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Abstract 

The report reviews a method for modeling and controlling two serial link manipulators 
which mutually lift and transport a rigid body object in a three dimensional workspace [31, 
32, 33, 341. A new vector variable is introduced which parameterizes the internal contact 
force controlled degrees of freedom. A technique for dynamically distributing the payload 
between the manipulators is suggested which yields a family of solutions for the contact 
forces and torques the manipulators impart to the object. A set of rigid body kinematic 
constraints which restricts the values of the joint velocities of both manipulators is derived. 
A rigid body dynamical model for the closed chain system is first developed in the joint 
space. The model is obtained by generalizing our previous methods for deriving the model. 
The joint velocity and acceleration variables in the model are expressed in terms of inde- 
pendent pseudovariables. The pseudospace model is transformed to obtain reduced order 
equations of motion and a separate set of equations governing the internal components of 
the contact forces and torques. A theoretic control architecture is suggested which explic- 
itly decouples the two sets of equations comprising the model. The controller enables the 
designer to develop independent, non-interacting control laws for the position control and 
internal force control of the system. 

V 





1. Introduction 

The problem of modeling and controlling two fixed base, serial link robotic manipulators 
to mutually lift and transport an object has been a subject of intensive study and research 
these past ten years. This interest has been motivated by the potential benefits of employing 
automatic and programmable two handed cooperative manipulation in diverse areas such as 
material handling and assembly. In the former application, two manipulators can coopera- 
tively lift and transport large or voluminous objects that would be difficult or awkward for 
a single manipulator to move. Further, two cooperating manipulators can transport objects 
whose mass is beyond the lifting capacity of just one. Two cooperating manipulators can 
reduce the need for fixturing in many assembly applications, and may ultimately lead to 
fixtureless assembly in the air. 

There have been numerous approaches proposed for modeling the interactions between 
the object and each manipulator and for controlling the forces and torques at  the points of 
contact. In [l], models were developed which allow the contacts between the manipulators 
and object to be accidentally (e.g., due to slippage) or deliberately broken or the nature of 
the constraints changed due to wanted or unwanted disturbances. The analysis focused on 
a pair of two link planar revolute manipulators maintaining sliding point contacts with an 
object. The object was stabilized using a spring-dashpot combination. 

In [2], it was proposed that a pair of six degree of freedom (DOF) manipulators maintain 
rolling point contacts with a rigid object. In the approach, three virtual revolute joints were 
added at the location of each effector. The kinematics of the rolling grasps were modeled. 

The application of impedance control has resulted in successful implementations of 
two manipulators transporting an object [3, 4, 51. These approaches enforce a controlled 
impedance of the manipulator endpoints or of the manipulated object itself. 

This report, however, focuses on the case of two serial link manipulators mutually lifting 
and transporting objects that are rigid and jointless in a three dimensional workspace under 
the assumption of there being no relative motion between the end effectors and the object. 
That is to say, it is assumed that each manipulator securely holds the object without 
any slippage. The manipulators and object form a single closed chain mechanism, and 
there exists a large body of literature on modeling and controlling the manipulators in this 
configuration [6-331. It should be mentioned that there have been some results reported 
for the case of two manipulators holding objects consisting of two rigid bodies connected 
by passive rotary or spherical joints [34, 353, where the assumption of no relative motion 
between each end effector and the rigid body it holds applied. 

There are two challenging problems when modeling and controlling a dual manipulator 
closed chain system. First, the problem of dynamically distributing the load induced by 
the object between the manipulators is underspecified. Indeed, assuming that the object is 
rigid and jointless, its dynamical equations, i.e., Newton’s and Euler’s equations, are linear 
functions of the twelve components of contact force and torque the manipulators impart to 
it. Therefore, assuming that a reference trajectory for the center of mass of the object has 
been specified, there are infinitely many solutions for the contact forces and torques based 
on the object’s dynamical equations. Each contact forces solution contains a component 
that causes the object to move along the reference trajectory and a component that induces 
internal stress and torsion in the object but does not contribute to its motion. Various 
approaches for distributing the load have been proposed [7, 13,17,18,19,20,26,27,28,31]. 

9 Contact force implies both contact force and contact torque hereinafter, unless otherwise specified. 
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The second problem is how to control the motion of the closed chain system and the con- 
tact forces. It has been shown that a set of six rigid body kinematic constraints are imposed 
on the values of the joint variables of both manipulators in this configuration [33]. Each 
constraint causes a loss of one position controlled DOF. This complicates the motion control 
problem because the number of actuated joints exceeds the number of positional DOF in the 
closed chain. If each manipulator is kinematically nonredundant, then the motion control 
objective is object trajectory tracking. If at least one of the manipulators is redundant, 
then there are additional positional DOF available to satisfy other objectives [36]. 

Another part of the control problem involves controlling or influencing the values of the 
internal component of the contact forces. Left unregulated, the internal forces could assume 
large values that result in the manipulators pulling against each other and would require 
large actuation torques at the joints while moving the object along its specified trajectory. 
Furthermore, excessively large values for the internal contact forces may even result in 
damage or deformity to  the object or manipulators. There are two basic approaches to 
this problem: (i) to explicitly control the internal forces to track reference trajectories or 
(ii) to calculate the contact forces (including their internal components) by optimization 
techniques. In the explicit control case, some approaches proposed in the literature require 
knowledge of dynamics of the manipulators and object (e.g., see [lo, 113) while others do not 
(e.g. [9]). Most of the approaches that determine the contact forces to optimize a designer 
specified criteria involve no servoing and assume knowledge of the dynamics of the held 
object [13, 17, 18, 19, 20, 311. 

