Epitaxial Growth of Yb<sub>2</sub>O<sub>3</sub> Buffer Layers on Biaxially Textured-Ni (100) Substrates by Sol-Gel Process

PDF Version Also Available for Download.

Description

In order to develop an alternative buffer layer architecture using the sol-gel process to produce YBCO (YBa2Cu307+) coated conductors, Yb203 has been chosen as the candidate material. Buffer layers of fi03 were epitaxkdly grown on biaxially textured-Ni (100) substrates by the sol gel process for the first time. The ~03 precursor solution was prepared from an alkoxide sol-gel route in 2-xnetho~ethanol and was deposited on textured-Ni (100) substrates by either spin coating or dip coating methods. The amorphous film was then processed at 1160oC under flowing (96%)MH2(4%) gas mixture for one hour. The fi03 iihn exhibited a strong c-axis orientation ... continued below

Physical Description

6 Pages

Creation Information

Beach, D.B.; Chirayil, T.G.; Christen, D.K.; Feenstra, R.; Goyal, A.; Kroeger, D.M. et al. April 5, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In order to develop an alternative buffer layer architecture using the sol-gel process to produce YBCO (YBa2Cu307+) coated conductors, Yb203 has been chosen as the candidate material. Buffer layers of fi03 were epitaxkdly grown on biaxially textured-Ni (100) substrates by the sol gel process for the first time. The ~03 precursor solution was prepared from an alkoxide sol-gel route in 2-xnetho~ethanol and was deposited on textured-Ni (100) substrates by either spin coating or dip coating methods. The amorphous film was then processed at 1160oC under flowing (96%)MH2(4%) gas mixture for one hour. The fi03 iihn exhibited a strong c-axis orientation on the Ni (100) substrates. The phi and omega scans indicated good in plane and out of plane orientations. The X-ray (222) pde figure showed a cube-on-cube epitaxy. High current YBCO films were grown on the Y&03 sol-gel buffered-Ni substrates.

Physical Description

6 Pages

Source

  • Spring Meeting of the Materials Research Society, San Francisco, CA, April 5-9, 1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE00006225
  • Report No.: ORNL/CP-102590
  • Grant Number: AC05-96OR22464
  • Office of Scientific & Technical Information Report Number: 6225
  • Archival Resource Key: ark:/67531/metadc695367

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 5, 1999

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • June 10, 2016, 4:36 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Beach, D.B.; Chirayil, T.G.; Christen, D.K.; Feenstra, R.; Goyal, A.; Kroeger, D.M. et al. Epitaxial Growth of Yb<sub>2</sub>O<sub>3</sub> Buffer Layers on Biaxially Textured-Ni (100) Substrates by Sol-Gel Process, article, April 5, 1999; Oak Ridge, Tennessee. (digital.library.unt.edu/ark:/67531/metadc695367/: accessed September 26, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.