluoromethane</td>
<td>25.7</td>
<td>16</td>
<td>14</td>
<td>24.3</td>
<td>1 ug/L</td>
<td>EX</td>
<td>24.3</td>
<td></td>
</tr>
<tr>
<td>Trinitium</td>
<td>3.29</td>
<td>2910</td>
<td>3.41</td>
<td>2.29</td>
<td>1 pC/ml</td>
<td>TM</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td><45.22</td>
<td><45.22</td>
<td><45.22</td>
<td><45.22</td>
<td><45.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>2.6</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flanking, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-111 Fourth Quarter 1998 and Annual Summary
WELL: LFW 65D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-112 Fourth Quarter 1998 and Annual Summary
WELL: LFW 66D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82835.1</td>
<td>33.284 Deg N</td>
<td>141.8 - 121.8 ft msl</td>
<td>161.7 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46173.7</td>
<td>81.706 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE 12/04/97

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>140.15</td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>19.45</td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>5.66522</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ally chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-113 Fourth Quarter 1998 and Annual Summary
ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.03</td>
<td><7.03</td>
<td><7.03</td>
<td><7.03</td>
<td><7.03</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>2.34</td>
<td>2.34</td>
<td>2.34</td>
<td>2.34</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><47</td>
<td><47</td>
<td><47</td>
<td><47</td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7.7</td>
<td><7.7</td>
<td><7.7</td>
<td><7.7</td>
<td><7.7</td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><66</td>
<td><66</td>
<td><66</td>
<td><66</td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td><1.17</td>
<td><1.17</td>
<td><1.17</td>
<td><1.17</td>
<td><1.17</td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-114

Fourth Quarter 1998 and Annual Summary
WELL: LFW 67B

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82847.1</td>
<td>33.285 Deg N</td>
<td>65.6 - 55.6 ft msl</td>
<td>157.7 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>L Steed Pond</td>
</tr>
<tr>
<td>E 46517.1</td>
<td>81.705 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/04/97</td>
</tr>
<tr>
<td>03/12/98</td>
</tr>
<tr>
<td>06/05/98</td>
</tr>
</tbody>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>136.7</td>
<td>137.7</td>
<td>137</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>18.7</td>
<td>17.67</td>
<td>18.4</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>3.6</td>
<td>4.1</td>
<td>4</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>60</td>
<td>48</td>
<td>59</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>17.5</td>
<td>20</td>
<td></td>
<td>deg C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.63204</td>
<td>5.70549</td>
<td>3.05971</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>6</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 67B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>.86</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><7.01</td>
<td><1.8</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>8.49</td>
<td>2.93</td>
<td>7.54</td>
<td>7.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><.56</td>
<td><351</td>
<td><34</td>
<td><34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+
 = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-116 Fourth Quarter 1998 and Annual Summary
WELL: LFW 67C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82844.2</td>
<td>33.285 Deg N</td>
<td>96.1 - 86.1 ft msl</td>
<td>157.1 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 46527.5</td>
<td>81.705 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
- 12/02/97
- 03/12/98
- 06/09/98
- 09/14/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>136.6</td>
<td>137.9</td>
<td>136.53</td>
<td>136.6</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>18.3</td>
<td>17</td>
<td>18.37</td>
<td>18.3</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>6.4</td>
<td>6.2</td>
<td>6.2</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>660</td>
<td>600</td>
<td>520</td>
<td>490</td>
<td>uS/em</td>
</tr>
<tr>
<td>Water temperature</td>
<td>20</td>
<td>18</td>
<td>20.4</td>
<td>21</td>
<td>deg C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>193</td>
<td>232</td>
<td>217</td>
<td>172</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>1.3</td>
<td>0.7</td>
<td>1</td>
<td>0.5</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>6.01657</td>
<td>5.30714</td>
<td>4.63429</td>
<td>10.6447</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1-Tetrachloroethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,1,2-Tetrachloroethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ 1,1-Dichloroethane</td>
<td>147</td>
<td>120</td>
<td>140</td>
<td>114</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><25</td>
<td><25</td>
<td>2.2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><25</td>
<td><25</td>
<td>1.8</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><25</td>
<td><25</td>
<td>3.3</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>44.5</td>
<td>43</td>
<td>40</td>
<td>44.9</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>44.9</td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td></td>
<td></td>
<td><1000</td>
<td><1000</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><50</td>
<td><50</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><43.6</td>
<td>130</td>
<td><15</td>
<td>12.5</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><100</td>
<td><100</td>
<td><20</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><100</td>
<td><50</td>
<td><10</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><50</td>
<td><50</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>+ Arsenic, total recoverable</td>
<td>39.2</td>
<td>32.4</td>
<td>37.1</td>
<td>68.8</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>+ Barium, total recoverable</td>
<td>12</td>
<td>11.7</td>
<td>14.1</td>
<td>15.8</td>
<td>1 ug/L</td>
<td>L</td>
<td>EX</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>+ Benzene</td>
<td>10.2</td>
<td>8.9</td>
<td>8.4</td>
<td>7.29</td>
<td>1 ug/L</td>
<td>L</td>
<td>EX</td>
<td>7.29</td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 67C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromoform</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><50</td>
<td><50</td>
<td>1.9</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td>2</td>
<td><3</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><25</td>
<td>2.9</td>
<td>1.7</td>
<td>1.25</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Chloroethane</td>
<td><50</td>
<td><50</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroform</td>
<td><50</td>
<td>3.9</td>
<td>3.3</td>
<td>41.3</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>41.3</td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chloroprene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td><3</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>14.2</td>
<td>19</td>
<td>11</td>
<td>14.2</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>14.2</td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><50.4</td>
<td><14</td>
<td><2.7</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>54.8</td>
<td>50</td>
<td>48</td>
<td>53.6</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>53.6</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>7.46</td>
<td><4.94</td>
<td>7.67</td>
<td>5.73</td>
<td>1 J</td>
<td>pCU/L</td>
<td>TM</td>
<td>NDD</td>
</tr>
<tr>
<td>Isodimethane (Methyl iodide)</td>
<td><25</td>
<td>23</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td>65300</td>
<td>60200</td>
<td>61</td>
<td>92.7</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><500</td>
<td><500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><7</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><50</td>
<td><25</td>
<td><5</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><50</td>
<td><50</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><50</td>
<td><11</td>
<td><6.8</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><250</td>
<td><250</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Styrene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Toluene</td>
<td>114</td>
<td>98</td>
<td>99</td>
<td>92.7</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>92.7</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>14.4</td>
<td>16</td>
<td>14</td>
<td>9.52</td>
<td>1 J</td>
<td>ug/L</td>
<td>EX</td>
<td>9.52</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><25</td>
<td>21</td>
<td>15</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Tritium</td>
<td>26.91</td>
<td>25400</td>
<td>33.83</td>
<td>34.53</td>
<td>1 pCi/ml</td>
<td>TM</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><50</td>
<td><25</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Xylenes</td>
<td>185</td>
<td>120</td>
<td>110</td>
<td>116</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>116</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flouting, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flouting criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 67C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><25</td>
<td><25</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><100</td>
<td><25</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 67D

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 82855.0 33.285 Deg N 140.6 - 120.6 ft msl 157.7 ft msl 2" PVC V U Steed Pond
E 46529.9 81.705 Deg W

SAMPLE DATE
12/02/97 03/12/98 06/09/98 09/14/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>139.85</td>
<td>143.3</td>
<td>139.65</td>
<td>139.95</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>15.55</td>
<td>12.1</td>
<td>15.75</td>
<td>15.45</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5</td>
<td>5</td>
<td>4.8</td>
<td>4.6</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>38</td>
<td>48</td>
<td>44</td>
<td>53</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>21</td>
<td>18</td>
<td>18.5</td>
<td>20.7</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>.8</td>
<td>.6</td>
<td>.5</td>
<td>.5</td>
<td>NTU</td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.67834</td>
<td>14.8780</td>
<td>25.7040</td>
<td>13.8005</td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>tV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>4.77</td>
<td>3.2</td>
<td>5.1</td>
<td>18.8</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>31.8</td>
<td>43</td>
<td>26</td>
<td>36.3</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>1.69</td>
<td><25</td>
<td>8.71</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>NDD</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td>1.12</td>
<td>1.7</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>1.35</td>
<td>2.1</td>
<td><25</td>
<td>1.15</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><1000</td>
<td><20</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Acetone (Methyl cyanide)</td>
<td><5</td>
<td><20</td>
<td><100</td>
<td><500</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><50</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><50</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><50</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>54.2</td>
<td><200</td>
<td>1 J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td><100</td>
<td>9.78</td>
<td>1 J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7.7</td>
<td>7.7</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>J ug/L</td>
<td>EX</td>
<td>EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-120 Fourth Quarter 1998 and Annual Summary
WELL: LFW 67D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroethylene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td>5.8</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><3</td>
<td>1.4</td>
<td>3.68</td>
<td>1</td>
<td>J</td>
<td>u/g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>+ Dichlorodifluoromethane</td>
<td>18.2</td>
<td>25</td>
<td>12</td>
<td>43.9</td>
<td>1</td>
<td>J</td>
<td>u/g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><8.02</td>
<td><3.7</td>
<td><49</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td>1.98</td>
<td>3.7</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylenebenzene</td>
<td>3.75</td>
<td><1.53</td>
<td>2.89</td>
<td>7.64</td>
<td>1</td>
<td>J</td>
<td>pCi/L</td>
<td>TM</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>+ Iron, total recoverable</td>
<td>71.6</td>
<td>447</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>u/L</td>
<td>EX</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><7</td>
<td>.06</td>
<td>.05</td>
<td><.5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrite</td>
<td><10</td>
<td><5</td>
<td><25</td>
<td><500</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><60</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><50</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><50</td>
<td><5</td>
<td><25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td>3.17</td>
<td>3.6</td>
<td><25</td>
<td>4.07</td>
<td>1</td>
<td>J</td>
<td>u/g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>+ Trichloroethylene</td>
<td>12.2</td>
<td>17</td>
<td>7.4</td>
<td>11.6</td>
<td>1</td>
<td>J</td>
<td>u/g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>+ Trichlorofluoromethane</td>
<td>40.1</td>
<td>11</td>
<td>11</td>
<td>21.9</td>
<td>1</td>
<td>J</td>
<td>u/g/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>Trinum</td>
<td>1.91</td>
<td>2060</td>
<td>6.14</td>
<td>3.66</td>
<td>1</td>
<td>pCi/ml</td>
<td>TM</td>
<td>3.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><25</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td>16.9</td>
<td>34</td>
<td>7.1</td>
<td>5.06</td>
<td>1</td>
<td>J</td>
<td>u/L</td>
<td>EX</td>
<td>NDD</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>u/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-121 Fourth Quarter 1998 and Annual Summary
WELL: LFW 67D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>UJ</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><25</td>
<td><5</td>
<td>1</td>
<td>UJ</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><25</td>
<td><20</td>
<td>1</td>
<td>UJ</td>
<td>ug/L</td>
<td>EX < EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-122 Fourth Quarter 1998 and Annual Summary
WELL: LFW 68D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 83031.6</td>
<td>33.286 Deg N</td>
<td>144.6 - 124.6 ft msl</td>
<td>161.4 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 46868.0</td>
<td>81.705 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE: 12/08/97 03/12/98 06/05/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>141.06</td>
<td>145.59</td>
<td>141.62</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>18.34</td>
<td>13.81</td>
<td>17.78</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td>4.3</td>
<td>5</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>38</td>
<td>38</td>
<td>52</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>16.6</td>
<td>19.9</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.8</td>
<td>.8</td>
<td>.8</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>14,533</td>
<td>8,48725</td>
<td>6,09115</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Substance</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td>18</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>6.6</td>
<td>5.3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-123 Fourth Quarter 1998 and Annual Summary
WELL: LFW 68D

ANALYTICAL DATA

Date	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroethene (Vinyl chloride)	Chloroform	Chloromethane (Methyl chloride)	Chloroprene	Chromium, total recoverable	Dibromochloromethane	Dibromomethane (Methylene bromide)	Dichlorodifluoromethane	Dichloromethane (Methylene chloride)	Ethylbenzene	Gross alpha	Iodomethane (Methyl iodide)	Iron, total recoverable	Isobutyl alcohol	Lead, total recoverable	Mercury, total recoverable	Methacrylonitrile	Methyl ethyl ketone	Methyl isobutyl ketone	Methyl methacrylate	Propionitrile	Selenium, total recoverable	Silver, total recoverable	Styrene	Tetrachloroethylene	Toluene	Trichloroethylene	Trichlorofluoromethane	Tritium	Vinyl acetate	Xylenes	cis-1,3-Dichloropropene	trans-1,2-Dichloroethylene	trans-1,3-Dichloropropene	trans-1,4-Dichloro-2-butene																							
1Q1998	<5	<5	<5	<10	<10	<5	<10	<10	1.7	<5	<5	<10	1.8	<5	3.37	<5	1790	<100	<47	<263	<10	<10	<10	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5																								
2Q1998	<5	<5	<5	<10	<10	<5	<10	<10	1.7	<5	<5	<10	1.8	<5	3.66	<5	1790	<100	<47	<263	<10	<10	<10	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5																					
3Q1998	<5	<5	<5	<10	<10	<5	<10	<10	1.7	<5	<5	<10	1.8	<5	3.84	<5	1790	<100	<47	<263	<10	<10	<10	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5									
4Q1998	<5	<5	<5	<10	<10	<5	<10	<10	1.7	<5	<5	<10	1.8	<5	4.63	<5	1790	<100	<47	<263	<10	<10	<10	<10	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Compliance

<table>
<thead>
<tr>
<th>Date</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Q1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2Q1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Q1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4Q1998</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 69C

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 82458.6 33.282 Deg N 89.1 - 79.1 ft msl 146.0 ft msl 2" PVC V L Steed Pond
E 45949.5 81.707 Deg W