The report reviews our original approach for dynamic load distribution and explicit 
position- and internal force-control of the closed chain system consisting of two manipulators 
securely lifting and transporting a rigid body object in a three dimensional workspace [31, 
32, 341. The control architecture is dynamic model based, thus the report will also present 
a method for deriving a rigid body model for the system. The joint space model given here 
is a generalization of our previous techniques for modeling the system [32, 331. It will be 
shown that the earlier results are just special cases of the modeling given here. 

The report is organized as follows: A description of the system and the dynamical 
equations for the manipulators and object are given in section 2. A general framework for 
load distribution is reviewed in section 3. The kinematic coupling effects are modeled in 
section 4 and a closed chain dynamical model in the joint space is derived in section 5. A 
reduced order model governing the motion of the closed chain and a separate equation for 
calculating the internal components of the contact forces are the subject of section 6. A 
control architecture originally proposed in [33] is reviewed in section 7 where some recent 
insights into its net effect are discussed. A summary and conclusion are given in the final 
section. 
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2. System Description and Dynamics 
of Manipulators and Object 

The system is comprised of two serial link manipulators mutually holding and transporting 
a rigid body object in a three dimensional workspace. The manipulators and object form a 
single closed chain mechanism. Manipulator i ( i  = 1, 2) has a stationary base and contains 
N; single DOF joints (N;  2 6 in the spatial case). The manipulators can be structurally 
distinct and possess different capabilities, i.e., they can have an equal (N1 = N2)  or unequal 
(N1 # N2) number of joints. The object is rigid and jointless. It assumed that there is no 
relative motion between the end effectors and object, Le., the end effectors securely hold 
the object without any slippage. The configuration of the system is shown in Figure 1. 

2.1 System Variables and Coordinate Frames 

Let the joint positions, velocities, and accelerations of manipulator i be represented by 
the ( N ;  x 1) vectors 4; = [qil, qi2, . .. , q ; ~ , ]  , q; = [&I, 4 i 2 ,  .. . , q;ilvi]  , and 4; = 
[&I, &2, . . . , &NilT,  respectively. The joint positions of the two manipulators are the gen- 
eralized coordinates describing the configuration of the system. 

A stationary world coordinate frame ( X,, Y,, 2, ) serves as a reference frame. The 
location of this coordinate frame is based on the task geometry. As shown in Figure 1, 
the coordinate frame ( X t ’ ,  Yj;), Zf) ) is assigned to the kth link of manipulator i, where 
k =  1 , 2  ,..., N ; .  

and i w ~  emanating from the centerpoint of the end 
effector of manipulator i coincide with the point CM,, the center of mass of the rigid object, 
as shown in Figure 2. ;r and i w ~  are expressed in the end effector and world coordinate 
frames, respectively. They are related by: 

T ’ T  

The tips of the (3 x 1) vectors 

where ;RZ = ( q i )  is an orthogonal (3 x 3) rotation matrix that describes the orien- 
tation of the ( X g ! ,  Y i ) ,  Zg! ) coordinate frame which has its origin a t  the centerpoint of 
the end effector of manipulator i in the world coordinates. 

2.2 Manipulator Dynamics 

This section presents the equations of motion of the individual manipulators. The composite 
dynamics of the manipulators are given by: 

where O k x m  denotes a (k x m)  matrix of zeros and superscript T denotes a matrix trans- 
pose. The joint torques applied to the joint actuators of manipulator i are signified by the 
vector ~i = [q1, q 2 ,  . . . , T ~ N , ] ~ .  The ( N ;  x N ; )  symmetric, positive definite inertia matrix is 
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D; = D;(q;),  and the Coriolis, centripetal, and gravity forces for manipulator i are described 
by the ( N ;  x 1) vector C; = C;(qi,e;). 

Each manipulator imparts a contact force iw f N a , N a + l  and a contact torque i w n N , , N a f l  to 
the object at  and about the centerpoint of the end effector for manipulator i, respectively, 
as shown in Figure 2. i w f N a , N a + l  and i w n N a , N a + l  are expressed in the world coordinates, 
and the subscript N i , N ;  + 1 signifies that the contact force or torque is transmitted from 
the Nith link of manipulator i to the ( N i +  1)th link, where the latter link is the held object 
itself. The (6 x 1) vector f,; in eq. (2) signifies the generalized contact force imparted by 
manipulator i. It is defined by: 

In eq. (2) , the ( N ;  x 6) transposed Jacobian matrix J L  = J L ( q i )  transforms the gen- 
imparted by manipulator i into the joint space. J;, is assumed to eralized contact force4 

possess full rank six. 

