Mechanistic aspects of photoconversion at semiconductor-liquid junctions and in facilitated transport membranes. Final report, March 15, 1994--March 14, 1998

PDF Version Also Available for Download.

Description

A major portion of the research completed during this funding period involved the use of rotating ring-disk electrochemical techniques in conjunction with carefully chosen solution redox systems to investigate hot electron transfer reactions at the semiconductor electrolyte interface. This paper cover the following topics: photoreduction reactions at GaAs/AlGaAs superlattice electrodes; photoelectrochemistry at GaInP{sub 2} capped p-GaAs electrodes; further investigation of p-InP photocathodes; rotating ring disk photoelectrochemistry at TiO{sub 2} films; and photomodulation of interfacial mass transport rates.

Physical Description

13 p.

Creation Information

Koval, C.A. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 39 times. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A major portion of the research completed during this funding period involved the use of rotating ring-disk electrochemical techniques in conjunction with carefully chosen solution redox systems to investigate hot electron transfer reactions at the semiconductor electrolyte interface. This paper cover the following topics: photoreduction reactions at GaAs/AlGaAs superlattice electrodes; photoelectrochemistry at GaInP{sub 2} capped p-GaAs electrodes; further investigation of p-InP photocathodes; rotating ring disk photoelectrochemistry at TiO{sub 2} films; and photomodulation of interfacial mass transport rates.

Physical Description

13 p.

Notes

OSTI as DE98005562

Source

  • Other Information: PBD: [1998]

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • March 26, 2020, 8:42 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 39

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Koval, C.A. Mechanistic aspects of photoconversion at semiconductor-liquid junctions and in facilitated transport membranes. Final report, March 15, 1994--March 14, 1998, report, June 1, 1998; Boulder, Colorado. (https://digital.library.unt.edu/ark:/67531/metadc695574/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen