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ABSTRACT 

A sheared background flow in a plasma induces coupling between different 

MHD wave modes, resulting in their mutual transformations with correspond- 

ing energy redistribution between the modes (Chagelishvili, Rogava & Tsiklauri 

(1996)). In this way, the energy can be transfered from one wave mode to the 

other, but energy can also be added to  or eztmcted from the background flow. 

In the present paper it is investigated whether the wave coupling and energy 

transfer mechanisms can operate under solar wind conditions. It is shown that 

t h s  is indeed the case. Hence, the long-period waves observed in the solar wind 

at T > 0.3 AU might be generated by much faster periodic oscillations in the pho- 

tosphere of the Sun. Other possible consequences for observable beat phenomena 

in the wind and the acceleration of the solar wind particles are also discussed. 

Subject headings: Sun: solar wind - MHD waves - shear flow - wave coupling 
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1. Introduction 

Long-period waves are observed in the solar wind at r > 0.3AU (Hollweg (1990)). 

The correlation between the magnetic field and the velocity fluctuations indcates that the 

observed waves are outward propagating Alfidn waves. It appears, thus, that the sun radiates 

Alfvkn waves. These waves dissipate and heat heavy ions and protons. In the wind, the 

heavy ions (such as He2+) are hotter as well as faster than the protons, ZIT, fi: m/q, and 

- Vp sz V A .  The latter condition strongly indicates that the waves could play a significant 

role in the heating and acceleration of the wind. For this mechanism to be taken seriously, 

we must find answers to the following questions: 1) Since the observed waves have periods of 

several hours at 1 AU: what is the source of such low-frequency waves; it is hard to associate 

these waves with known processes in the photosphere, 2) Will there be enough power in the 

Alfvkn waves to drive the high-speed solar wind streams? 

In this paper we make an attempt to answer these questions. The coupling brought 

about by the velocity shear between the modes of a shearless plasma, and the interactions 

of these modes with the velocity shear (with a possible energy exchange) will be the two 

central mechanisms invoked in this effort. The ability of an inhomogeneity like the velocity 

shear to couple various plasma modes has been common knowledge for a long time. What 

has not been generally known, however, is the fact that velocity shear, unlike other normal 

inhomogeneities, causes a profound change in the very nature of the eigenvalue problem as- 

sociated with linear waves. The corresponding eigendue problem becomes non self- adjoint 

resulting in non-orthogonal eigenfunctions which do not have independent time evolution. 

Thus the asymptotic normal mode analysis (with exponential time dependence) cannot com- 

pletely describe the time evolution of the system. In particular, all transient and algebraic 

processes, which may form an essential part of the dynamics, will be missing in the standard 

approach. Thus to know the rates of mode conversion or of energy exchange in a sheared 
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plasma, we need a different approach. One, in fact, must go back to solving the initial value 

problem. Fortunately the mathematical frame work for posing and solving the initial value 

problem (in sheared flows) is now well developed, and a large number of relevant and inter- 

esting physics problems have also been worked out. For want of a better name, we call the 

new method (to be explained and used in this paper) ‘nonmodal analysis.’ 

In several papers, dealing with a wide variety of laboratory, geophysical and astrophysi- 

cal shear flows, the techniques of the nonmodal analysis have been used to delineate most of 

the expected shear induced phenomena: the transient amplification and decay of perturba- 

tions, energy exchange between a given mode and the background, and the mutual conversion 

and energy exchange between different modes. A list of representative papers consists of: 

Chagelishvili, Rogava & Tsiklauri (1996); Chagelishvili, Rogava, & Segal (1994); Chagel- 

ishvili & Chkhetiani (1995); Rogava, Mahajan, & Berezhiani (1996); Rogava & Mahajan 

(1997); Chagelishvili et al. (1997); Mahajan, Machabeli & Rogava (1997); and Chagelishvili, 

Rogava, & Tsiklauri (1997). In these papers, appropriate conditions for optimal exchange 

and the rates of exchange are also worked out. 

The solar wind is a quintessential example of a sheared plasma flow capable of sus- 

taining a variety of modes. Are the conditions in the solar wind, then, favourable for the 

shear-mediated processes to effectively occur? In this paper we demonstrate that the answer 

to the preceding question is in the affirmative. This realization is likely to have far-reaching 

consequences: 1) the appearance of the long-period waves at r > 0.3AU may be attributed 

to the shear-induced transformation of much faster photospheric oscillations, e.g. fast magne- 

tosonic modes, 2) The inter mode-flow energy exchange, jointly with wave transformations, 

may transfer a part of the wave energy to the flow resulting in the acceleration of the solar 

wind. Finally, the wave coupling can produce beats (Rogava & Mahajan (1997)), which may 

be detected in the solar wind. Due to its rather peculiar outward appearance, this effect 
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may serve as a bona fide signature of the shear-induced effects. 

Before plunging into a mathematical analysis of the solar wind problem, we give a quali- 

tative summary of a calculation studying the coupling of the slow and the fast magnetosonic 

waves (Chagelishvili, Rogava & Tsiklauri (1996)). In the cited paper, it was shown that 

the optimal transformation of the long-period slow waves into the short-period fast magne- 

tosonic waves takes place when the Alfvbn and sound speeds, VA and V,, are comparable. 

In the solar wind, typically (see e.g. Sturrock (1994)), the ion and electron temperatures are 

approximately the saxne (T‘ x Tp x 105K), the proton number density of is np x l O ~ m - ~ ,  

and the background magnetic field is Bo M lo-* - G. For these values, 
1 

V ,  21 2.873 x 106(-)’cm/s, T 
1 0 5 ~  

yielding 

which is of order unity; the conditions in the solar wind are almost ideal to warrant strong 

coupling between these modes. 

In several other papers (already listed) written in similar vain, essential aspects of the 

shear-induced mutual transformation between all three MHD waves (the slow and the fast 

magnetosonic waves (SMW and FMW), and Alfv6n waves (AW) have been dealt with. In 

most of these papers the emphasis was on the conversion of the low to high frequency 

perturbations. For the solar wind, however, we are interested in the opposite transforma- 

tion: we are seeking a mechanism for the generation of low-frequency, long-period, Alfv6n 

waves (observed at r > 0.3AU) from the fast magnetosonic waves readily generated in the 

photosphere. We consider a simple low-p fluid plasma and first show that the solar wind 

parameters are close to  optimal for the required transition. We, then, introduce thermal 
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(isotropic pressure) effects and show that, for twdimensional oscillations, FMW may also 

transform into SMW. In both these transformations, the adiabatic character of the FMW 

energy evolution, induced by the presence of the velocity shear, may casue a partial trans- 

fer of the wave energy to the mean Aow thus leading to the acceleration of wind particles. 

Finally, we show that, in either of these cases, beat waves are excited; the latter finding is 

similar to the recent results of Rogava & Mahajan (1997) where beat waves are seen in the 

parallel shear flow of a gravitationally stratified compressible neutral fluid. 

2. General Formalism 

In the present section we model the solar plasma as a sheared MHD flow, and derive the 

basic set of linearized equations, governing the evolution of small-scale perturbations in this 

flow. We shall follow the techniques of the nonmodal analysis (see for details, e.g. Marcus & 

Press (1977) and Crimiade & Drazin (1990)): we apply a standard coordinate transformation 

to a comoving shearing reference frame, and convert the system to a set of coupled second 

order ordinary differential equations (ODES) describing the temporal evolution of the MHD 

modes (AW, SMW, and FMW) sustained by the flow. 

2.1. Physical Model 

In order to investigate the essential features of the shear induced mode coupling in the 

solar wind, we consider a rather simple physical model. A uniform magnetized plane slab 

plasma is embedded in a constant magnetic field along the z-direction, Le. Bo = &e,. The 

background flow is assumed to be directed along the magnetic field and to vary linearly in 

the 2-direction: Vo = Voe, = Axe,, with a constant A (see Fig. 1). 

The simplicity of this model flow, in particular, the assumption of the linear profile for 
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the velocity shear, guarantees its applicability to a wide variety of terrestrial and astrophys- 

ical shear flows. The reason is simple: for small-scale perturbations with wavelengths much 

smaller than the length scale of the flow, an arbitrary piecewise linear ‘shear profile’ can be 

taken to be approximately linear on the length-scales of interest. The Goldreich-Lynden- 

Bell model (Goldreich, & Lynden-Bell (1965)), widely used since the sixties for astrophysical 

shear flows, is a well-known example of such an approximation. 

To concentrate on the essentials of our stated physical problem, we consider a special case 

of the quite general magnetized plasma flow discussed in Chagelishvili, Rogava, & Tsiklauri 

(1997). By neglecting pressure anisotropy effects, the complications due to the firehose 

and mirror instabilities will be eliminated, and the resulting dynamics will be limited to an 

interplay of SMW. FMW, and AW. Small perturbations in the model shear flow obey the 

following linearized MHD equations: 

(a, +  AX&)^+ a,U, + ayuy + aZu, = 0, (4) 

where the dimensionless perturbed density and magnetic field are defined by d^= p‘/po (PO = 

const) and 6 = B’/(Bo] (lBo1 = const), respectively. The u’s are the velocity perturbations, 

the operator d denotes the partial derivatives, and the constants V, and VA refer to the sound 

and the Alfvkn speeds, respectively. 
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2.2. Coupled Oscillations 

Following the standard procedure of the nonmodal approach (see e.g. Chagelishvili, 

Rogava, & Tsiklauri (1997)) we first affect the following change of variables: 

and then take a spatial Fourier transformation of the perturbed quantities F: 

F = p(kz l ,  bt, k y ,  t') ~i(k~Jz'+k~lY1+k~'z')d~zl(lky~dkzl. / 
Aft.er eliminating b, by means of EQ. (7), we may write, in dimensionless variables: 

Dfl) = K,(T)V, + Kyvy + v,, 

$1 = -e2K,D + [ 1 +  K:(7)]by + KyK,(T)b,, 

where F(n) denotes the n-th order time derivative of F and the dimensionless variables 

axe defined as: D f ad, b, VAkZttl, 

K,(r) 

h h h - ib,, by = aby, R = A/(V.kzt), t = V,/VA, r 

k,3/kzl - Rr f K d  - Rr, Ky = b t / k z t ,  vi ZE tli/VA (a = x,y, 2 ) .  

Note that, in these equations, R measures the n o r h e d  strength of the velocity shear, 

the speeds are normalized to the A h 6 n  speed, and the time is normalized to the AlMn 

time. This normalization, Merent from the one used in Chagelishvili, Rogwa, & Tsiklauri 

(1997) (velocities normalized to the sound speed), is dictated by convenience for studying 

the cold plasma limit. 
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By introducing a new variable, t,b E D + K,(T)~ ,  + Kyby, we can reduce the system 

(8-10) to three intercoupled second order ordinary differential equations : 

?j(l) + w:?j = C1(T)b2 + C2bY, 

b p  + w;(T)b, = CI(T)+ + C3(T)by, 
bf) + w& = C2$ + C3(T)by, 

(114 

(W 

(114 

with the following auxiliary notation: 

w1= €, 

Equations (11)-(13) describe coupled oscillations with three degrees of freedom. Un- 

coupled eigenfrequencies and coupling coefficients appearing in (11)-(13) are W j  and C,, 

(i = 1,2,3) respectively. The presence of shear in the flow ( R  # 0) ensures temporal vari- 

ability of some of these quantities. However, their dependence on time may be considered 

as adiabatic when R << 1. Under certain circumstances, the coupling leads to energy ex- 

change between the oscillators, and to the transformation of fundamental oscillations into 

each other. These equations are quite general and encompass all three linear MHD modes 

(AW, SMW, FMW). In the subsequent sections we examine two special cases of interest 

in the solar context, viz. FMW-AW and FMW-SMW transformations. We find that both 

processes are optimally favoured in the solar wind. 
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3. FMW-AW transformations 

Since pressure effects are quite subsidiary to this transformation, we may simplify our 

basic setup further by neglecting the pressure. In this approximation, E = 0 with w1= C1 = 

Cz = 0, Eqs. (1 1)-( 13) reduce to the following pair of coupled second order ODE’S: 

describing the interaction of the compressional Alfvkn (pressureless FMW) and the shear 

Alfvkn waves (see Eq. (79) and Eq. (80) in Rogava, Mahajan, & Berezhiani (1996)). The 

eigenfrequencies are W;(T) [l + K,((7)] and w i  EE (1 + K;), and the coupling coefficient 

C ~ ( T )  = K&(T). The system under investigation is mathematically equivalent to a pair of 

linear pendulums, connected by a spring with a varying stiffness coefficient. The length of 

one of these pendula also varies in time. Strictly speaking, due to this temporal variation, 

the canonical theory of coupled oscillations is no longer valid. However, when the system 

parameters vary slowly (adiabatically), as they do when R << 1, the standard theory of 

coupled oscillations may serve as a useful guide in understanding and interpreting the inher- 

ent physical processes. A brief overview of some useful facts from this well-known part of 

Classical Mechanics is presented in the Appendix. 