2.3 Object Dynamics 

The dynamics for the rigid object are obtained through application Newton's and Euler's 
equations of motion. It is convenient to express these equations in a compact form: 

Y = L [kc] (4) 

In eq. (4) , Y is a (6 x 1) vector representing the net force (and torque) acting at the center 
of mass of the object due to its acceleration and gravity. It is defined by: 

Y = [ mcI3 03x3 03x3 I - c  ] [ 21 + [ - m c g  ] = A  [ 21 + [ - m c g  ] ( 5 )  a, K, w, 52, 1-c 0, 

where Ik denotes a ( b  x I C )  identity matrix and where all Cartesian vectors are with respect 
to the world coordinate system (X,, Y,, 2, ). In eq. (5) , m, is the mass of the rigid object, 
and K, is the (3x3) symmetric inertia matrix of the object about its center of mass. The 
(3x1) vector g represents the gravitational acceleration of the object. The (6x1) vectors 
[UT, wTIT and [6:, w:lT denote the Cartesian velocity and acceleration of the center of 
mass of the object) respectively, with (vc , 6,) being the translational and (w, , bc) the 
rotational components. The (6 x 6) matrix A = A(mc, I<,-) is a compact representation of 
the coefficient matrix of [$ , G:lT in eq. (5) . 

In eq. (5) , (52 ,  Kcwc) is a (3x 1) vector arising from expressing the vector cross product 
expression (w 'cx( I~c~w,) )  in a matrix-column vector notation, where 52, is a (3x3) skew 
symmetric matrix [33]: 

T and where w, = [wcx, wcy, wcz] . 
Generalized contact force will be referred to as contact force hereinafter. 
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The right side of eq. (4) represents the net force acting on the object at  its center of 
mass due to the contact forces acting at the contact points between the manipulators and 
object. The (6 x 12) matrix L in eq. (4) is an explicit function of the (6 x 6) contact force 
transmission matrices L1 and L’L [33]: 

L = [ L l ?  L Z ]  
where matrix L;(i = 1,2) is defined by [33]: 

(7) 

I3 

is a ( 3  x 3 )  skew symmetric matrix arising from 
4 

expressing the vector cross product expression (- i w F ~ i w f ~ , , ~ i + l )  in a matrix-column vector 
notation, where - rwr  represents a moment arm from point C M ,  to  point of application 
of fci (see Figure 2). It should be mentioned that L; = L;(q;) because iwr - - iwr(q;) in 
accordance with eq. (1) . Interestingly, eq. (8) reveals that Li is nonsingular and that its 
determinant is equal to one. 

In this report it is assumed that the joint variables of the manipulators in the closed 
chain configuration are known through feedback of their sensed or measured values or by 
feedback of their calculated values in a forward dynamic simulation of the system. Thus the 
nonlinear terms {D;’ C;, Jiw} in eq. (2) are known quantities. Furthermore, it is assumed 
that the object’s mass, inertia, and geometric properties are known, and that a trajectory 
for the object’s center of mass has been specified. Thus matrix L and vector Y in eq. (4) 
are known quantities. 
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3. A General Framework for Load Distribution 
To solve the underspecified dynamic load distribution problem, a new vector variable E = 
[€I, c2, . . . , e6IT is introduced. Six position controlled degrees of freedom (DOF) are lost 
due to the closed chain configuration [33]. The number of components of E is equal to the 
dimension of the null space of matrix L and reflects the fact that the number of position 
controlled DOF lost is equal to the number of DOF gained for controlling the internal 
contact forces [18]. E parameterizes the internal contact force DOF and is defined by: 

E = M [kc] (9) 

The (6 x 12) matrix M in eq. (9) is selected such that the (12 x 12) composite matrix S, 
defined by: 

is nonsingular. 
It is convenient 

s=[nLI] 

to partition the inverse of S into two matrices: 

1 s-l = [ a ,  Q 

where <I, and lP are (12 x 6) matrices. Eqs. (10) and (11) imply five matrix identities: 

L<I, = 1 6 ,  L Q  = 0 6 x 6 ,  M<I, = 0 6 x 6 ,  M Q  = 16, Q L  + Q M  = 112 (12) 
where, here again, I k  and o k x i  denote a ( k  x I C )  identity matrix and a ( k  x I) matrix of zeros, 
respectively. 

reveals that the column vectors comprising lP lie in and span 
the null space of L. Observing eq. ( 7 )  , an obvious choice for Q is: 

The identity L Q = 

Matrix is not unique. Indeed, postmultiplying the choice for Q in eq. (13) by an arbitrary 
(6 x 6) nonsingular matrix yields a new Q which lies in the null space of L. In this report 
it  is assumed that Q = Q(L1, L2). Thus Q ,  like L ,  is a known quantity. The designer 
chooses M to satisfy M Q  = 16. Then, given { L ,  Q ,  M}, @ is determined based on the 
matrix identities in eq. (12) . These issues will be discussed later in this section. 

Eqs. (4) and (9) can be solved for the contact forces [31, 321: 

in which eq. (11) has been invoked. The second term {Q  E }  on the right of eq. (14) is the 
homogeneous solution to eq. (4) and is a component of [ j z ,  j5,1T which causes internal 
stress and torsion in the object but does not contribute to its motion since L Q E = 0 ~ ~ 1 .  
The first term {<I,)} on the right of eq. (14) is a particular solution to  eq. (4) and is 
the component of [fz, jz] which causes the object to physically move, since L <I, Y = Y .  
However, it will be shown in this report that the particular solution to  eq. (4) can contain 
a component which lies in the null space of L ,  and such a component causes internal stress 
and torsion in the object but does not contribute to its motion. This has been demonstrated 
previously in a dual manipulator context in [19] by a different approach which studied the 
characteristics of a class of pseudoinverses of L ,  but the approach given here is conceptually 
simpler. 

T 
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The symbolic solution for the contact forces given by eq. (14) is significant because 
it indicates that the designer can specify the distribution of the payload's mass between 
the two manipulators by the choice of M and E. For example, since Y is known, matrix 
@ governs the distribution of the payload among the motion inducing components in the 
contact force solution. 

