Role of reactant transport in determining the properties of NIF shells made by interfacial polycondensation

PDF Version Also Available for Download.

Description

Polymer shells up to 2 mm in diameter were prepared using an interfacial polycondensation / cross-linking reaction occurring at the surface of an oil drop. The oil phase is comprised of a solution (20 wt% or less) of isophthaloyl dichloride (IPC) dissolved in an organic solvent. An interfacial reaction is initiated when the IPC-loaded oil drop is submerged in an aqueous solution of poly(p-vinylphenol) (PVP), a poly(electrolyte) at elevated pH. Composition, structure, and surface finish for fully-formed dry shells were assessed using a number of techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), fourier-transform infrared spectroscopy (FTIR), pyrolysis-gas ... continued below

Physical Description

15 p.

Creation Information

Hamilton, K.E.; Letts, S.A.; Buckley, S.R.; Fearon, E.M.; Wilemski, G.; Cook, R.C. et al. March 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 13 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Polymer shells up to 2 mm in diameter were prepared using an interfacial polycondensation / cross-linking reaction occurring at the surface of an oil drop. The oil phase is comprised of a solution (20 wt% or less) of isophthaloyl dichloride (IPC) dissolved in an organic solvent. An interfacial reaction is initiated when the IPC-loaded oil drop is submerged in an aqueous solution of poly(p-vinylphenol) (PVP), a poly(electrolyte) at elevated pH. Composition, structure, and surface finish for fully-formed dry shells were assessed using a number of techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), fourier-transform infrared spectroscopy (FTIR), pyrolysis-gas chromatography (GC) mass spectroscopy (MS), microhardness measurements, gas permeability, and solvent permeability measurements. From deposition rate data, a reaction mechanism and key reaction parameters were identified. The deposition rate of shell membrane material was found to be a diffusion limited reaction of IPC through the forming membrane to the exterior shell interface (which is believed to be the reaction front). The final thickness of the film deposited at the interface and the rate of deposition were found to be strong functions of the IPC concentration and oil phase solvent. Films made with diethyl phthalate (DEP) were thinner and harder than films made using 1,6-dichlorohexane (DCH) as a solvent. Differences in solubility of the forming membrane in DCH and DEP appear to be able to account for the differences in deposition rate and the hardness (related to cross-linking density). The deposition can be thought of as a phase separation which is affected by both the poly(electrolyte) / ionomer transition and the amount of cross-linking. Finally, it was found that the choice of oil phase solvent profoundly affects the evolution of the outer surface roughness.

Physical Description

15 p.

Notes

OSTI as DE98051136

Other: FDE: PDF; PL:

Source

  • 11. target fabrication specialist meeting, Orcas Island, WA (United States), 8-12 Sep 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98051136
  • Report No.: UCRL-JC--125125
  • Report No.: CONF-9609225--
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 622771
  • Archival Resource Key: ark:/67531/metadc695511

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 10, 2017, 1:46 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 13

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hamilton, K.E.; Letts, S.A.; Buckley, S.R.; Fearon, E.M.; Wilemski, G.; Cook, R.C. et al. Role of reactant transport in determining the properties of NIF shells made by interfacial polycondensation, article, March 1, 1997; California. (digital.library.unt.edu/ark:/67531/metadc695511/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.