Coherent Synchrotron Radiation and Stability of a Short Bunch in a Compact Storage Ring*

Robert L. Warnock and Karl Bane
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 34309

Abstract

Il should be possible to observe coherent synchrotron radation at millimeter wavelengths in a compact electron storage ring, provided that the bunch can be made sufficiently short. On the other land, for a short bunch the radioton reaction is so strong that it could :arse a longitudinal instability if the current exceeded some threshold. This might cause bunch lengthening, and cut oil or reduce the coherent radiation. Using wake fields from simple tuodels of the vacuum chamber, we estimate the threshold current for a proposed upgrade of the Brook haven small x-ray light source, SXLS - Phase I.

1. Introduction

Coherent synclirotron radiation, normally suppressed by shielding due to the metallic vacuum chamber, wan occurat frequencies ω greater that: a certain Itreshobl, roughly $\omega_{c}(R / 2)^{\prime / 2}$, where ω_{c} is the wave guide calif of the chatber, R is the bending radius of particle corgis, and h is the transverse size of the chamber [1]. Heretofore, only lina experiments with bonding magnets [2] have provided suitable conditions to overcome the shielding and produce coherent radiation; namely, small bunch length σ_{L}, small R, and large h. Murphy and Krinsky [3] have proposed an experiment offering similar conditions in a compact storage ring, SXLS . Phase I at Brook haven. This machine, now out of service, would be upgraded with a new ref. system ($1.5 \mathrm{MeV}, 2855 \mathrm{MHz}$, harmonic member 81). In a parameter set for 150 MeV beam energy, the proposed bunch length is 0.32 mm ; for 200 McV operation the bunch length is 0.40 mom. On the basis of impedance and stabilety estimates not including coherent radiation (curvature wake field), Murphy and Kirinsky anticipated an operating current of about $2 \cdot 10^{7}$ particles per bunch. In earlier overnation with the existing $50 \mathrm{kV}, 211 \mathrm{MHz}$ r. Γ system, longer bunches with currents up to $8.8 \cdot 10^{10}(0.5 \mathrm{amp})$ were stored.
Here we try to estimate the threshold for a longitudinal instability, accombing for the wake field due to curvature, but neglecting other contributions to the wake field.

II. Wake Field for a Morel of the Vacuum Chamber

Suppression of coherent radiation by shielding was recognized as early as the 1010's (Schwinger, Schifl), and has been studied theoretically in various simple models; see [1] for references. The models all involve simple geometries

[^0](smooth torus, pillbox, parallel hies), and rely on souLions of Maxwell's equations in the frequency domain in terms of Bessel functions. Examples of wake potentials from Fourier transforms of such solutions have been given by one of the authors [4].

The ring SXT.S is built in race track Com, with two large dipoles providing the bends. The bending radius is $0.60: 37 \mathrm{~m}$. The vacuum chamber through the bends is rectangular in cross section (with an antechamber for pumping), the main chamber being 3.8 cm high and 8 cm in width. In the straight sections the chamber is round, with a diameter of 8.57 cm . To compute the curvature wake field, we assume a smooth, circular, toroidal chamber with rectangular cross-section, width 8 cm and height 3.8 cm . The bean is at the center of the cross-section, following a circular trajectory of radius $R=0$. ciu:37 m. This model inclucles resistive walls, with conductivity appropriate to che stainless steel clamber; (actually, resistivity lias little effect on our conclusions, but it makes it a asper to compute the fights near icsmances). We lope that this motel gives a good picture of the wake fidel dur to coherent radiation in the bends. It is hot dear that ot her sobers of wake fields (rf. cavity, transitions ill chamber size, kicker, etc.) con be simply added to the curvature wake field. Sone light might be thrown on this question by more elaborate models that could be treated by mode matching, for instance a smooth torus perturbed by one cavity.

The longitudinal coupling impedance for his toroidal model lass been derived in [t]. It is given for a beam will zero extent in the radial direction, but with nonzero extent in the z-direction (we work in cylindrical coordinates, with
 tannsverse distribution in the \approx-direction hits lithe effect on the results. The fields are given as Fourier series in : and 0 , with r-dependent coefficients expressed in terms of Bessel functions. Certain eigemmodes of the whole chamber are both resonant and symironons with the beam, and show up as poles in the impedance (off the real axis when walls are resistive). There is a minimum frequency for a mode to be loath resonant and sytheronous, and that is the threshold frequency for cole rent radiation At lower fretuencing she curvanre impedance is pared!' reactive, ant gruarally wopligitle.

Figure 1 shows the real part of the impalatese of the luroudal chamber, multiplied by the fourier transform of a Gaussian charge distribution with $\sigma_{l}=0.3 n m$. The densty of resonance peaks is much higher than in the exampleas of [1], which were for bigger rings with smaller vacuum clambers. This has to do with more modes in the 2 -series being important; 13 modes were needed in the present case,

Figure. 1. Real part of longitudinal imperlance in olme, multiplied by Fourier transform of a Gaussian charge distribution, $\sigma_{L}=0.3 \mathrm{~mm}$. The abocissa is the longatudinal mode number $n=\omega / \omega_{0}$, where ω_{0} is ine angular revolution frequency.
but only one in the previous examples. Infinitely many modes are recpured to relrieve the free-space synchrotron radiation.