3.1 Identifying Motion Inducing and Internal Stress Components of (a Y )  
Any vector in the 12-dimensional linear space describing the contact forces imparted to 
the object by the manipulators can be expressed as linear combinations of two orthogonal 
subspaces: the exact range space of LT and the null space Q of L. It is convenient to  
introduce the basis V :  

v = [ L*, Q ]  (15) 
It is easy to see that the columns vectors comprising V span the 12-dimensional linear space. 

Matrix can be expressed in terms of V :  

= LT(Y + Q 7  (16) 
where a and 7 are (6 x 6) parameter matrices, respectively. It is easy to verify that (Y = 
( L  LT)-l  and 7 = - M LT ( L  LT)-l by premultiplying eq. (16) by L and M, respectively, 
and noting eq. (12) . Substituting the solutions for {a,  r} into eq. (16) yields [31]: 

Eq. (17) reveals that (@ Y )  always contains a component {LT ( L  LT)-l  Y }  which con- 
tributes to the object's motion, but it may also contain a component { -g M LT ( L  LT)- 'Y}  
which induces internal stress and torsion in the object in the general case. 

I t  is insightful to substitute for @ in eq. (14) using eq. (17) : 

Eq. (18 describes all possible solutions to eq. (4) in terms of the basis V .  Each solution 

{ L ,  Y ) .  Interestingly, each and every distinct solution in the family has the identical object 
motion inducing component. Therefore the difference between any two distinct solutions 
lies in the null space of L.  

in the 1 amily is distinguished by the designer's choice for the quantities { Q ,  M ,  E }  given 

3.2 Choosing Matrix M 

Matrix S is defined in eq. (10) . The purpose of this section is to determine a family of 
solutions for M which results in S being nonsingular and satisfies M Q  = 16 when XLj is 
known. We then present three possible choices for M and calculate @ for each of the choices. 
It is also shown how each choice for M can be obtained by selecting a parameter matrix in 
the family of solutions for M .  

M can be expressed in terms of the basis V defined in eq. (15) : 

M = p L  + <e* (19) 

where p and < are (6.x 6) parameter matrices. It is easy to verify that C = (QT Q)-' by 
postmultiplying eq. (19) by Q and observing eq. (12) . Substituting the solution for < in 
eq. (19) obtains: 
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M = p L  + ( P @ ) - l @ T  (20) 
When M is defined by eq. (20) , M T  will always contain a component that lies in the null 
space of L and therefore S will be nonsingular. Indeed, eq. (20) describes a family of 
solutions for M, and each distinct member of the family is characterized by the designer's 
choice for /3. 

Example 1. Choosing M to Obtain a Previous Result 
The dynamic load distribution problem that arises when two manipulators mutually lift 
a rigid object was not discussed in our earlier work [33] that modeled the closed chain 
configuration shown in Figure 1. The approach in [33] to modeling the dynamic coupling 
effects between the manipulators was to make the contact forces imparted by manipulator 1 
implicit variables using the following procedure: (i) solve eq. (4) for f c l [  = Lcl (Y - L2 fc2)] 
(ii) substitute for fcl into eq. (2) using its solution obtained in step i. The resulting equation 
represents the composite dynamics of both manipulators and the object and is an explicit 
function of f c 2 .  The physical interpretation of this modeling procedure was not discussed 
in [33]. 

In this example it is shown that the result of [33] can be obtained by an application of 
the general load distribution procedure presented here. The modeling procedure in [33] is 
obtained by selecting matrices @ and M to be: 

L 

It  should be noted that eq. (21) is obtained by postmultiplying the choice for Q in eq. (13) 
by L2. Further, the choice for M in eq. (22) is obtained from eq. (20) by selecting ,O to 
be: 

p = (@ql L; (L1 LT)-l 

Substituting eqs. (21) and (22) into eq. (17) yields the solution for a: 

a = [ ;::I (24) 

Substituting for {Q, @} in eq. (14) using eqs. (21) and (24) and inserting the result 
into eq. (2) yields the model in [33] where E = f c 2 .  The procedure in [33] has unknowingly 
distributed the load such that only manipulator 1 induces the object to physically move in 
space whereas the contact forces imparted by manipulator 2 are purely internal. In this 
extreme case, manipulator 1 bears the entire load. 

Example 2. Choosing M to  be a Function of Constrained Parameters. 
Here @ is defined by eq. (13) . In this example matrix M is selected to be a function of the 
force transmission matrices {Ll, L2} and two unknown scalar parameters {q, c2} whose 
values are restricted as follows [31, 321: 

c1 + c2 = 1 
Suppose M is chosen to be [31, 321: 

A4 = [ -c2J51, C l L 2 ]  

which is obtained from eq. (20) by selecting /3 to be: 
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The symbolic solution for @ can be determined by substituting for XD and M in eq. (17) 
using eqs. (13) and (26) , respectively, and simplifying: 

The parameters ( e l ,  cz} will be treated as constants to be selected by the designer in 
the explicit internal force control approach given in this report. As an example, the solution 
for @ given in eq. (24) is just a special case of eq. (28) with (e1 = 1, c2 = 0). Alternatively, 
(c1, c2) are viewed as variables when determining a solution for the internal contact forces 
by optimization techniques in [31]. 