In Eq. (14), the time dependence of the effective coupling coefficient C3(7) is a direct 

consequence of the shear in the mean flow velocity. The coupling coefficient is also propor- 

tional to the wave vector component in the ydirection (Ku in our dimensionless notation) 

so that for k,t = 0, the two waves decouple, even in the presence of a shear flow. Since the 

frequency w2 also varies in time, the presence of shear ( R  # 0) leads to a temporal variability 

of one of the uncoupled eigenfrequencies ( w ~ ( T ) )  in addition to that of the coupling coefficient 

c3 (4 * 
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A remarkable feature of this particular kind of velocity shear induced wave coupling is 

that its effectiveness depends mainly on the wave characteristics (the values of K,o and Ky, 

which determine the initial orientation of the wave vector) and not explicitly on the intrinsic 

physical characteristics of the flow. However, a dependence on some flow characteristics 

(average value of background flow velocity and the Alfvkn velocity) is hidden in the 

shear parameter R. An estimate for R reads as R N (VO/VA)(Z~/L), with L signifying 

a characteristic length scale of the shear flow. Since we are considering only small-scale 

perturbations 1, 1/kZt < L, it is clear that for both the slow (with Vo N 3 x 105m/sec), 

and the fast (with Vo z 6 - 7 x lo5 m/sec) solar wind flows, we have R << 1. 

The ‘norm& frequencies’ of these oscillations, calculated by the standard formula (see 

Appendix)) are 

n$(T) f n: = 1 -k Ky” -k K;(T), 

and may easily be identified, respectively, as compressional and shear Alfiin wave (equiva- 

lently, FMU’ and AW) frequencies. The frequency of the FMW is time dependent and when 

R << 1, it varies adiabatically. 

To demonstrate explicitly (for example, by a numerical solution of Qs. (14)) the pres- 

ence or absence of ‘modetransformation’ it is essential to excite, initially, one of the ‘pure’ 

normal modes, and then observe the evolution of the entire system. This comprises a problem 

of the proper selection of initial conditions, which is readily resolved by means of a technique 

known in the mathematical theory of coupled mechanical oscillations (see Appendix). 

We are now ready to present the results of the numerical solution of the initial value 

problem posed in Eq. (14). For Fig. 2, the relevant parameters are: K,o = 10, Ky = 0.1, 

R = 0.1. From Fig. Za, displaying the solution for bY(7), the conversion of an initially pure 

FMW into an AW around the time r = r+ = K,o/R, can be clearly seen. The energy history 
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of this transformation is illustrated in Fig. 2b, which shows the temporal evolution of the 

perturbation energy 

Note that in the shearless limit the energy is a conserved quantity (Rogava, Mahajan, 

& Berezhiani (1996)), while when RfO, the temporal evolution of EFA proceeds adiabati- 

cally. The ‘adiabatic behavior’ of the modes implies that they should normally follow the 

dispersion curves of their own: the spectral energy density of either the FMW or AW should 

be proportional to its corresponding normal frequency €* N s2* (Chagelishvili, Rogava & 

Tsiklauri (1996), Rogava, Mahajan, & Berezhiani (1996), Chagelishvili, Rogava, & Tsiklauri 

(1997)). This mode of energy evolution, however, will not pertain in the ‘degeneracy region’ 

(DR, see appendix), where efficient transformation of one wave into the other may occur. 

Checking necessary conditions for efficient coupling (see Appendix), we learn that the differ- 

ence S ~ + ( T )  - L(T) attains its minimum value at r = re. It is, therefore, evident that the 

DR is in the neighborhood of r* (at times, when 0 < IKz(r)l < 1). In the vicinity of r = re, 

Kv < 1 leads to  the most efficient mode coupling and, hence, to the possibility of mutual 

transformation of the modes. As regards the second (‘slow passing’) condition derived in the 

appendix. it readily holds in the DR when R << 1. 