SAMPLE DATE
12/04/97 03/12/98 06/05/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.49</td>
<td>136.26</td>
<td>135.73</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>8.61</td>
<td>7.84</td>
<td>8.37</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>3.8</td>
<td>3.6</td>
<td>3.9</td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>54</td>
<td>46</td>
<td>50</td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>17</td>
<td>19.7</td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.2</td>
<td>.4</td>
<td>.2</td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.51058</td>
<td>4.64596</td>
<td>3.54207</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td>Filter 321</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><8.67</td>
<td><10</td>
<td><4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>6</td>
<td>6.1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td>.49</td>
<td><2</td>
<td><2</td>
<td><5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-125 Fourth Quarter 1998 and Annual Summary

WSRC-TR-99-00011 Unclassified
WELL: LFW 69C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><7</td>
<td><7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><5.54</td>
<td><2</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>13.73</td>
<td>5.14</td>
<td>12.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td><.77</td>
<td>813</td>
<td><.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 69D

SAMPLE DATE
12/02/97 03/12/98 06/10/98 09/14/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.5</td>
<td>136.5</td>
<td>135.64</td>
<td>135.65</td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>8.5</td>
<td>7.5</td>
<td>8.36</td>
<td>8.35</td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.4</td>
<td>5</td>
<td>5</td>
<td>5.1</td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>58</td>
<td>48</td>
<td>53</td>
<td>52</td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>16</td>
<td>23.4</td>
<td>27.3</td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>3.9</td>
<td>2</td>
<td>7.4</td>
<td>.8</td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>11.1461</td>
<td>11.5107</td>
<td>8.78517</td>
<td>12.6829</td>
<td>well volumes</td>
</tr>
</tbody>
</table>

VOLUMES

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>10.2</td>
<td>3.3</td>
<td>9</td>
<td>5.56</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>5.56</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>30.1</td>
<td>9.9</td>
<td>21</td>
<td>19</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>19</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><500</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td><50</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td>110</td>
<td><200</td>
<td><200</td>
<td><200</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>8.4</td>
<td>8</td>
<td>8</td>
<td><100</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>10.1</td>
<td>23.2</td>
<td>8</td>
<td>9.78</td>
<td>1 J</td>
<td>ug/L</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>1.05</td>
<td><5</td>
<td>.64</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 69D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td>0.4</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td>9.25</td>
<td>3.8</td>
<td>6.7</td>
<td>5.92</td>
<td>1</td>
<td>ug/L</td>
<td>EX</td>
<td>5.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroform (Vinyl chloride)</td>
<td>18.5</td>
<td>7.8</td>
<td></td>
<td>7.99</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>7.99</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><2.4</td>
<td>3</td>
<td>0.8</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>1.32</td>
<td>1.3</td>
<td>1.4</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.95</td>
<td><2.1</td>
<td><2.6</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>1.21</td>
<td><0.21</td>
<td>1.2</td>
<td><0.79</td>
<td>UIJ</td>
<td>pC/mL</td>
<td>TM</td>
<td>< EQL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td>+</td>
<td>Iron, total recoverable</td>
<td>3140</td>
<td>629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>13.1</td>
<td><100</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Propenitrile</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td><200</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>8.72</td>
<td>5120</td>
<td>7.66</td>
<td>8.07</td>
<td>1</td>
<td>pC/mL</td>
<td>TM</td>
<td>8.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><10</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1</td>
<td>U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-128

Fourth Quarter 1998 and Annual Summary
WELL: LFW 69D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td><20</td>
<td>1 U</td>
<td>ug/L</td>
<td>EX</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-129 Fourth Quarter 1998 and Annual Summary
WELL: LFW 71B

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 82616.7</td>
<td>33.284 Deg N</td>
<td>67.0 ft msl</td>
<td>147.0 ft msl</td>
<td>2" PVC V</td>
<td></td>
<td>L Steed Pond</td>
</tr>
<tr>
<td>E 46340.4</td>
<td>81.705 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE
12/08/97 03/11/98 06/04/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.4</td>
<td>136.4</td>
<td>135.57</td>
<td></td>
<td>ft msl</td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>9.5</td>
<td>8.5</td>
<td>9.33</td>
<td></td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.2</td>
<td>3.8</td>
<td>4.2</td>
<td></td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>48</td>
<td>50</td>
<td>50</td>
<td></td>
<td>uS/cm</td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>19</td>
<td>17</td>
<td>20.6</td>
<td></td>
<td>deg. C</td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>1</td>
<td>.3</td>
<td>.3</td>
<td></td>
<td>NTU</td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>6.05969</td>
<td>6.43424</td>
<td>4.15726</td>
<td></td>
<td>well volumes</td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Picoline</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

Sanitary Landfill: D-130 Fourth Quarter 1998 and Annual Summary
WELL: LFW 71B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>3.6</td>
<td>.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><5.58</td>
<td><2.2</td>
<td><2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td><15</td>
<td>4.19</td>
<td>10.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.9</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><1</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td><.34</td>
<td><307</td>
<td><1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 71B

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>H ST</th>
<th>Analyte</th>
<th>Q1 1998</th>
<th>Q2 1998</th>
<th>Q3 1998</th>
<th>Q4 1998</th>
<th>DF Mod Unit</th>
<th>Lab Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 71C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 326515.8</td>
<td>33.284 Deg N</td>
<td>90.4 - 80.4 ft msl</td>
<td>147.2 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 46329.8</td>
<td>81.705 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/03/97</td>
</tr>
<tr>
<td>03/11/98</td>
</tr>
<tr>
<td>06/04/98</td>
</tr>
</tbody>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.55</td>
<td>136.4</td>
<td>135.7</td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>9.65</td>
<td>8.8</td>
<td>9.5</td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4</td>
<td>4.5</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>40</td>
<td>38</td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>20.2</td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.3</td>
<td>.2</td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>0</td>
<td>6.72834</td>
<td>4.15017</td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>11.3</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-133 Fourth Quarter 1998 and Annual Summary
WELL: LFW 71C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.2</td>
<td><3.2</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>3.61</td>
<td>9.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><810</td>
<td><11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* exceeded holding time for fourth quarter 1998.

+ exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-134 Fourth Quarter 1998 and Annual Summary
WELL: LFW 71D

SRS Coord.	Lat/Longitude	Screen Zone Elevation	Top of Casing	Casing	Pump	Formation
N 82615.1 | 33.284 Deg N | 135.5 - 115.5 ft msl | 147.4 ft msl | 2" PVC | V | U Steed Pond
E 46319.8 | 81.705 Deg W

