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ABSTRACT 
A solution to  the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given 
a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled 
as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position 
values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear 
estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose 
elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear 
object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then 
projected to linear features in the image plane. The method has been implemented and tested with both simulated 
and actual experimental data. Simulation results are provided, along with comparisons t o  a point-based IEKF 
method using rotation and translation, to show the relative advantages of this method. Experimental results from 
testing using a camera mounted on the end effector of a robot arm are also given. 
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1. INTRODUCTION 
Estimation of relative 3-D position and orientation (pose) and structure as well as relative motion between two 
reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other areas 
such as photogrammetry, tracking, and object recognition. The general problem presented here is to  locate an object 
and measure its relative motion in three dimensions given a sequence of 2-D intensity images of the object whose 
position and orientation are known relative to a base reference frame. The 3-D transformation is modeled as a 
nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values. 
The stochastic model uses the IEKF as an estimator and a screw representation of the 3-D transformation based 
on dual quaternions. Previous solutions have used point-based image features in estimating the structure, pose, and 
motion. This work, instead, uses image line features as measurement inputs for the estimation. Line features are 
present in many scenes and objects to a greater extent than point features. They may be more visible than points 
as well under a wider range of lighting and environmental conditions. Also, straightforward techniques such as the 
Hough transform and line fitting to edges are available to extract the lines from the images. 

Point-based methods of pose estimation rely on the identification and location of feature points on a target object 
from a 2-D image of the scene. Three- and four-point coplanar targets have been directly used for pose determination 
with closed-form solutions demonstrated.',' A 3-D location method based on dual-number quaternions has been 
described by Walker3 and P h ~ n g . ~  Phong uses line features or lines defined by pairs of corresponding points as 
correspondences between the image and the 3-D object. Real-time methods are intended for those applications 
requiring fast response for control or needing low computational overhead for operation with low-cost hardware. 
Abidi and Chandra' describe a new, fast, closed-form algorithm for relative pose determination based on the volume 
measurement of tetrahedra. Other methods of pose determination use line features in determining the A 
number of real-time estimation methods a.nd a.pplications using Kalman filtering have also been described. The 
problems being solved include not only pose estimation but also motion and 3-D structure of a rigid object. For 
real-time applications, extended Kalman filtering is the most widely used method of recursive estimation. Ayache 
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and Faugeras provide a method for representing uncertainty in measurements of points, lines, and planes used in 
building visual maps of the environment for a mobile robot.7 A recursive method of estimating motion, structure, 
and focal length is given by Azarbayejani and Pentlands using an extended Kalman filter (EKF). Quaternions are 
used to represent rotation indirectly. Broida et al.9 also present a motion and structure estimation solution based 
on the IEKF. Point-based image features are inputs. A rotational quaternion is estimated directly as part of the 
state. A Kalman filter approach is used by Lee and Kay for 3-D pose and motion estimation from stereo images." 
Westmore and Wilson describe the use of an EKF to provide an estimate of the position of a camera mounted on a 
robot endpoint." Wang and Wilson describe the estimation of both relative position and orientation of a moving 
object using an EKF based on point features." 

Section 2 describes the dual quaternion 3-D transformation representation. The line-based feature recovery from 
2-D images is given in Section 3. This section includes the perspective projection of 3-D lines to  the image plane 
and the parameterization of the projected lines in the image plane. Section 4 develops the estimation method using 
the IEKF. The system and measurement model is given for the pose and structure estimation. Section 5 presents an 
implementation of the method in a robotic arm application where a single camera is mounted on the end effector of 
the robot. Results are shown for simulations as well as for actual tests on a robot arm. Section 6 gives a summary 
and conclusions. 

2. DUAL QUATERNION 3-D TRANSFORMATION REPRESENTATION 
2.1. Quaternions 
A quaternion is a four-component number consisting of a scalar part and three orthogonal parts. Quaternions are 
an extension of complex numbers to R4 with three imaginary parts. Formally, a quaternion q can be defined as 

4 

Q = qn + qia+ g&+ q3k (1) 

where each of the qi is a real number and a, 7, and are orthogonal imaginary unit vectors. From the above definition, 
the class of quaternions can be seen to include scalars, ordinary complex numbers, and three-element spatial vectors. 
Additional detailed properties of quaternions are given by Horn13 and Chou.14 

2.2. Dual Numbers 
A dual number is defined as 

CL = (I, + cb 

where a, b are real numbers and 6 is defined as t2 = 0. The standard arithmetic operations (addition, multiplication, 
etc.) may be defined. Dual numbers were first proposed by Clifford.I5 Additional operations and other properties 
of dual numbers are given by Walker.3 One application for dual numbers is in the representation of a skew angle 
between two 3-D lines, 4 = B + ~ d ,  where B is the angle between the lines and d is the minimum distance between 
the lines. 

(2) 

2.3. Representation of 3-D Rotation and Translation by Dual Number Quaternions 
Quaternions are limited to representing rotation in a full 3-D transformation. Translation must be dealt with 
separately. Dual number quaternions, however, provide a framework that may be used to represent both rotation 
and translation. Dual number quaternions correspond directly to the screw 3-D transformation representation shown 
pictorially in Fig. 1. The required parameters include the screiz axis, the screw angle, and the screw pitch. The 
screw axis is described by a linz in 3-D space that has Girection 1 passing through point @. A 3-D line is defined by 
the two three-element vectors 1 and 6 where fi, = 5 x J .  While six pa_rameters are used in this definition, only four 
degrees of freedom are present due to the constraints 1 . fi, = 0 and 1/1(1 = 1." This particular formulation leads to 
the dual quaternion representation of the line, 

- + e  

1 = 1 + €6,. 
The eight parameters in this equation directly correspond to the screw transformation representation. The unit dual 
quaternion Q = r + 6s representing the 3-D transformation can be expressed as 

(3) 
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Figure 1. Diagram showing screw form of 3-D transformation between two reference frames. Eight parameters are 
needed to specify the complete transformation. 

where i i s  a dual vector that represents the screw axis about which the coordinate system has rotated and translated 
as given by i.3,16 The resulting full 3-D transformation of a line can be expressed simply as 

3. RECOVERY OF FEATURE INFORMATION 
3.1. Perspective Projection of 3-D Lines 
A 3-D line is transformed to  the camera reference frame using Eq. ( 5 ) .  Perspective projection is then applied to 
this transformed line. The projected line lies in a plane defined by the 3-D line and the center of projection that 
intersects the image plane at z = -A. The result is an equation of the projected line in the z = -A plane, 

where xi and yi are the image plane coordinates. From the normalized form, the direction vector of the image line is 

4 

li, = 

while the 6, vector portion of the image line is 

(7) 

-+ 
Note that the projected 2-D image plane line as given by 6r,i and li is determined entirely by the 6, vector components 
of the 3-D object line. 

3.2. Representation of Lines in the Image Plane 
The result of the perspective projection for 3-D object lines is a set of coplanar lines located in the image plane. 
Since the lines are restricted to a known plane, only two degrees of freedom are present. The parameterization of the 
image line is an :c,y point called the line point. A line point is defined as the intersection of the line feature with a 
line passing through the image origin perpendicular to the line feature. Figure 2 illustrates the definition of the line 
point on the image plane. The line point is unique for all lines except for those lines that pass through the origin. 
For these cases, it is assumed the lines approach the origin with a distance S but do not actually pass through the 
origin. The line point has the advantage of minimum state representation and a simple distance measure as well as 



being continuous for all lines. The line point is calculated from the dual vector image line in terms of the 3-D line 
dual-vector components 

t Line Point 

X 

Figure 2. Line point for a line in 2-D image plane is defined as the intersection point of the line and a perpendicular 
line passing through the origin. 