The FMW-AW transformation is not complete but only partial; this is shown in Fig. 2 

(b). We see that the energy graph is not symmetric: the rate of adiabatic decrease in energy 

up to r = r+ is greater than the corresponding rate of growth at r > r,, indicating that the 

initial FMW was only partially converted into the AW, which contributed to the decrease of 

the efficiency with which the wave extracts energy from the mean flow at r > r*. In other 

words, the FMW transfers energy to  the mean flow until r < r* and cannot, afterwards, 

(at r > re) extract back the same amount of energy because the FMW has been partially 

transformed into an AW. The latter mode has a constant fundamentd frequency R- E RA 
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and, therefore, is not able to extract energy from the mean flow via the shear-induced process. 

This picture allows one to speculate that FMW-AW transitions may contribute t o  the net 

acceleration of solar wind particles. 

Yet another impressive shear-induced phenomenon, which arises in this setup is the 

excitation of beat modes (Fig. 3). Similar kinds of shear induced beats among internal 

gravity and sound waves were originally reported in Fbgava & Mahajan (1997). 

In the MHD system, the subject of the present paper, the 'beat regime' is realized when 

R << K,o << 1 ( E  21 1); the normal frequencies Q,(T) and QA are, then, almost equal to 

each other. Hence, the coupling is inherently efficient and conditions are favourable for the 

excitation of 'beats.' A representative example of such a solution is presented in Fig. 3 for 

K,O = 0.1, Ky = 0.1, and R = 2 x Notice that the beat frequency Rb = Q F ( T )  - QA is 

variable, and varies in such a way that the beat period becomes smaller and smaller when T 

exceeds T+. 

4. FMW-SMW transformations 

In the Introduction we have already shown that condtions in the solar wind environment 

are also favourable for FMW-SMW transformations. For an explicit demonstration, let 

us study another simple case, and consider 2D perturbations in the presence of a thermal 

isotropic pressure. In other words, let us investigate our basic set (11)-(13) with Ky = 0 = by. 

The remaining system turns out to be yet another interesting pair of intercoupled second 

order ODES : 

p + &2$ = E2K2(T)bz, ( 1 7 4  

Chagelishvili, Fbgava & Tsiklauri (1996), dealing with a similar system, have shown that 
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the condition E III 1, which physically corresponds to the approximate equality of Alfv6n and 

acoustic Mach numbers, ensures effective mutual transformations of SMW and FMW into 

one another with corresponding energy exchange between them. Interestingly enough, the 

solar wind parameters are precisely in the regime for optimal coupling (see introduction). 

In the solar wind context we are primarily interested in establishing the possibility of 

FMW-SMW transitions. We performed a numerical analysis of l3q. (17) for the case E = 1.2 

(K,o = 10, R = 0.1). Figure 4a shows the temporal evolution of the function vZ(7), which 

apparently reveals that the initially pure FMW is partially converted into a much slower 

oscillating SMW. Note that the transformation is not complete: the resulting wave is a 

mixture of a SMW and a FMW. 

The situation becomes clearer on examining the evolution of the dimensionless total 

energy density of the perturbations (Chagelishvili, Rogava & Tsiklauri (1996)), 

In Fig. 4b the temporal evolution of & F ~ ( T ) / € F S ( O )  is plotted for the same sample of pa- 

rameters. As expected, the initially pure FMW follows its adiabatic (EFS - C ~ F )  route of 

evolution up to the moment r = re, However, after the wave passes through the DR, and is 

partially converted into SMW, the slope of its energy curve (energy increases at 7 > T*) is 

noticeably smaller. This behaviour indicates that at 7 > r* we actually have some mixture 

of a FMW and a SMW. This means also that the initial perturbation, which is converted 

into a SMW, has transfered a part of its energy to the background flow contributing its fair 

share to the acceleration of the solar wind particles. 