SAMPLE DATE
12/03/97 03/11/98 06/04/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>135.4</td>
<td>137</td>
<td>135.2</td>
<td>ft msl</td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>10.1</td>
<td>8.5</td>
<td>10.3</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.6</td>
<td>5</td>
<td>4.5</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>22</td>
<td>24</td>
<td>21</td>
<td>uS/cm</td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>17</td>
<td>14</td>
<td>18.3</td>
<td>deg. C</td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>.2</td>
<td>.9</td>
<td>.2</td>
<td>NTU</td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>3.63616</td>
<td>25.2762</td>
<td>16.9377</td>
<td>well volumes</td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><20</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><5</td>
<td><20</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.7</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><40</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>7.5</td>
<td>7.6</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><4.7</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-135 Fourth Quarter 1998 and Annual Summary
WELL: LFW 71D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td>1.2</td>
<td>3</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><6.5</td>
<td><2.1</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td><19</td>
<td><.66</td>
<td><.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><47</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total recoverable</td>
<td><.7</td>
<td><.2</td>
<td><.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><10</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><50</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><66</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><5</td>
<td><2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1.15</td>
<td>1260</td>
<td>1.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><10</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><20</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-136 Fourth Quarter 1998 and Annual Summary
WELL: LFW 74C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 85813.8</td>
<td>33.289 Deg N</td>
<td>116.0 - 101.0 ft msl</td>
<td>213.6 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 45097.8</td>
<td>81.715 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE: 02/02/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td>160.8</td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td>50.6</td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td></td>
<td>18.1</td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td>.7</td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td>2,82750</td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td></td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td></td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td></td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td></td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td></td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td></td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, total recoverable</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td></td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 74C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcium, total recoverable</td>
<td><1410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iron, total recoverable</td>
<td><25.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnesium, total recoverable</td>
<td><656</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese, total recoverable</td>
<td>2.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachloroethane</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potassium, total recoverable</td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter1998.

Sanitary Landfill

Fourth Quarter 1998 and Annual Summary
WELL: LFW 74C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sodium, total recoverable</td>
<td><2540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>32.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-139 Fourth Quarter 1998 and Annual Summary
WELL: LFW 74D

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 85328.1</td>
<td>33.289 Deg N</td>
<td>167.7 - 152.7 ft msl</td>
<td>213.9 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 45098.0</td>
<td>81.715 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE: 02/02/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 74D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Analyte</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td><1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific conductance</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium</td>
<td>1550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td><41.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-141

Fourth Quarter 1998 and Annual Summary
WELL: LFW 74D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td></td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-Benzene hexachloride</td>
<td></td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-142

Fourth Quarter 1998 and Annual Summary
WELL: LFW 75C

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 855856.8</td>
<td>33.290 Deg N</td>
<td>115.6 - 100.6 ft msl</td>
<td>197.8 ft msl</td>
<td>4" PVC</td>
<td>S</td>
<td>M Steed Pond</td>
</tr>
<tr>
<td>E 453570.0</td>
<td>81.714 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE: 02/02/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>160.82</td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>34.78</td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>2.90616</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
** = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 75C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>ALYST</th>
<th>ANALYSE</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod Unit</th>
<th>Compliance</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>952</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-144 Fourth Quarter 1998 and Annual Summary
WELL: LFW 75C

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill: D-145

Fourth Quarter 1998 and Annual Summary
WELL: LFW 75D

SAMPLE DATE

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>161.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to water</td>
<td>34.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water temperature</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumes purged</td>
<td>6.85670</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 75D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmium, total recoverable</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td>.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromium, total recoverable</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copper, total recoverable</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><.98</td>
<td><.98</td>
<td><.98</td>
<td><.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td><2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>31.6</td>
<td>31.6</td>
<td>31.6</td>
<td>31.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td>1270</td>
<td>1270</td>
<td>1270</td>
<td>1270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vanadium, total recoverable</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-147 Fourth Quarter 1998 and Annual Summary
WELL: LFW 75D

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zinc, total recoverable</td>
<td>33.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>5.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

<table>
<thead>
<tr>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill

D-148

Fourth Quarter 1998 and Annual Summary
WELL: LFW 76

<table>
<thead>
<tr>
<th>SRS Coord.</th>
<th>Lat/Longitude</th>
<th>Screen Zone Elevation</th>
<th>Top of Casing</th>
<th>Casing</th>
<th>Pump</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 8562.1</td>
<td>33.288 Deg N</td>
<td>157.9 - 142.9 ft msl</td>
<td>221.9 ft msl</td>
<td>2" PVC</td>
<td>V</td>
<td>U Steed Pond</td>
</tr>
<tr>
<td>E 44758.6</td>
<td>81.715 Deg W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DATE

<table>
<thead>
<tr>
<th></th>
<th>02/17/98</th>
<th>09/26/98</th>
</tr>
</thead>
</table>

FIELD DATA

- **Analyte**
 - Water Elevation
 - Depth to water
 - pH
 - Sp. Conductance
 - Water temperature
 - Alkalinity as CaCO3
 - Turbidity
 - Volumes purged
 - Sampling code

<table>
<thead>
<tr>
<th>Date</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>157.85</td>
<td>61.55</td>
<td></td>
<td>158.89</td>
<td>ft msl</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.7</td>
<td></td>
<td>18</td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td>21</td>
<td>deg. C</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>2</td>
<td></td>
<td>10.4</td>
<td>NTU</td>
</tr>
<tr>
<td></td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td></td>
<td>5.24146</td>
<td></td>
<td></td>
<td>.329776</td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromoethane</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3,5-Trinitrobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,3-Dinitrobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dioxane</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Naphthoquinone</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-Naphthylamine</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,3,4,6-Tetrachlorophenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,5-Trichlorophenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4,6-Trichlorophenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dichlorophenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dimethyl phenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4-Dimethyl phenol</td>
<td><5</td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-149 Fourth Quarter 1998 and Annual Summary
WELL: LFW 76

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Substance</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF</th>
<th>Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-Dinitrophenol</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methyl-4,6-dinitrophenol</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Naphthylamine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-Picoline</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>2-sec-Butyl-4,6-dinitrophenol</td>
<td><51</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>3,3'--Dichlorobenzidine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>3,3''-Dimethylbenzidine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>3-Methylochlanthrene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Chloro-m-cresol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>4-Nitroquinoline-1-oxide</td>
<td><20.4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>5-Nitro-o-toluidine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>7,12-Dimethylbenz(a)anthracene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Aacenaphthene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Aacenaphthylene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Acetone</td>
<td><4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aniline</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Anthracene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aramite</td>
<td><20.4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>µg/L</td>
<td>WA</td>
<td>< EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

- = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-150 Fourth Quarter 1998 and Annual Summary
WELL: LFW 76

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td><25.5</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylic alcohol</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethoxy) methanal</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethyl) ether</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl) ether</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis(2-ethylhexyl) phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylbenzyl phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibutyl phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethoate</td>
<td><.51</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td><10.2</td>
<td>I U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

Sanitary Landfill D-151

Fourth Quarter 1998 and Annual Summary
ANALYTICAL DATA

WELL: LFW 76

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diphenylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disulfoton</td>
<td><5.1</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methacrylate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethyl methanesulfonate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flampur</td>
<td><1.33</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoranthene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobenzene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorobutadiene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorocyclopentadiene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloroethane</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachlorophene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexachloropropene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isophorone</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoaflorale</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lead, total recoverable</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methapyrene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methanesulfonate</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodi-n-butylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodiethylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodimethylanine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodiphenylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosodipropylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomethylthylamine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosomorpholine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopiperidine</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Nitrosopyrrolidine</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naphthalene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nickel, total recoverable</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nitrobenzene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O,O,O-Triethyl phosphorothioate</td>
<td><5.1</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parathion ethyl</td>
<td><5.1</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parathion methyl</td>
<td><5.1</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pentachlorobenzene</td>
<td><10.2</td>
<td>1 U</td>
<td>ug/L</td>
<td>WA</td>
<td>< EQL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.