It is repeated for emphasis that only the internal component of the particular solution 
( @ Y )  to eq. (4) is a function of M .  Therefore the terms in eq. (18) that are explicit 
functions of (c1, ea} only affect the internal stress and torsion in the held object when 
eq. (26) applies. 
Example 3. Choosing M So That M T  Lies in the Null Space of L This example is not 
dependent on a specific choice for matrix @. Suppose that M is determined by choosing 
,B = 06x6  in eq. (20) : 

When eq. (29) applies, MT lies in the null space of L,  i.e., L M T  = Oex6 and eq. (17) 
immediately simplifies: 

Since the internal force component of (a Y )  has vanished, the terms (@ Y) and (Q E )  in 
eq. (14) are now mutually orthogonal because: 

(31) T Q = 06x6 

and orthogonality is the strongest form of linear independence between a pair of vectors [37]. 
The modeling of the kinematic coupling effects occurring between the manipulators is 

discussed next. 
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4. Modeling of Kinematic Coupling Effects 
There are two purposes for this section. First, a linear transformation relating the Cartesian 
velocity vector of the object and the vector of joint velocities for both manipulators will be 
derived. This relationship will be useful for expressing the object's dynamical equations in 
the joint space. Second, a set of rigid body kinematic constraints which must be satisfied 
by the joint velocities of the manipulators will be derived. 

A linear relationship between the Cartesian velocity of the object at point C M ,  and 
at  the point of application of the contact force imparted by manipulator i, Le., the center- 
point of the end effector, is established using the theory of infinitesimal rotation of a rigid 
object [38, 331: 

where the (3 x 1) vectors vi and w; represent the Cartesian translational and rotational 
velocities, respectively, of the end effector of manipulator i in the world coordinates. 

verifies that w; = wc as expected. Indeed, 
the Cartesian angular velocities of the end e B ectors and object are identical due to the 
assumption that the manipulators securely hold the object without any slippage. 

Substituting for LF in eq. (32) using eq. (8 

Combining the two sets of equations obtained from eq. (32) with i = 1,2 gives: 

There is a well specified solution for the object velocities [u:, w : ] ~  based on eq. (33) 
because L has full rank six and [v?, uTIT lies in the exact range space of LT. The solution 
is obtained by premultiplying eq. (33) by matrix QT and noting eq. (12) : 

Three distinct solutions for @ were obtained in the three examples of Section 3.2 given 
choices for lJ! and M .  It is straightforward to verify that substituting for QT in eq. (34) 
using each of the three solutions (for a) and applying eq. (32) yield [v:, = [v:, w:]~. 

The velocities of the end effector of manipulator i in the Cartesian world coordinate 
frame and the joint space are related through the (6 x N ; )  Jacobian matrix Jiw, Le.: 

r i  

Substituting for [v?, w?IT in eq. (34) using eq. (35) with i = 1,2 relates the Cartesian 
velocities of the object at  its center of mass to the joint space: 

The (12 x (N1 + N 2 ) )  composite Jacobian matrix J = J ( q 1 ,  4 2 )  in eq. (36) has full rank 
twelve since it is assumed that J; ,  has full rank six. 
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It is easy to see from Figure 1 that the end effectors of the manipulators cannot move 
independently when they mutually hold the rigid body object. The constraint between the 
Cartesian velocities of the end effectors is obtained by premultiplying eq. (33) by !PIT and 
noting eq. (12) : 

The constraint can be expressed in the joint space by substituting for [v?, $IT in 
eq. (37) using eq. (35) with i = 1,2: 

\ I T J  [ Y ' ]  = A [ 4 2  4 ' 1  = 
42 

where the (6 x (N1 + N 2 ) )  matrix A = A(q1, q 2 )  ( = \IT J )  is assumed to have full rank six. 
Let 'J denote the kth column vector of J, ( k  = 1, 2, . . . , N1 +N2) .  Since ' J  is a twelve 

dimensional vector, it can be expressed in terms of the basis V defined in eq. (15) : 

k J  = L T a  + \ I T  (39) 
where CY and y are (6  x 1) parameter vectors. If y = OsXl  then the kth column of J lies in 
the null space of \IT because L Q = 06x6. It follows that the kth column of A ( = qT 'J) = 
O s X l .  In this case, none of the kinematic constraints in eq. (38) would be a function of the 
kth element of the vector of joint velocities [q:, & I T .  Therefore it is further assumed that 
each column vector comprising J has a nonzero component lying in the null space of L. 

comprises six scalar constraint equations characterizing the kinematic de- 
pendence among the joint velocities when the manipulators operate in the closed chain 
configuration. Each independent scalar constraint contained in eq. (38) causes the loss of 
one position controlled DOF in the closed chain 381. Indeed, the number of positional DOF 
in the entire closed chain system is ( N l +  N2 - 6 f . This is significant because the number of 
positional DOF specifies the number of independent ways that the dual-manipulator closed 
chain system can move without violating the constraints in eq. (38) . 

A dynamical model for the multiple manipulator system in the joint space is presented 
next. 

Eq. (38) 
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5. Derivation of Rigid Body Model in Joint Space 
The two manipulators and object form a single closed chain mechanism, and a rigid body 
model governing the motion of the closed chain and the behavior offhe internal component 
of the contact forces is derived in the joint space in this section. In the ensuing development 
it is useful to define A712 = N1 + Nz.  