Beats are present in this case too. Figure 5 displays a vivid example of the excited beat 

modes (numerical solution is obtained for K d  = lo-*, R = and E = 1 >. 
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5. Discussion 

In this study, we had set out to fmd answers to a couple of questions: 1) what is the 

source of long-period Alfvkn waves in the distant solar wind, and 2) could Alfvkn-like modes 

accelerate the solar wind, and if yes, how? Our conjecture is that the short-period fast 

magnetosonic waves (amply produced in the photosphere), acting through the agency of 

the newly discovered velocity shear induced physical processes, could convert to long-period 

Alfvkn waves as well as impart energy to the wind flow. To test this conjecture, we have 

examined if the shear mediated processes of mode-conversion (SMW and FMW to AW), 

and of energy exchange with the flow (FMW, SMW and the flow) could efficiently take 

place in the solar wind. The preliminary results are very encouraging. We found that the 

conditions for occurence of these processes are, in fact, very close to optimal. For reasons 

stated earlier, we considered the following two, rather simple, subclasses of velocity shear 

induced processes: 

1. FMW-AW transitions (with thermal pressure effects ignored). We found that the ve- 

locity shear effectively couples FMW and AW modes, and for weakly 3D perturbations 

(i.e. those with Ky = ky l /ks  < l), ensures a partial transformation of FMWs into 

AWs. We argue that this process may be the source for the long-period Alfvdn waves 

which are actually observed at T > 0.3AU (Hollweg (1990)). It was demonstrated that 

a small shear in the wind velocity can easily yield AWs in the corona with a period 10 

times longer than the FMWs excited in the photosphere. The FMWs are converted 

into AWs around the moment when their energy density tends to its minimum value. 

This allows us to argue, also, that FMWs transfer a part of their energy to the back- 

ground wind flow while they are converted into AWs. Thus the process may be a 

credible source of solar wind particles acceleration. 
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2. We found that FMWs may also be transformed into SMWs in the solar wind. Condi- 

tions for the effectiveness of this channel of wave transformations are more distinctive- 

it is necessary to have approximately equal values of the Alfvdn and acoustic Mach 

numbers in the region of the wind. Fortunately, as simple estimates show, nature 

seems to favour this condition: such an equality (V ,  N Vs) is likely to exist for the 

known wind parameters raising the possibility of an FMW-SMW transition . Like in 

the previous case FMWs manage to impart a considerable part of their energy to the 

mean flow while they are converted into SMWs, so that the process may provide yet 

another channel of wind acceleration. 

In our investigations, we have also unearthed another remarkable ‘shear’ effect- the 

excitation of beat modes. It is shown to happen in both the FMW-AW and FMW-SMU‘ 

regimes. This phenomenon, due to its spectacular appearance, may be gainfully employed 

as a reliable observational signature of velocity shear induced processes. 

After these very promising indications of the importance of velocity shear induced effects 

in the solar wind we are eager to further extend the investigations. We intend to launch 

more profound and detailed studies based on more realistic plasma models. It is hoped that 

accurate quantitative statements regarding these transitions will follow. We would, then, be 

in a stronger position to judge if this mechanism can really account for the long-period Alfvdn 

waves that are observed in the solar wind. As regards energy exchange processes, again, 

more detailed studies are required to fmd out to what extent this kind of energy transition 

takes place in the solar wind. In a forthcoming paper, based on the general equations 

(11)-(13) derived in the present paper, we will consider a general 3D setup and will look 

for mutual transformations of Alfv6n and both magnetosonic modes, so that all transitions 

between linear MHD waves wil be investigated under typical solar wind conditions. Further 

generalizations of this model, including Werent and T, (present in the solar wind), 
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pressure anisotropy, and finally the kinetic effects will also be studied. 

A. Coupled Oscillations 

The term ‘coupled oscillations’ refers to the case where two (or more) oscillators, on 

equal footing, are coupled tightly so that the motion of each one of them is affected by 

the other(s). Energy can flow from one oscillator to the other in contrast to the case of 

‘forced oscillations’, where the feedback of energy from the driven system to the driver can 

be neglected. 

The mathematical description of the motion of two coupled linear oscillators leads to 

the following pair of second order, ordinary differential equations: 

Fi2’ + w p i  +CF, = 0, 

+ w;F2 + CF’ = 0, 

where w1 and w2 are the oscillator eigenfiequencies, and C is the corresponding coupling co- 

eficient. The above system describes general linear oscillations of coupled oscillators (Morse 

(1981), Magnus (1976)). Fixing one of the oscillators results in a simple harmonic oscillation 

of the other, but allowing both oscillators to move simultaneously results in a motion that 

is usually (with arbitrary initial conditions) not periodic (Morse (1981)). 