Sanitary Landfill

D-152

Fourth Quarter 1998 and Annual Summary
WELL: LFW 76

ANALYTICAL DATA

<table>
<thead>
<tr>
<th>Substance</th>
<th>1Q1998</th>
<th>2Q1998</th>
<th>3Q1998</th>
<th>4Q1998</th>
<th>DF Mod</th>
<th>Unit</th>
<th>Lab</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachloroethane</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td><51</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Phenacetin</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Phenol</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Phorate</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Pronamid</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Pyridine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Safrole</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific conductance</td>
<td>49.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thionazin</td>
<td><5.1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluoromethane</td>
<td>829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 13</td>
<td><4.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 15</td>
<td><5.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 16</td>
<td><4.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown 17</td>
<td><8.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a,a-Dimethylphenethylamine</td>
<td></td>
<td><10.2</td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>beta-Benzene hexachloride</td>
<td><.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-Cresol (3-Methylphenol)</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>m-Nitroaniline</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>o-Cresol (2-Methylphenol)</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>o-Nitroaniline</td>
<td><25.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>o-Toluidine</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td>p-Cresol (4-Methylphenol)</td>
<td><10.2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>U</td>
<td>WA</td>
<td><EQL</td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-153 Fourth Quarter 1998 and Annual Summary
WELL: LFW 76

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-Dimethylanilinoazobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>1 ug/L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>p-Nitroaniline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><25.5</td>
<td>1 ug/L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>p-Phenylenediamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><10.2</td>
<td>1 ug/L</td>
<td>WA</td>
<td><EQL</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compliance

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 77

SRS Coord. Lat/Longitude Screen Zone Elevation Top of Casing Casing Pump Formation
N 86461.7 33.290 Deg N 159.2 - 144.2 ft msl 222.7 ft msl 2" PVC V U Steed Pond
E 48866.5 81.717 Deg W

SAMPLE DATE: 02/06/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td>161.48</td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td>58.67</td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td>1.22997</td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td>NX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromo-3-chloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dibromomethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloroethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-Dichloropropane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Hexanone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td><4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acetonitrile (Methyl cyanide)</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrolein</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allyl chloride</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromochloromethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromodichloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.
* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 77

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific conductance</td>
<td>60.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trichlorofluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tritium</td>
<td><668</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl acetate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xylenes</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta-Benzene hexachloride</td>
<td><0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,2-Dichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-156 Fourth Quarter 1998 and Annual Summary
WELL: LFW 78

SRS Coord. Lat/Longitude
- N 86664.9 Deg N
- E 44726.5 Deg W

Screen Zone Elevation
- 164.9 - 149.9 ft msl

Top of Casing
- 238.9 ft msl

Casing
- 2” PVC

Pump
- V

Formation
- U Steed Pond

SAMPLE DATE
- 02/17/98

FIELD DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Elevation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft msl</td>
</tr>
<tr>
<td>Depth to water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ft</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Sp. Conductance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uS/cm</td>
</tr>
<tr>
<td>Water temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>deg. C</td>
</tr>
<tr>
<td>Alkalinity as CaCO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTU</td>
</tr>
<tr>
<td>Volumes purged</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>well volumes</td>
</tr>
<tr>
<td>Sampling code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NX</td>
</tr>
</tbody>
</table>

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td></td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td></td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetonitrile (Methyl cyanide)</td>
<td></td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td></td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td></td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td></td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony, total recoverable</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td></td>
<td><8</td>
<td><8</td>
<td><8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium, total recoverable</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium, total recoverable</td>
<td></td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td></td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td></td>
<td><5</td>
<td><5</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.

Sanitary Landfill D-157

Fourth Quarter 1998 and Annual Summary
WELL: LFW 78

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bromoform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromomethane (Methyl bromide)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmium, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon disulfide</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon tetrachloride</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethane</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethene (Vinyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroform</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloromethane (Methyl chloride)</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroprene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromium, total recoverable</td>
<td>9.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cobalt, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper, total recoverable</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di-n-butyl phthalate</td>
<td><.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromochloromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromomethane (Methylene bromide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichlorodifluoromethane</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichloromethane (Methylene chloride)</td>
<td><2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylbenzene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iodomethane (Methyl iodide)</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isobutyl alcohol</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead, total recoverable</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methacrylonitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl ethyl ketone</td>
<td><10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl isobutyl ketone</td>
<td><12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methyl methacrylate</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel, total recoverable</td>
<td>7.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propionitrile</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selenium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver, total recoverable</td>
<td><2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specific conductance</td>
<td>51.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styrene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thallium, total recoverable</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toluene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichloroethylene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tritium</td>
<td>1180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unknown 15</td>
<td><4.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unknown 17</td>
<td><5.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vanadium, total recoverable</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
WELL: LFW 78

ANALYTICAL DATA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinyl acetate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td></td>
<td></td>
<td></td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beta-Benzene hexachloride</td>
<td></td>
<td></td>
<td></td>
<td><0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td></td>
<td></td>
<td></td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td>6.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td><5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Flagging, dilution factors, modifiers, and laboratories are for fourth quarter 1998 data only. See Appendix B for flagging criteria.

* = exceeded holding time for fourth quarter 1998.
+ = exceeded screening level or final primary drinking water standard for fourth quarter 1998.
Appendix E

Data Quality/Usability Assessment

Sanitary Landfill E-1 Fourth Quarter 1998 and 1998 Summary
Data Quality/Usability Assessment

Quality assurance/quality control (QA/QC) procedures relating to accuracy and precision of analyses performed on groundwater samples are followed in the field and laboratory and are reviewed prior to publication of results. The review by the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) of the volume of analytical data acquired each quarter and presented in various reports is an ongoing process; its review of the QA/QC data cannot be completed in time to meet the deadlines for the reports required by the Resource Conservation and Recovery Act and associated regulations. Other site and regulatory personnel can obtain further information on the data quality and usability in a variety of ways, including those described below.

Data Qualification

The contract laboratories continually assess their own accuracy and precision according to U.S. Environmental Protection Agency (EPA) guidelines. They submit sample- or batch-specific QA/QC information either at the same time as analytical results or in quarterly summaries. Properly defined and used result modifiers (also referred to as qualifiers) can be a key component in assessing data usability. Result modifiers designed by EPD/EMS and used by the primary laboratories are presented in Appendix D.

Assessment of Accuracy of the Data

Accuracy, or the nearness of the reported result to the true concentration of a constituent in a sample, can be assessed in several ways.

A laboratory's general accuracy can be judged by analysis of results obtained from known samples. The non-radiouclide contract laboratories analyze commercial reference samples every quarter at EPD/EMS' request. The results of these analyses are presented in the EPD/EMS groundwater monitoring quarterly reports. The primary laboratories also seek or maintain state certification by participating periodically in performance studies; reference samples and analysis of results are provided by EPA. Results of these studies also are published in the EPD/EMS quarterly reports.