The first step in deriving this model is to substitute for [fz, f,',lT in eq. (2) using 
eq. (14) : 

i +  [ + J T @ Y  + A T e  

where J is defined in conjunction with eq. (36) and where q = [q;, 4 = [ Q 1 ,  T q2 *TIT , 
q = [e;, qTIT, and T = [T,", .,'IT. Interestingly, it is observed that the coefficient matrix 
of E in eq. (40) is just the transpose of the coefficient matrix of the vector of joint velocities 
in the kinematic constraints given by eq. (38) . 

Vector Y in eq. (40) is a function of the Cartesian space variables {w,, GC, d,} according 
to its definition in eq. ( 5 )  . Y can be expressed in the joint space by substituting for w, and 
[$, $1 in eq. ( 5 )  using eq. (36) and its time derivative, respectively: 

T 

In eq. (41) , the (12 x 6) and (12 x N12) matrices &[= (a@/aq)4] and j[= ( a J / a q ) i ] ,  
respectively, are both functions of the variables { q, e}. The occurrence of w, on the right of 
eq. ( 5 )  has been replaced by [03x3, 131 QT J 4 in eq. (41) . The components (wc+, wcy, uCz} 
in matrix R, are expressed in the joint space using this transformation, so Qc = Qc(q, 4) 
in eq. (41) . 

Substituting for Y in eq. (40) using eq. (41) and rearranging terms yield the closed 
chain dynamics in the joint space: 

T = D g + C + H m 4 ; + H , + A T E  (42) 
The ( N l z  x N12) matrix D = D ( q )  in eq. (42) is the inertia matrix for the entire system. 
It is defined by: 

Since Di is positive definite, the first term to the right of eq. (43) is positive definite. The 
second term to the right of eq. (43) is positive semidefinite. Therefore D is positive definite 
because the sum of a positive definite matrix and a positive semidefinite matrix is positive 
definite [37]. 

The (N12 x 1) vector C = C(q, 4) is defined by: 

[::I (44) 

The (N12 x N I ~ )  matrix Hm = H,(q, 4) and the (N12 x 1) vector H, = H,(q,  4) in 
eq. (42) are defined by: 
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It should be mentioned that the closed chain dynamical model derived in [32] is just a 
special case of eq. (42) with { Q ,  @} defined by eqs. (13) and (28) , respectively. 

Eq. (42) accounts for the dynamics of all components of the closed chain but does not 
satisfy the rigid body kinematic constraints in eq. (38) . Indeed, eq. (42) , along with the 
time derivative of eq. (38) : 

comprise a joint space model which governs the motion of the closed chain dual manipulator 
system and the internal component of the contact forces. The (6  x N12) matrix A[= 
(OA/Oq)G] in eq. (47) is a function of the variables {a,  d } .  

has been obtained for a broad class of constrained 
rigid body mechanical systems in [39, 401 using the method of Lagrange undetermined 
multipliers [38]. However, it is very unclear how the issues of dynamically distributing 
the load and relating E to  the internal contact forces would be addressed if the modeling 
techniques given in [39,40] were applied to the multiple manipulator closed chain considered 
here. 

To discuss the application of the joint space model to  accomplish a forward dynamics 
simulation of the system, it is useful to  combine eqs. (42) and (47) into a single equation: 

The form of eqs. (42) and (47) 

1 D AT T - C - H m q  - H ,  
[ A  06x61 [ !] = [ - A 4  

In the forward dynamics problem, the (N12+6) quantities {g, E }  are unknowns and the joint 
torques T are specified. A symbolic solution for the variables {e, E }  based on eq. (48) can be 
obtained by inverting the coefficient matrix of [QT,  using inverse by partitioning [37]: 

E = (AD-'AT)- '  {AD-'  (T - C - H m q  - H,) + At} (50) 

The solution for E in eq. (50) is based on the invertibility of the quantity ( A  D-' A T ) .  D-l 
is positive definite because D is. Given that A has full rank six, ( A  D-' A T )  is positive 
definite and therefore nonsingular. In eq. (49) , A is a (N12 x N12) matrix defined by: 

where, here again, N12 = N1 + N2 and  IN,^ signifies an (N12 x N12) identity matrix. By 
a mathematical observation, A is idempotent, i.e., A2 = A ,  and therefore singular, since 
the only nonsingular idempotent matrix is the identity matrix [37]. It has been shown in 
our earlier work [33] that the rank of A equals the number of position controlled DOF in 
the closed chain, Le., rank{A} = N12 - 6 .  

While the joint space model is useful for understanding how the system evolves with 
time in response to  applied joint torque inputs, it is not convenient for the controller design 
process. Indeed, the number of scalar equations in eq. (48) (or in eqs. (49) and [SO) , 
which may also be viewed as a rigid body model) exceed the number of joint torque inputs. 
However, it is important to note that there is a well specified solution for T based on the. 
rigid body model. Since the rank of A equals (N12 - 6 )  and D is positive definite, the rank 
of the coefficient matrix (D-' A )  of T in eq. (49) is also equal to  (N12 - 6) [41]. Therefore 
an additional six independent scalar equations that are linear functions of T are needed to 
yield a well specified solution for the N12 joint torques T .  The six equations are provided by 
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eq. (50) . Rather than attempting to design a model based controller by solving eqs. (49) 
and (50) (or eq. (48) ) for the joint torques, we will derive a reduced order model and 
design a control architecture based on it. This is discussed next. 
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6. Reduced Order Model 
The joint velocities and accelerations form coupled sets of generalized velocities and accel- 
erations for describing the configuration of the closed chain system, respectively. Linear 
transformations which express these variables in terms of new independent generalized ve- 
locities and accelerations are derived and then applied to eiiminate (4, q )  from the closed 
chain dynamical equations given by eq. (42) in this section. Then, building on the seminal 
work in [39], linear transformations are applied to eq. (42) to separate it into two sets of 
equations. The sets of equations govern the motion of the closed chain and the behavior of 
the internal component of the contact forces, respectively. 