4. ESTIMATION OF POSE AND MOTION 
The perspective projection equations for lines from 3-D to 2-D are nonlinear. Calculation of relative position and 
orientation from the 3-D coordinates of corresponding points in two reference frames is also n ~ n l i n e a r . ~ ~ ' ~  For the 
minimum three points needed to  calculate a pose, up to four solutions are possible. Solutions with four or more 
points are overconstrained with a minimum error criterion used to determine the result. Motion estimation requires 
a dynamic system model that is nonlinear in the rotational dynamics. Direct linear estimation techniques, such 
as the standard Kalman filter, are therefore not applicable. The IEKF, however, is highly suitable as a nonlinear 
estimator. l7 

4.1. System Model 
The state assignment estimates the transformation between the camera and the object reference frames and the 
first derivatives of this transformation. The assignment is based on the dual quaternion representation of the 3-D 
transformation. Similar to the approach given by Broida,g the state variable assignment with a known object 
geometry is 

Thirteen state variables are present: t ,  and z', terms are the linear translation and linear velocity, respectively; q, is 
the rotational quaternion; and w, is the rotational velocity in each axis. Translation, rather than the dual part of the 
dual quaternion, is estimated in the state vector since the dual part can readily be calculated from the translation 
and the rotational real quaternion as given by 

(11) 
4 T 
s = [t. f ,  t ,  qo q1 q 2  (13 71, liy l is  w, wy w z ]  . 

t 4 = q +  e 5 q  (12) 
d 

where t is a vector quaternion formed from the translation vector and a zero scalar part. The first derivative is 



With the linear velocity as state variables, the state update for the linear translation becomes very simple. The first 
derivative of the translation is also continuous for all real dynamic translations. Chou14 gives the relation between 
quaternion angular velocity and the spatial angular velocity, 

f- is a vector quaternion where the vector portion is the angular velocity about the axes. Solving for Q gives 

1 
q =  -aq. 2 (15) 

Since the quaternion has four parameters to represent rotation, an additional degree of freedom is present. As a 
result, normalization of the quaternion to unit magnitude after each iteration is performed. 

4.2. State Propagation and Measurement Update Model 
The discrete EKF system model defines a function 4 and additive noise 12 to calculate the next state in terms of the 
present state given by 

7u' is assumed to be additive Gaussian noise with zero mean and covariance matrix Qk-1. The state transition 
function q3 extrapolates from the state at time interval k - 1 to the next state at time interval k .  The linear and 
angular velocities are assumed constant so that w i ( t k )  = ~ i ( t k - 1 )  and wi ( tk )  = ~ i ( t k - ~ ) .  

The quaternion propagation in time is described by Eq. (15). The solution when all wi are constant is, after 

(16) 
4 4 

Sk = 4k-1  ( S k - 1 )  + Gk-1. 

The complete state transition function is 

+~(.q = [~,+Tv, t y  + ~ W Y  t ,  +TU,  Qtranq(tk:) V, vy V, W ,  wY w , ] ~ .  (18) 

The measurement update equation for the EKF is 

Zk = h,k ( 3 k )  + V;, . (19) 

The measurement noise i& is a zero mean, Gaussian sequence with covariance matrix R k .  h k  comprises the perspective 
projection functions given in Section 3.1. Since the dual quaternion operation transforms lines to lines, the given 
model features from the object are lines represented as dual vector quaternions. The measured .& components are 
the line points of the 2-D image plane lines projected from the 3-D object lines. 