Analysis of blanks provides a tool for assessing the accuracy of both sampling and laboratory analysis. Results for all field blanks for the quarter can be found in the EPD/EMS quarterly reports. Any field or laboratory blanks that exceed established minimums are identified in the same reports, in tables associating them with groundwater samples analyzed in the same batches.

Surrogates, organic compounds similar in chemical behavior to the compounds of interest but not normally found in environmental samples, are used to monitor the effect of the matrix on the accuracy of analyses for organic parameters. For example, for analyses of volatile organics by EPA Method 8240, three surrogate compounds are added to all samples and blanks in each analytical batch. In analyses of semivolatile organics, three acid compounds and three base/neutral compounds are used. Two surrogates are used in organochlorine pesticides analyses. Percent recoveries for surrogate analyses are calculated by laboratory personnel, reported to EPD/EMS, reviewed, and entered into the database, but they are not published. If recoveries are not within specified limits, the laboratory is expected to reanalyze the samples or attach qualifiers to the data identifying the anomalous results.

Sample-specific accuracy for both organic and inorganic parameters can be assessed by examination of matrix spike/matrix spike duplicate results. A sample is analyzed unspiked to determine a baseline set of values. A second portion of the sample is spiked with known concentrations of compounds appropriate to the analyses being performed, typically five volatile organic compounds for volatile organics analyses, eleven semivolatile compounds for semivolatiles, six pesticide compounds for pesticides, all metals for metals analyses by SW-846 methods (EPA, 1986), and a known quantity of cyanide for cyanide analysis. The percentage of the spike compound that is recovered (i.e., measured in excess of the value obtained for the unspiked sample) is a direct measure of analytical accuracy. EPA requires matrix spike/matrix spike duplicates to be run at least once per 20 samples of similar matrix.
Matrix spike/matrix spike duplicate results are reported to EPD/EMS but are not published. For organic compounds, according to EPA guidelines, no action is taken on the basis of matrix spike/matrix spike duplicate data alone (i.e., no result modifiers are assigned solely on the basis of matrix spike results); however, the results can indicate if a laboratory is having a systematic problem in the analysis of one or more analytes.

In the case of organic compounds, such as metals, the matrix spike sample analysis provides information about the effect of each sample matrix on the digestion and measurement methodology. Data qualifiers assigned by the laboratories on the basis of the percentage of spike recovery are reported in the published results tables.

Assessment of Precision

Precision of the analyses, or agreement of a set of replicate results among themselves, is assessed through the use of duplicates initiated by the laboratory and blind replicates provided by EPD/EMS. The results of duplicate and replicate analyses are presented in those results tables of the quarterly reports which report only one quarter of data, usually during first, second, and third quarters. Duplicate and replicate results are not presented in results tables that report more than one quarter of data, generally provided in the fourth quarter reports. In this case, the results’ tables instead present only the highest result for each analyte for each quarter of the year.

The laboratories assess the precision by calculating the relative percent difference (RPD) for each pair of laboratory-initiated duplicate results. One of the contract laboratories uses a data qualifier (J3) to modify metals analyses when the RPD for laboratory duplicates is greater than 20 percent.

Additional statistical comparisons of laboratory duplicate and blind duplicate results, both intra- and inter-laboratory, are presented in the EPD/EMS quarterly reports. The calculation used for these reports is the mean relative difference (MRD) which is similar to EPA’s RPD except that the MRD is the average of all the RPD values from one laboratory for each compound (intra-laboratory MRD) or all the RPD values from all laboratories for each compound (inter-laboratory MRD), during one quarter. Because detection limits may vary among samples, the MRD requires calculation of a reference detection limit, which is the detection limit at the 90th percentile of the array of limits in the population of all duplicate and replicate analyses for a given analyte during a particular quarter. The MRD is not method-specific.

Method-Specific Accuracy and Precision

The contract laboratories’ EPA approved laboratory procedures include QA/QC requirements as an integral part of the methods. Thus, knowledge of the method used in obtaining data is an important component of determining data usability. EPA has conducted extensive research and development on the methods approved for the analysis of water and wastewater; information on the accuracy and precision of a method is available from EPA publications, as is full information on required QA/QC procedures. A listing of the methods used by the primary laboratories during fourth quarter 1998 is given below along with the source for the method description. Many, if not all, of these sources include presentations of representative accuracy and precision results.

Methods Used by the Contract Laboratories

<table>
<thead>
<tr>
<th>Method</th>
<th>Used to Analyze</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA120.1</td>
<td>Specific conductance</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA150.1</td>
<td>pH</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA160.1</td>
<td>Total dissolved solids</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA160.2</td>
<td>Total dissolved solids, total suspended solids</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA180.1</td>
<td>Turbidity</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA200.7</td>
<td>Metals</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA204.2</td>
<td>Antimony</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA206.2</td>
<td>Arsenic</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA239.2</td>
<td>Lead</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA245.1</td>
<td>Mercury</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA270.2</td>
<td>Selenium</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA279.2</td>
<td>Thallium</td>
<td>EPA EMSL, 1983</td>
</tr>
<tr>
<td>EPA300.0</td>
<td>Chloride, nitrite, nitrate</td>
<td>EPA EMSL, 1983</td>
</tr>
</tbody>
</table>
An example of available method-specific QA/QC information is that for the analysis of metals by EPA Method 6010/200.7 (EPA, 1986/EPA EMSL, 1983). The primary laboratories, General Engineering Laboratories (GE) and Roy F. Weston, Inc. (Weston), use this inductively coupled plasma (ICP) atomic emission spectrometric method.

The following precision and accuracy data are based on the experience of seven laboratories that applied the ICP technique to acid-distilled water matrices that had been spiked with various metal concentrates. (Note: Not all seven laboratories analyzed all 14 elements.) The references give results for samples having three concentration ranges; the results here are for samples having the lowest values, similar to actual groundwater results for SRS.

ICP Precision and Accuracy Data

<table>
<thead>
<tr>
<th>Element</th>
<th>True value (μg/L)</th>
<th>Mean Reported Value (μg/L)</th>
<th>Mean percent RSD'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>60</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>Arsenic</td>
<td>22</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Beryllium</td>
<td>20</td>
<td>20</td>
<td>9.8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.5</td>
<td>2.9</td>
<td>16</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Cobalt</td>
<td>20</td>
<td>20</td>
<td>4.1</td>
</tr>
</tbody>
</table>

An example of available method-specific QA/QC information is that for the analysis of metals by EPA Method 6010/200.7 (EPA, 1986/EPA EMSL, 1983). The primary laboratories, General Engineering Laboratories (GE) and Roy F. Weston, Inc. (Weston), use this inductively coupled plasma (ICP) atomic emission spectrometric method.

The following precision and accuracy data are based on the experience of seven laboratories that applied the ICP technique to acid-distilled water matrices that had been spiked with various metal concentrates. (Note: Not all seven laboratories analyzed all 14 elements.) The references give results for samples having three concentration ranges; the results here are for samples having the lowest values, similar to actual groundwater results for SRS.