A new vector variable Y = [VI, v2, . . . , ~ ~ ~ ~ - 6 1 ~  referred to as the pseudovelocity vec- 
tor [42, 43, 401 is introduced. The pseudovelocity vector is defined by: 

v = B q  (52 )  
where the ((N12 - 6) x N1z) matrix B = B(q)  selected so that the composite (N12 x N 1 2 )  
matrix U ,  defined by: 

is nonsingular, where here again, A is defined in conjunction with eq. (38) and N12 = 
Ni t N2. 

It is convenient to partition the inverse of U into two matrices: 

u-1 = [ Y ,  r ]  (54) 

where Y = "(4) is an (N12 x6) matrix and I' = r(q) an (N12 x (N12-6) )  matrix. Eqs. (53) 
and (54) imply five matrix identities: 

AT' = 16 , A = O6x(Nl2-6) B Y = o ( N 1 z - 6 ) x 6  B = INlz-6 , Y A r B = IN12 

(55) 
The identity AI? = o 6 x ( N l Z - 6 )  reveals that the column vectors comprising r lie in and 

span the null space of A .  I? can be determined by the following procedure. Noting that 
A = !PT J and L = O c X 6 ,  six vectors lying in the null space (of A )  are given by: 

J T  ( J  JT) -' LT 

If N1 = N2 = 6 ,  then the above set of vectors spans the null space and is assigned to I'. 
If one or both of the manipulators is kinematically redundant, then (N12 - 12) additional 
vectors are needed to  span the null space. By a mathematical observation, (N12 - 12) is 
the dimension of the null space of J ,  and any vector lying in the null space of J also lies in 
the null space of A.  The null space of J can be determined by the zero eigenvalue matrix 
theorem [44]. 

All vectors lying in the N12-dimensional articular space may be expressed in terms of 
the following basis 2: 

z = [ A T ,  r ]  (56)  

It is straightforward to verify that Y can be expressed in terms of this basis: 

Y = AT (AAT)-'  - r B A T  (AAT)-'  (57) 

Eqs. (38) and (52) can be solved for the joint velocities: 
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Q = r v  (58) 
Differentiating eq. (52) with respect to time establishes the linear relationship between 

the pseudoaccelerations and the joint accelerations: 

i, = B q  + BQ (59) 
The ((N12 - 6) x N12) matrix B [= (aB/aq)Q] in eq. (59) is a function of the variables 
( 4 ,  41. 

Eqs. (47) and (59) can be solved for q: 

as been used. 
where (aB/aq)I'v eq. Y8' in eq. (60) are now functions of { q ,  v}. 

As a result, the matrices A [= (dA/aq)I'v]  and B [= 

A solution for 4; may also be obtained by differentiating eq. (58) with respect to time: 

q = ri, + r~ (61) 
where the (N12 x (Nl z  - 6))  matrix p[= (aI'/aq)rv] is a function of the variables { q ,  v}. 

tity: 
Eqs. (60) and (61) are mathematically equivalent because of the following matrix iden- 

r = - [ rA+rB]r  (62) 

Eq. (62) is obtained by differentiating the identity: T A + r B = with respect to 
time and postmultiplying the resulting equation by I'. 

Substituting for Q in eq. (38) using eq. (58) yields the kinematic constraint equation 
A r v  = 06x1 ,  which is identically true since AI? = O , , ( N ~ ~ - ~ ) .  Therefore, the kinematic 
constraints at the velocity level are satisfied regardless of the values of the pseudovelocities 
when eq. (58) applies. Likewise, substituting for {i, 4;} in eq. (47) using eqs. (58) and (60) 
reveals that the kinematic constraints at the acceleration level are also satisfied regardless 
of the values of {v, ij}. These findings lead to the observation that expressing the closed 
chain dynamical model given by eqs. (42) and (47) in terms of the pseudovariables results 
in eq. (42) alone representing a rigid body model of the multiple manipulator system: 

D r i , t A T € =  ~ - C - H , + ( D [ T A + ~ B ] - H , ) ~ ~  (63) 

The number of equations in eq. (63) equals the sum of the position controlled DOF and 
the internal force controlled DOF in the closed chain system. 

It is important to note that eq. (63) is still a nonlinear function of the joint positions 
q, i.e., D = D(q) ,  C = C(q, v), Hm = H,(q,  v), and H ,  = H,(q ,  v). Thus it is difficult 
to perform a forward dynamics simulation of the system based on eq. (63) . However, as 
will now be shown, performing a linear transformation on eq. (63) makes the resulting set 
of equations valuable for controller design purposes. 