However, for constant eigenfrequencies and coupling coefficient, it c&ll be shown that 

the general solution of the system can always be represented as a combination of the normal 

modes: 

F1 F+ cos(R+t - q5+) + F- cos(Q-t - (L)’ 

F2 = a+F+ cos(R+t - 4,) + 0-F, cos(Sl,t - &), 

= 

where the fundamental or n o m d  freqvencies of the coupled oscillations, R*, are determined 
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bY 

n: = 5 ’ [  (w: + W Z )  f J(w: - w,2)2 + 4 q  . (A51 

The auxiliary quantities a* in Eq. (A4) relate the oscillation amplitudes of the two normal 

modes to each other and are defined as (see e.g. Magnus (1976)): 

while the & are the initial phases of the coupled oscillators. 

In a coupled system described by Eqs. (Al)-(A2), it is always possible (with properly 

chosen initial conditions) to excite a simple harmonic motion in which both oscillators have 

the same frequency, viz. one of the fundamental frequencies sZ+ or fl-. €+om Eqs. (A3)-(A4) 

it is easily seen that this regime is established when either F+ or F’ is equal to zero. It 

immediately follows that (Magnus (1976)): 

F+ # 0 and F- = 0, when F2 = a+F1, and atF2 = o+&F1 

Note also that the value of R- is smaller than either w1 or w2, while the value of R+ 

is larger than both w1 and w2. In other words, ‘coupling dwags spreczds apart the natural 

frequencies ’ (Morse (1981)). 

When the eigenfrequencies and/or coupling coefficient C of the coupled oscillating sys- 

tem vary in time, and when the variation is slow or adiabatic (i.e. IsZ*(~)(l)l << 5 2 $ ( ~ ) ) ,  then 

the system exhibits notable mutual transformations of normal oscillations with correspond- 

ing energy transfer between them (Kotkin & Serbo (1971), Chagelishvili, Rogava & Tsiklauri 

(1996), Rogava, Mahajan, & Berezhiani (1996)). The mechanical example of the oscillatory 

system, governed by this kind of equations, is the system of two coupled pendulums with 
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slowly (adiabatically) variable lengths (i.e. eigenfrequencies) and the interpendulum coupling 

coefficient. Kotkin & Serbo (1971), while considering the similar mechanical problem dis- 

covered two necessary conditions for the effectiveness of the energy exchange between the 

weakly coupled pendulums: 

0 (A) There should exist a so called “degeneration region,” (DR) where In: - 5 
IC(T)I. In other words, in the case of weak coupling this condition implies that 0- 

SI+, which means that the maximum energy exchange between the pendulums occus 

when they have approximately the same length. 

(B) The DR should be ‘passed’ slowly, i.e. in a sufficiently long time interval exceeding 

the ‘beat period’: 1522)(~)/ << IC(T)~.  

Certainly, these conditions are valid for arbitrary oscillatory systems, governed by the 

same kind of differential equations. So, they can be directly applied in the analyses of velocity 

shear induced intermode (or interwave) couplings. 

Andria Rogava is grateful to Nancy Stella B6no for help and encouragement. He also 
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through an Associate Membership Award. 
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Figure Captions 

Fig. 1 Simple uniform slab model with linearly varying background flow. 

Fig. 2 Time dependence of by(7) for K,O = 10, R = 0.1, and Ky = 0.1 (Fig. A The graph 

[numerical solution of Eqs. (14)] represents the partial transformation of a FMW, with 

fundamental frequency C ~ F ( T ) ,  into a AW with frequency 0~ = 1 (more than 10 times 

lower!). Fig. 2b displays the time dependence of the energy EFA(T)/EFA(O). 

Fig. 3 Beat waves [FMW-AW] displayed for b , ( ~ )  and by(7) when K,o = 0.1, R = 2 x 

and Ky = 0.1. 

Fig. 4 The temporal evolution of w=(T) for an initially pure FMW which is partially trans- 

formed into a SMW. The graph represents results of numerical solution for K,o = 10, 

R = 0.1. and E = 1.2 (Fig. 4a). Fig. 4b shows time dependence of the energy 

EFS (T)/EFS (0). 

Fig. 5 Beat waves (FMW-SMW] displayed for D(7) and &(T) when K,o = R = 

and E = 1. 
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