ICP Precision and Accuracy Data

<table>
<thead>
<tr>
<th>Element</th>
<th>True value (μg/L)</th>
<th>Mean Reported Value (μg/L)</th>
<th>Mean percent RSD'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>60</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>Arsenic</td>
<td>22</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Beryllium</td>
<td>20</td>
<td>20</td>
<td>9.8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.5</td>
<td>2.9</td>
<td>16</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Cobalt</td>
<td>20</td>
<td>20</td>
<td>4.1</td>
</tr>
</tbody>
</table>

An example of available method-specific QA/QC information is that for the analysis of metals by EPA Method 6010/200.7 (EPA, 1986/EPA EMSL, 1983). The primary laboratories, General Engineering Laboratories (GE) and Roy F. Weston, Inc. (Weston), use this inductively coupled plasma (ICP) atomic emission spectrometric method.

The following precision and accuracy data are based on the experience of seven laboratories that applied the ICP technique to acid-distilled water matrices that had been spiked with various metal concentrates. (Note: Not all seven laboratories analyzed all 14 elements.) The references give results for samples having three concentration ranges; the results here are for samples having the lowest values, similar to actual groundwater results for SRS.

ICP Precision and Accuracy Data

<table>
<thead>
<tr>
<th>Element</th>
<th>True value (μg/L)</th>
<th>Mean Reported Value (μg/L)</th>
<th>Mean percent RSD'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>60</td>
<td>62</td>
<td>33</td>
</tr>
<tr>
<td>Arsenic</td>
<td>22</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Beryllium</td>
<td>20</td>
<td>20</td>
<td>9.8</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.5</td>
<td>2.9</td>
<td>16</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Cobalt</td>
<td>20</td>
<td>20</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Element</th>
<th>True value (µg/L)</th>
<th>Mean Reported Value (µg/L)</th>
<th>Mean percent RSD'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>11</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>Iron</td>
<td>20</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Lead</td>
<td>24</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Manganese</td>
<td>15</td>
<td>15</td>
<td>6.7</td>
</tr>
<tr>
<td>Nickel</td>
<td>30</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>Selenium</td>
<td>6</td>
<td>8.5</td>
<td>42</td>
</tr>
<tr>
<td>Vanadium</td>
<td>70</td>
<td>69</td>
<td>2.9</td>
</tr>
<tr>
<td>Zinc</td>
<td>16</td>
<td>19</td>
<td>45</td>
</tr>
</tbody>
</table>

*Relative standard deviation. In EPA (1986), the column heading is Mean Standard Deviation (%).

As another example, EPA Method 601/8010 (EPA, 1991/EPA, 1986) is used by both GE and Weston for analyses of halogenated volatile organics. In the presentation of the method in both references, the following table gives method-specific accuracy and precision as functions of concentration. Contract laboratories are expected to achieve or at least approach these limits.

Accuracy and Precision as Functions of Concentration for EPA Method 601/8010

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accuracy as Single analyst</th>
<th>Overall precision</th>
<th>C (µg/L)</th>
<th>Overall precision</th>
<th>C (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>recovery, X* (µg/L)</td>
<td>precision (µg/L)*</td>
<td></td>
<td>precision (µg/L)</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>1.12±1.02</td>
<td>0.11X±0.04</td>
<td>0.20X+1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>0.96±2.05</td>
<td>0.12X±0.58</td>
<td>0.21X+2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td>0.76±1.27</td>
<td>0.28X±0.27</td>
<td>0.36X+0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.96±1.04</td>
<td>0.15X±0.38</td>
<td>0.20X+0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.00±1.23</td>
<td>0.15X±0.02</td>
<td>0.18X+1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.99±1.53</td>
<td>0.14X±0.13</td>
<td>0.17X+0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>1.00C</td>
<td>0.20X</td>
<td>0.35X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.93±0.39</td>
<td>0.13X±0.15</td>
<td>0.19X+0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.77±0.18</td>
<td>0.28X±0.31</td>
<td>0.52X+1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>0.94±2.72</td>
<td>0.11X+1.10</td>
<td>0.24X+1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>0.93±1.70</td>
<td>0.20X+0.97</td>
<td>0.13X+6.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.95±0.43</td>
<td>0.14X+2.33</td>
<td>0.26X+2.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.93±0.09</td>
<td>0.15X+0.29</td>
<td>0.20X+0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.95±1.08</td>
<td>0.09X+0.17</td>
<td>0.14X+0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>1.04±1.06</td>
<td>0.11X+0.70</td>
<td>0.15X+0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.98±0.87</td>
<td>0.21X+0.23</td>
<td>0.29X+0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.97C±0.16</td>
<td>0.11X±1.46</td>
<td>0.17X+1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>0.91C±0.93</td>
<td>0.11X±0.33</td>
<td>0.21X+1.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Methylene chloride)

<table>
<thead>
<tr>
<th></th>
<th>1,2-Dichloropropane</th>
<th>1,2,2-Tetrachloroethane</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00C</td>
<td>0.95C±0.19</td>
<td>0.23X+2.79</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>1.00C</td>
<td>0.14X+2.41</td>
<td>0.23X+2.79</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>1.00C</td>
<td>0.14X+2.41</td>
<td>0.23X+2.79</td>
</tr>
</tbody>
</table>

* X* = expected recovery for one or more measurements of a sample containing a concentration of C, in µg/L.

b Expected single analyst standard deviation of measurements.

c Expected inter-laboratory standard deviation of measurements.
\[d \quad C = \text{true value for the concentration, in } \mu g/L. \]
\[e \quad X = \text{average recovery found for measurements of samples containing a concentration of } C, \text{ in } \mu g/L. \]
\[f \quad \text{Estimates based on performance of a single laboratory.} \]

References Cited

Appendix F

Time Series Plots
THIS PAGE LEFT BLANK INTENTIONALLY.
1, 1, 1-TRICHLOROETHANE
WELL LFW 8

CONCENTRATION (ug/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
WELL LFW 10A

CONCENTRATION (μg/L)

TIME (QUARTERS)

SANITARY LANDFILL FOURTH QUARTER, 1998 & 1998 SUMMARY
CONCENTRATION (ug/L)

TIME (QUARTERS)

TRICHLOROFLUOROMETHANE
WELL LFW 10A

WSRC-TR-99-00011
Unclassified

Sanitary Landfill
Fourth Quarter: 1998 & 1999 Summary
XYLENES

WELL LFW 10A

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
1,1,1-T ric hloroethane

Well LFW 21

Concentration (µg/L)

Time (Quarters)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
Sanitary Landfill
Fourth Quarter, 1998 & 1998 Summary
TETRACHLOROETHYLENE
WELL LFW 22

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitarv Landfill Fourth Quarter, 1998 & 1999 Summary
1, 1, 1-TRICHLOROETHANE
WELL LFW 36

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sani
tarv Landfill Fourth Quarter, 1998 & 1998 Summary
1, 4-DICHLOROBENZENE
WELL LFW 36

CONCENTRATION (ug/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1999 Summary
TRICHLOROETHYLENE
WELL LFW 36