Premultiplying eq. (63) by the nonsingular matrix [r, D-l AT]* and utilizing eq. (55) 
separates the model into two sets of equations governing the position controlled DOF and 
the internal force controlled DOF, respectively: 

rTDri/ = rT{T - c - H ,  t ( D  [TA + rB] - H,)rv}, 

A D - ~ A ~ E  = AD-' {T - c - H ,  - H , ~ v }  + A r v  (65) 
The (N12 - 6) scalar equations comprising eq. (64) constitute the reduced order equations 
of motion for the closed chain system. Vector variable E, which parameterizes the inter- 
nal force controlled DOF, has been eliminated from eq. (64) which in turn is calculated 
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as a function of the variables (q,  v, T) using eq. (65) . Since D is positive definite and 
I? and has full rank (N12 - 6), then ( r T D I ' )  is positive definite and therefore nonsingu- 
lar. ( A D - l  A T )  is positive definite and nonsingular by a similar argument given below 
eq. (50) . Thus eqs. (64) and (65) can be solved for i/ and E ,  respectively. 

Given the separated form of the reduced order model, we can now proceed with the 
controller design. This is discussed next. 
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7. Control Architecture 
The problem considered is to derive a control law for the N12 joint torques T = [T,', TT]* 
so that the variables { E ,  u }  quantifying the internal contact force- and position- controlled 
DOF can be controlled independently. This can be accomplished by applying the control 
architecture proposed in I331 to completely decouple eqs. (64) and (65)  . The composite 
control {T} is the sum of an ( N l z  x 1) primary controller T?' and an (N12 x 1) secondary 
controller r' which are defined by: 

In eq. (67) , T; and T; are (6x1) and ( ( N I z  - 6 ) x l )  vectors, respectively, representing 
control variables to be determined. 

The composite control (T = TP + T' ) defined by eqs. (66) and (67) is substituted into 
eqs. (64) and (65) . The resulting equations, under the assumption of perfect knowledge of 
the nonlinear terms in the model, leads to the closed loop system: 

u = Ti, 

E = 7; (69) 
in which eq. (55) has been invoked. The derivation of eqs. (68) and (69) is based on 
the quantities {(I? D I?) , ( A  D-' AT)}  being invertible. It was shown earlier that these 
quantities are positive definite and therefore nonsingular. 

Suppose T; is selected to servo the pseudovariable error, and T; for servoing the internal 
contact force error. Since eqs. (68) and (69) are completely decoupled, the secondary 
controller components T; and 7; are non-interacting controllers for position and internal 
contact force, respectively. 

It was claimed in [33] that the control architecture T = TP + T' decoupled the control of 
the pseudovariables and an independent subset of the contact forces, namely those imparted 
by manipulator 2. As shown here in Example 1 of section 3.2, the modeling procedure in [33] 
unknowingly distributed the load such that E = fez, i.e., the contact forces imparted by 
manipulator 2 are purely internal. The control law (T = TP + 7') defined by eqs. (66) 
and (67) in fact decouples the position- and internal force-controlled DOF. The physical 
insight into the decoupling was first identified in [34]. It should be mentioned that a similar 
decoupling control architecture was developed independently by Wen et al. in [17]. 
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8. Conclusion 
The report has reviewed a method for modeling and controlling two serial link manipulators 
which mutually lift and transport a rigid body object in a three dimensional workspace. 
The system was viewed as a single closed chain mechanism and it was assumed that there 
is no relative motion between the end effectors and object. A new vector variable E which 
parameterizes the internal contact force controlled degrees of freedom was introduced. It 
was defined as a linear function of the contact forces that both manipulators impart to the 
object using eq. (9) . A family of solutions to  the dynamic load distribution problem was 
obtained by solving the object’s dynamical equations and eq. (9) for the contact forces. 
The motion inducing component of every member of the family was shown to be identical. 
The internal component of the general load distribution solution was shown to contain two 
terms: {lP E }  and {- !P M LT ( L  LT)-’ Y } .  Three choices for matrix M which transforms 
the contact forces to  define E in eq. (9) were suggested. Interestingly, the third choice 
caused the latter internal force term to  vanish and resulted in the motion inducing and 
internal components of the solution being mutually orthogonal. 

The kinematic coupling effects between the manipulators due to  the shared payload were 
modeled. First, the Cartesian velocity of the object at its center of mass was expressed as 
a linear function of the joint velocities of both manipulators. Then a set of six rigid body 
kinematic constraints restricting the values of the joint velocities was derived. 

A rigid body dynamical model for closed chain system consisting of (N1 + N2 + 6 
second order differential equations was first derived in the joint space. The upper (N1+  N2 
equations in the model are the closed chain dynamical equations. They were derived by 
substituting the load distribution solution for the contact forces into the manipulators’ 
dynamical equations. The resulting equations are linear functions of the Cartesian vector 
Y defined in eq. ( 5 )  . We proposed here a generalization of our previous methods [32, 331 
for expressing Y in the joint space where Y = Y(q, 4, i )  becomes an explicit function of 
the matrix a. Our previous results can be obtained by specifying choices for @ in eq. (41) . 

The last six equations in the joint space model are the kinematic acceleration constraints. 
By expressing the model in the pseudospace, it was shown that these last six equations are 
satisfied regardless of the values of the pseudovariables. Therefore the upper ( N l  + N2) 
equations of the model, when expressed in the pseudospace, comprise a rigid body model for 
the system. Linear transformations were applied to  the (N1 + N2) equations in the model 
to obtain reduced order equations governing the motion of the system and a separate set of 
equations governing the internal components of the contact forces. Both sets are functions 
of the joint torques of both manipulators, but only the latter is a function of E .  The control 
architecture originally proposed in [33] was applied to  completely decouple the two sets of 
equations comprising the separated form of the model. As a result, the pseudovariables and 
the elements of E are controlled independently. 

1 
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