Figure. 2. Wake voltage for one turn, in kilovolts per picocoulomb, versus distance s from bunch center in units of σ_{L}. Here s is positive in front of the bunch, and a positive wake voltuge corresponds to energy lost by the test particle.

Figure 2 slows the corresponding wake voltage jer turn, as a function of the distance s between a test partjele ant the center of the bunch. The bunch levegth is 0.3 mm . The distance s is expressed in mits of $\sigma_{L_{1}}$ and is positive in front of the bunch. A positive value for the wake voltage means that energy is lost by the test particle. This wake voltage is quite substantial, being larger per wit length than that of the SLAC linac.

The peaks of the impedance shift in position guite noticeably under very small clanges in the trajectory radius R, since the dispersion curve for the structure runs almost parallel to the synchronism line [1]. A particular mode goes out of synchronism when \mathbb{R} changes by a very stuall amount, but the mode spectrm is very dense, so that arot.her mode, synchironous at a slightly different frerpuency, can step in to take its place. The result is that the wake voltage docs not vary appreciably as R sweens over values corresponding to a typical bunch width. Indeed, if we average the wake voltage over many values of R, exiending over a typical bunch size, we get something very close to the wake voltage for a single R. The corresponding averaged impedance has an ever more dense distribution of peaks as the number of R values in the average is inereased.

It is also intercsting to observe that the wake voltage for a beam circulaling in the midplane between two infinite paralle phates (perfectly conducting) is very neasly the same as that for the resistjve torns, at least within a few σ_{L} of the beam center. The impedance is totally different in appearance, however. Being an open structure, the parallel-plate system does not have cigenmodes and poles of the impedance. Radiation to infinity takes the place of radiation into eigenmodes.

We have also evaluated the transverse forces. The radial wake force is a substantial fraction of the longiludinal force, but the beam of 150 NeV is so "stif"' in the longitudinal direction that the radial force will not give anch transwerse slisplacement. A circular orbit in equilibrimm, winh a centripetal force due to the ratial siff fielel acting agatust the bendingr licld, has a radius dilfering by Iess thin a micron from that in the presence of the bending field alone.

III. Estimate of Current Threshold for Instability

We have applied a compater code written by k. Oide [5] to estimate the threshold for a longitudinal instability. The code solves a Vlasov ectualion, linearized about the equilibrinun distribution as determined from lhe IIä̈ssinski erfation. Athongh one might prefer to do a direct madiparticle simulation, that is difficult in the prosent instance beranse of ate long damping lime of S...l.S. Oide's rontime to solve the llaïssimski chuation assumes that there is no fiedd in front of the bunch, which is not the ciase in the toroidal chamber. Mudis of the whole chamber ring for a long time (for an infinite tine if the walls are perfectly conducting), so there is always some field in front of the bunch. This precursor fielk is relatively weak, however, so we merely cut it off to get a suitable wake potential for Oide's code. Λ separate solution of the Inaissinski equation by our own iterative code, which does not require that the precursor fied vanish, showed that the precursor does nos lave a hig eflect on the potential well distortion. Indeed. Lhe enlite [rotential well distortion is prety small up to our esthated threshokl coment. The bunch stays neaty Gaussian, aud moves a little toward the jrat of the r.f., to compensate the energy loss of the essentially resistive wable field.

The result of running line code is that in instability sets
in (i.e., the colncrent frequency acruires a positive imaginary part) at a current of about $3 \cdot 10^{7}$ particles per bunch. This is the result without account of momentum spread, as described by the Fokker-Planck term. According to Oirle's rough estimate of the frequency shift dae to the FokkerPlanck term, the momentimsprearl may raise the thesthold to abont $4 \cdot 10^{7}$, but this is in very unectiain matier. In fact, we are not even entirely confident of the result without the Fokker-Planck term, since we were not able to observe unambignous convergence as the number of angle modes in the distribution function was increased, and the mesh in the action variable was refined. Of course, a posit ive imaginary part from the lincarized Vlasov equation does not necessarily imply a permanent. and fatal instalitity. Nonlinear stabilization after initial growiln is always a possibility.

IV. Acknowledgment

We wish to thank Katsmobn Oide for providing his Vhasor code, and for lecping us to hase it We also wish to thank Jim Murphy for many cujnyalale discussions.

References

[1] R. L. Warnock and I'. Morton, Particle Accelemtors, 25:113-151, 1950.
[2] T. Nakazato et al., Phys. Rev. Lefl., 63:1245, 1989.
[3] J. B. Murphy aud S. Kitusky, Brookhaven preprint BNL-49750, 1993.
[4] R. L. Warnock, SLAC-PUB-5.35t, 1990; SLAC-1P(IB5417, 199]; S1,AC-P1JB-5!23, 1991.
[5] K. Oide, private communication: K. Oide and K. Yokoyn, K以K preprint 9010, 19030.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employecs, makes any warranty, express of implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or sepresents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorserment, rerommendation, or favoring by the United States Government or any agency thercof. The views and opinions of authors expressed herein do not nesessarily state or reflect those of the United States Government or any agency thetoof.

[^0]: "Wert eupporise by be Department of Ency corral DE-AC03-76SFiosts