4.3. Linearization of the State Transition Function 
The linearized state transition matrix is computed as the partial derivative of the state transition function with 
respect to each state variable and is evaluated at  time t = t k .  The time dependency requires that it be computed at 
each state update. Formally, @I, is defined as 

(20) 



Cpk = 

Qtran is defined above in Eq. (17). Qw is defined as 

1 0 0 . . .  r O O 0 0 0  
0 1 0 . . .  O r 0 0 0 0  
0 0 1 . . .  0 0 7 0 0 0  
0 0 0  0 0  0 

Qtran  QW 

0 . . .  1 0  0 0 0 0 .  
0 . . .  0 1 0 0 0 0  
0 . . .  0 0 1 0 0 0  
0 . . .  ... 1 0 0 
0 . . .  . . .  0 1 0 

. . .  0 0 1 0 . . .  - - 

where w = [w, w, w , ] ~ .  The partial derivative of Q t r a n q ( t k )  with respect to each wi is 

4.4. Linearization of the Measurement Function 
The linearized measurement matrix is the partial derivative of the measurement function with respect to each state 
variable and is evaluated at time t = t k .  Thus, it is time dependent and must be calculated at  each measurement 
update step. Formally, Hk is defined as 

Hk is a 2i-by-n matrix where i is the number of measured lines and n is the number of states. For each measured 
line, the partial derivative of each line point coordinate is calculated 

a:cL, aXlp am, aclp amy aclP aV),, 
asi dm, a s i  amy as2 am, as, 

891, - ay1, am, 891, am, ayl, am, 

+-- +-- -=-- 

and 
+--+-- dsi, d m ,  as, amy as, d m z  a s i  

where si is a state variable. Expanding each line, 1 + em, and solving for m, gives 

1 1 
2 2 

17). = .rm,r* -1 -rl,r't* + -trlmr*. 

The quaternion multiplications may be replaced by the corresponding matrix forms to give 
+ -  I +  - + -  

m =hfrAI: m, + -(Mt + Mt.) AJ,.M,.. 1,. 
2 

( 2 5 )  

(27) 

- + -  + 
Let R =MrhfT and Ivlt+t* = i ( M t  + Alp) .  R has the standard 3-by-3 rotation matrix in the lower right submatrix. 
The partial derivatives of m. with respect to each state variable are 



where ti is one of the three translation variables; 

where qi is one of the four rotational quaternion variables; 

am avl - - - = o  - 

avi dwz 

where vi and wi are the three linear velocities and three angular velocities, respectively. 1, and m, are quaternions 
that compose the dual quaternion representation of the object model and are known from the geometric description 
of the model. The partial derivatives of the image points x:lp and glP with respect to  each element of 6, are given by 

( 3 2 )  
Am,m,, m,, - Am* dlJlp -2  Amzm, - 2  d.z.1, 

am, (mZ + mi) (7nE + mi)2 ’ dm., (m2 + ,,p)2 ’ 
- -  

4.5. Iterated Extended Kalman Filter Representation 
The system and measurement models of the IEKF have been given above. An initial state estimate is required 
based on prior knowledge. An initial error covariance matrix, PO, that is dependent on the prior knowledge must 
also be specified. Process and measurement noise covariance matrices, Qk: and Rk, respectively, are required. After 
each iteration, the derived partial derivatives with respect to  each state variable are calculated to  determine the 
linearized equations. With each updated state estimate, a new linearization is then performed about this state. 
Several iterations about the updated state may then be needed to  achieve convergence. 

5. EXPERIMENTAL RESULTS 
This section provides an evaluation for the line-based method through both simulation and actual physical system 
testing. A dynamic vision application for the approach is defined where a camera provides the visual feedback for 
a robot performing a task. Simulation testing measures the accuracy of the estimation under an assumed noise 
distribution and magnitude. Speed of convergence, mean square error, and stability are presented. Actual test 
results measuring relative motion and position from a robot arm are also shown. Relative accuracy as well as noise 
characterization is provided. 

5.1. Simulation Tests 
Simulation testing was performed to evaluate the performance of the pose estimation method under a variety of 
conditions. The results are compared with corresponding results from a point-based extended Kalman filtering 
method using an identical target to illustrate the performance differences. An ideal camera model is used in the 
simulation. Perspective projection is assumed for the camera with a known effective focal length. Noise of an assumed 
magnitude and distribution is added to the image feature locations before processing. A target object consisting of 
four coplanar points in a rectangular pattern is simulated with individual feature points. Pairs of these points, when 
extracted from the image plane, are connected together to form lines. 

