Interpretation of the XR2-1 experiment and characteristics of the BWR lower plenum debris bed

PDF Version Also Available for Download.

Description

The Ex-Reactor (XR) experiments have been conducted to advance the understanding of BWR severe accident melt progression events. The XR2-1 experiment addresses the fate of the initial large (code-predicted) movements of molten metals from the upper core to the lower core and core plate region. For this question, which has ramifications for blockage formation in the core region, the XR2-1 test results provide significant and perhaps definitive insights. Nevertheless, some events that occurred during this test are creatures of the special features of the test apparatus, and there is a potential for misconceptions with respect to the direct applicability of ... continued below

Physical Description

10 p.

Creation Information

Hodge, S. A. & Ott, L. J. November 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Ex-Reactor (XR) experiments have been conducted to advance the understanding of BWR severe accident melt progression events. The XR2-1 experiment addresses the fate of the initial large (code-predicted) movements of molten metals from the upper core to the lower core and core plate region. For this question, which has ramifications for blockage formation in the core region, the XR2-1 test results provide significant and perhaps definitive insights. Nevertheless, some events that occurred during this test are creatures of the special features of the test apparatus, and there is a potential for misconceptions with respect to the direct applicability of some of the results. This paper describes the conclusions that can be drawn from the XR2-1 experiment results and identifies those areas (such as fuel pellet stack collapse and core plate integrity) where care must be taken not to misconstrue the test events. Another important area where much recent work has been performed is the effort to analyze the potential for maintaining core debris within the reactor vessel lower plenum by cooling of the outer vessel wall. One of the first steps in such an analytical endeavor is to attempt to establish the pattern of energy transfers into the wall inner surface. As a prerequisite to determination of this pattern, it is necessary to first consider the nature of the debris within the lower plenum. Too often is an easily represented homogeneous circulating liquid pool incorporated without adequate consideration of the true material conditions. Basic considerations of the relative quantities of materials present, the potentials for eutectics formations, and the associated melting points dictate otherwise. This paper offers some insights as to the true nature of the lower plenum debris and discusses the need for some relatively simple experiments that would contribute much toward the basic understanding necessary for accurate debris characterization. 11 refs., 4 figs., 4 tabs.

Physical Description

10 p.

Notes

OSTI as DE97009383

Source

  • International congress of radiation oncology, Beijing (China), 4-7 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97009383
  • Report No.: ORNL/CP--94858
  • Report No.: CONF-970606--
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 589210
  • Archival Resource Key: ark:/67531/metadc695662

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • November 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Jan. 25, 2016, 6:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hodge, S. A. & Ott, L. J. Interpretation of the XR2-1 experiment and characteristics of the BWR lower plenum debris bed, article, November 1997; Tennessee. (digital.library.unt.edu/ark:/67531/metadc695662/: accessed November 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.