Simulation and design of various configurations of silicon detectors for high irradiation tolerance up to 6x10{sup 14} n/cm{sup 2} in LHC application

PDF Version Also Available for Download.

Description

Various new configurations (n{sup +}/p/p{sup +}, n{sup +}/n/p{sup +}, and p{sup +}/n/n{sup +}) of silicon detector designs have been simulated using processing and device simulation tools, before and after irradiation to various fluences. The aim of material selection and detector design is to ensure adequate charge collection after being irradiated up to 10{sup 15} n/cm{sup 2} (or 6x10{sup 14}{pi}/cm{sup 2}) in LHC environment, which corresponds to a net increase (with long term anneal) of space charge of 7x10{sup 13} cm{sup -3}. Starting materials selected for simulations include high resistivity p-type silicon, medium and low resistivity n-type silicon. Design of multi-guard-rings ... continued below

Physical Description

8 p.

Creation Information

Li, Z.; Chen, W. & Beuttenmuller, R. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Various new configurations (n{sup +}/p/p{sup +}, n{sup +}/n/p{sup +}, and p{sup +}/n/n{sup +}) of silicon detector designs have been simulated using processing and device simulation tools, before and after irradiation to various fluences. The aim of material selection and detector design is to ensure adequate charge collection after being irradiated up to 10{sup 15} n/cm{sup 2} (or 6x10{sup 14}{pi}/cm{sup 2}) in LHC environment, which corresponds to a net increase (with long term anneal) of space charge of 7x10{sup 13} cm{sup -3}. Starting materials selected for simulations include high resistivity p-type silicon, medium and low resistivity n-type silicon. Design of multi-guard-rings structure for high voltage operation is also considered. First irradiation data of low resistivity silicon detector is presented.

Physical Description

8 p.

Notes

OSTI as DE97007730

Source

  • 7. Pisa meeting on advanced detectors, Elba (Italy), 25-31 May 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97007730
  • Report No.: BNL--64488
  • Report No.: CONF-9705158--1
  • Grant Number: AC02-76CH00016
  • Office of Scientific & Technical Information Report Number: 522738
  • Archival Resource Key: ark:/67531/metadc695263

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Aug. 23, 2016, 3:21 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Li, Z.; Chen, W. & Beuttenmuller, R. Simulation and design of various configurations of silicon detectors for high irradiation tolerance up to 6x10{sup 14} n/cm{sup 2} in LHC application, article, June 1, 1997; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc695263/: accessed December 11, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.