CONCENTRATION (µg/L)

TIME (QUARTERS)

WSRC-TR-99-00011
Unclassified
TRICHLOROFLUOROMETHANE

WELL LFW 36

Sanitary Landfill

Fourth Quarter, 1998 & 1999 Summary

CONCENTRATION (μg/L)

TIME (QUARTERS)

XYLENES

WELL LFW 36

CONCENTRATION (µg/L)

TIME (QUARTERS)

1993 1996
1, 1, 1-TRICHLOROETHANE

WELL LFW 39

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
TRICHLOROETHYLENE
WELL LFW 39

CONCENTRATION (ug/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
TRICHLOROFLUOROMETHANE
WELL LFW 39

CONCENTRATION (μg/L)

TIME (QUARTERS)

Sanitarv Landfill
Fourth Quarter, 1998 & 1998 Summary
Benzene WSRC-TR-99-00011

WELL LFW 48D

Unclassified

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
CONCENTRATION (µg/L)

TIME (QUARTERS)

ETHYLBENZENE

WELL LFW 48D

WSRC-TR-99-00011

Unclassified

Sanitary Landfill

Fourth Quarter 1998 & 1998 Summary
TETRACHLOROETHYLENE

WELL LFW 48D

CONCENTRATION (ug/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1999 Summary
TRI CHLOROFLUOROMETHANE
WELL LFW 48D

CONCENTRATION (μg/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary

Unclassified
1, 1, 1-TRI CHLOROETHANE

WELL LFW 58D

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitarv Landfill
Fourth Quarter, 1998 & 1998 Summary
TETRACHLOROETHYLENE
WELL LFW 59D

CONCENTRATION (μg/L)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
TRICHLOROETHYLENE
WELL LFW 59D

CONCENTRATION (μg/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
ETHYL BENZENE
WELL LFW 61C

CONCENTRATION (ug/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary

Unclassified
TETRACHLOROETHYLENE

WELL LFW 61C

Sanitary Landfill

Fourth Quarter, 1998 & 1999 Summary

CONCENTRATION (μg/L)

TIME (QUARTERS)
TRICHLOROFLUOROMETHANE WELL LFW 61C

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1999 Summary
1,4-DICHLOROBENZENE
WELL LFW 61D

CONCENTRATION (μg/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
TETRACHLOROETHYLENE

WELL LFW 61D

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1999 Summary
TRICHLOROETHYLENE

WELL LFW 61D

TIME (QUARTERS)

CONCENTRATION (ug/L)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
XYLENES

WELL LFW 61D

CONCENTRATION (µg/L)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
Appendix G

Hydrographs
HYDROGRAPH
WELL LFW 6

WATER ELEVATION (ft ms1)

155
154
153
152
151
150
149
148
147
146
145

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 7

WATER ELEVATION (ft msl)

153
152
151
150
149
148

TIME (QUARTERS)

Sanitary Landfill
Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 8R

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 17

WATER ELEVATION (ft ms1)

TIME (QUARTERS)

S no. | Landfill | Fourth Quarter: 1998 & 1999 Summary

HYDROGRAPH
WELL LFW 18

WATER ELEVATION (ft ms l)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 19

WATER ELEVATION (ft msl)

159
158
157
156
155
154

TIME (QUARTERS)

Unclassified
HYDROGRAPH
WELL LFW 21

WATER ELEVATION (ft ms l)

161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146

TIME (QUARTERS)

WSRC-TR-99-00011
Unclassified
HYDROGRAPH
WELL LFW 22

WATER ELEVATION (ft msl)

153
152
151
150
149
148
147

TIME (QUARTERS)

Sanitarv Landfill Fourth Quarter, 1998 & 1998 Summary

WSRC-TR-99-00011 Unclassified
HYDROGRAPH
WELL LFW 23

WATER ELEVATION (ft ms1)

TIME (QUARTERS)

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

WSRC-TR-99-00011
Unclassified
SANITARY LANDFILL

FORTH QUARTER, 1998 & 1998 SUMMARY
HYDROGRAPH
WELL LFW 28

WATER ELEVATION (ft msl)

TIME (QUARTERS)

WSRC-TR-99-00011
Unclassified
HYDROGRAPH
WELL LFW 33

WATER ELEVATION (ft msf)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter: 1998 & 1999 Summary
HYDROGRAPH
WELL LFW 36

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 37

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill
Fourth Quarter, 1998 & 1999 Summary
HYDROGRAPH
WELL LFW 39

WATER ELEVATION (ft ms l)

144
143
142
141
140
139
138
137
136
135
134
133

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 43B

WATER ELEVATION (ft msl)

166
165
164
163
162
161

TIME (QUARTERS)

WSRC-TR-99-00011
Unclassified
HYDROGRAPH
WELL LFW 45D

WATER ELEVATION (ft ms)

153
152
151
150
149
148

TIME (QUARTERS)

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Fourth Quarter 99

Unclassified

WSRC-TR-99-00011
HYDROGRAPH
WELL LFW 47D

Sanitary Landfill
Fourth Quarter, 1998 & 1999 Summary
HYDROGRAPH
WELL LFW 48D

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitarv Landfill
Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 57B

WATER ELEVATION (ft msl)

143
142
141

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 57C

WATER ELEVATION (ft msl)

142

141

TIME (QUARTERS)

Sanitarv Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 57D

WATER ELEVATION (ft msl)

143

142

141

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 58D

WSRC-TR-99-00011
Unclassified

WATER ELEVATION (ft msl)

141

140

139

138

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 59B

WATER ELEVATION (ft msl)

142
141
140
139

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 61C

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 62B

WATER ELEVATION (ft msl)

141
140
139

TIME (QUARTERS)

SANITARY LANDFILL
FOURTH QUARTER, 1998 & 1998 SUMMARY
HYDROGRAPH
WELL LFW 63C

WSRC-TR-99-00011
Unclassified

Sanitary Landfill
Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 64C

WATER ELEVATION (ft msl)

141
140
139
138
137

TIME (QUARTERS)

Sanitary landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 64D

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 65D

WSRC-TR-99-00011
Unclassified

WATER ELEVATION (ft msl)

138
137
136
135
134

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 66B

Simplified graph showing water elevation changes over time (quarters) from 1991 to 1999 for Well LFW 66B.

Sanitary Landfill
Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 67C

WATER ELEVATION (ft msl)

138

137

136

135

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 68B

WATER ELEVATION (ft msl)

139
138
137

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 69C

WATER ELEVATION (ft msl)

136
135
134

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 70B

WATER ELEVATION (ft msl)

134

133

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 70D

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill Fourh QuaIter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 71B

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 71C

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 72B

WATER ELEVATION (ft msl)

136
135
134

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
Hydrograph

WELL LFW 72D

Unclassified

Sanitarv Landfill
Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 74D

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitarian Landfill

Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH WELL LFW 75D

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitary Landfill Fourth Quarter, 1998 & 1998 Summary
HYDROGRAPH
WELL LFW 77

WATER ELEVATION (ft msl)

TIME (QUARTERS)

Sanitarv Landfill Fourth Quarter, 1998 & 1998 Summary