Initial conditions requiring specification include the initial state, .TO, and the error covariance matrix, PO. The 
state vector may be considered a collection of Gaussian random variables with covariance Po. The initial state is a 
sample ta.ken from each random variable. Process noise given by the covariance matrix Q is also specified as an initial 
condition for the simulations, remaining constant throughout. Similarly, measurement noise given by the covariance 
matrix R is initially specified as a constant. 



State . Translation 
n: y z (mm.) 

True Initial State 10 10 1000 

5.1.1. Test Results 
Simulation results give the calculated root mean square (RMS) error over time for the model trajectory. Table 1 
shows the initial state conditions for the simulation. The initial states are the same for both methods. In all cases, 
the off-diagonal terms of the covariance matrices are zero. For these tests, the simulated sample interval is 0.1 second. 
The error covariance values were held constant over the entire measurement interval. 

The input noise is a Gaussian with a standard deviation of 0.02 mm. This noise level corresponds to  approximately 
4% of the image size in the image. Based on this noise level, the measurement error covariance matrix has diagonal 
elements of 0.0004 mm.?- for each measured variable. Although the dynamic model is the same for both the dual 
quaternion method tests and the comparison method tests, tuning and stabilization adjustments were required for 
both methods. Nonzero process noise quantities were needed even though the dynamic model assumed no process 
uncertainty. Stability was a significant problem for the point reference method with this level of noise. Estimate 
errors occasionally became unbounded when no process noise was used. Stability was not as great a concern for 
the dual quaternion method since the errors did not become unbounded, reaching approximately 10% error in the 
z-translation parameter. Significant improvements in errors were achieved, however, by adjustment of these values. 

Figures 3 through 5 show examples of the calculated RMS error over 100 sample runs for both the dual quaternion 
line method and the quaternion point method. In these state variables, the dual quaternion method has lower RMS 
error over the test time interval. The square root of the corresponding mean diagonal element from the calculated 
covariance error matrix is also shown in each figure. In these tests, the covariance matrix values correspond, generally, 
closely to the actual error values for the dual quaternion method while large differences are present for the point 
method. 

Quaternion Linear Velocity Rotational Velocity 
qo Q1 q2 43 n: y z (mm./sec.) n: y z (rad./sec.) 

1 0 0 0  -5 2 -5 -0.03 0.05 -0.2 

5.2. Robot Arm Tests 
Experimental testing has been performed using a robot arm equipped with an area camera and a computer system 
for processing images and controlling the arm. Tests were performed with controlled relative motion between an 
object and the camera. 

5.2.1. Experimental Setup 
The experimental setup consists of a Mitsubishi RV-E2 six-degree-of-freedom robot arm with a Cidtec camera used 
for image acquisition. The pose estimation is performed on a 166 Mhz. Pentium PC. The robot is controlled remotely 
via RS232 to the robot controller. The remot,e robot control consists of position, velocity, and acceleration commands. 

5.2.2. Measurement Model 
The measurement model for the experiment consists of the functions given in Fig. 6. First, the image of the target 
object is acquired by the camera and the frame grabber. Next, the object edges are extracted and the contour is 
formed. Straight lines are then calculated from the contour with length filtering performed to  eliminate short lines 
that could arise from extraneous fea.tures. Collinear lines are also merged into one line. The resulting lines are used 
as inputs to the filter after conversion to the line point parameterization. Correspondence to the known geometric 
model is established a t  this stage. 

In the experimental tests, an initial estimate of the relative pose between the camera and the object is provided by 
calculating pose using the four-point coplanar pose calculation rnethod of Abidi and Chsndra.' The initial velocities 
are set to zero as in the simulation tests. 

Initial State Estimate 0 0 990 i 0.9998 0.01 0.01 0.01 0 0 0  0 0 0  
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Figure 3. t, translation pose estimate simulation results with a four-point target showing linear translation RMS 
estimation error over time for the line method and the comparison point method calculated from 100 sample runs. 
The square root of the predicted error covariance from the Kalman filter for both methods is also shown. 
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Figure 4. w, translation velocity pose estimate simulation results with a four-point target showing linear translation 
RMS estimation velocity error over time for the line method and the comparison point method calculated from 100 
sample runs. The square root of the predicted error covariance from the Kalman filter for both methods is also 
shown. 
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Figure 5. w, angular velocity pose estimate simulation results with a. four-point target showing angular RAIS 
estimation velocity error over time for the line method a.nd the comparison point method calculated from 100 sample 
runs. The square root of the predicted error covariance from the Kalman filter for both methods is also shown. 



- 
Figure 6. Measurement functions applied to obtain line point measurements from camera image in robot arm 
experiments. 

Acquire Extract Form Fit Lines to Calculate 
Contours #- Line Points I- Image - Edges I- Contours I- 

5.2.3. Target Motion Results 
The tests were performed with the target moving in a circular pattern around the z axis at constant speed. The 
camera and robot arm were directly above the target and stationary. The motion is confined to  the :e-y plane. 
Sample period is one second. Figures 7 through 10 show the estimated response for some selected state variables over 
time. The :E and y translations vary in a sinusoidal pattern consistent with constant circular motion. The z-axis 
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Figure 7. t, translation pose estimate from experimental testing for constant target motion about the z axis. The 
estimate shows a sinusoidal variation corresponding to the true 2 variation of the target. 
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Figure 8. t ,  translation pose estimate from experimental testing for constant target motion about z axis. The 
estimate shows a noisy variation about a mean z value with a small sinusoidal component. The true target z value 
is nominally constant. 

position is seen to  vary with a small sinusoidal component over the test interval along with some apparent noise. 
The motion was nominally in the :I;-y plane of the target and parallel to the image plane of the camera. Minimal 
out-of-plane motion results in the observed sinusoidal z variation with time. In this test, the z variation is seen to 
be about 5 mm. The quaternion estimates are also consistent with the actual motion. For motion about the z axis, 
only qo and '73 should vary significantly in magnitude. The results for qo in Fig. 9 demonstrate this behavior. The 
z linear velocity estimate, however, shows significant noise, masking the true velocity component which is near zero. 
Angular velocity estimates show significant noise in the :c and y components although the rnean appears to remain 



Experimental Results for Quaternion Element q,, 
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Figure 9. q , ~  quaternion pose estimate from experimental testing for constant target motion about the z axis. The 
estimate shows a full 360 degree sinusoidal variation corresponding to the true 40 variation of the target as it moves 
through two complete revolutions. 
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Figure 10. w, angular velocity pose estimate from experimental testing for constant target motion about z axis. 
The estimate shows a noisy variation about a true mean w, velocity value of -0.06 rad./sec. 

near zero. The angular z velocity in Fig. 10, however, gives an accurate estimate of the true rotational speed. The 
0.06 rad./sec. velocity corresponds to a revolution time of 105 seconds. The z angular velocity results also show the 
fast transient response of the initial startup from no motion to the constant rotational speed. 

6. CONCLUSIONS 
A new pose, motion, and structure estimation method has been developed. This method uses an imaging technique 
with a single area-based camera along with a reference object or scene to calculate estimates for relative six-degree- 
of-freedom position and orientation as well as the associated velocity estimates. Intended for real-time use, this 
method can be applied to  robot vision, control, and assembly tasks. The system model for the method is based on 
line features, a dual quaternion parameterization for the 3-D transformation, and the IEKF. The IEKF is used as 
an estimator for the highly nonlinear imaging model. 

The experimental results obtained from simulation and actual robot arm testing have shown that this method 
estimates 3-D pose parameters more accurately than previous point-based extended Kalman filtering within the 
central region of a camera view. In particular, the range and range motion estimation has been shown to be 
measured more accurately with faster settling times than with point methods of real-time estimation. The robot 
arm tests demonstrate that  the method is accurate and stable. 
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