Development of High Energy Polymers Systems - 12th Monthly Status Report

A. B. Frankel
F. C. Gunderloy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

January 8, 1970

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

MASTER
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DEVELOPMENT OF HIGH ENERGY POLYMERIC SYSTEMS

TWELFTH MONTHLY STATUS REPORT

PERIOD ENDING 69 DEC 31

Air Force Contract F08635-69-C-0121

Prepared by:

M. B. Frankel
F. C. Gunderloy

Approved by:

E. A. Lawton
Manager
Synthetic and Propellant Chemistry
Research Division
A final series of attempts were made to prepare polyesters of respectable molecular weights ($M_n = 2000+$) from the following materials:

- **DNPCl**: Dinitropimelic acid, diacid chloride of
- **AFN-25Cl**: Dinitrofluoroethoxyfumaric acid, diacid chloride of
- **DINOL**: 2,2,8,8-Tetranitro-4,6-dioxa-1,9-nonane diol
- **REX-18**: 3-(Dinitrofluoroethoxy)-1,2 propane diol

Results of the aforesaid attempts are tabulated below. In all cases, the mole ratio of diol to acid chloride was 6/5, aiming for hydroxyl termination.

<table>
<thead>
<tr>
<th>Acid Chloride</th>
<th>Diol</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFN-25Cl</td>
<td>DINOL</td>
<td>Refluxing heptane, 60 hrs.</td>
<td>$M_n = 900$</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>REX-18</td>
<td>Same as above</td>
<td>Major fraction ($MeCl_2$ soluble) $M_n = 1250$; Minor fraction ($MeCl_2$ insoluble) $M_n = 1500$</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>DINOL</td>
<td>$AlCl_3$ catalysis in methylene chloride</td>
<td>Primarily recovery of starting materials.</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>REX-18</td>
<td>Same as above</td>
<td>Same as above</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>DINOL</td>
<td>K_2CO_3 in refluxing tetrahydrofuran</td>
<td>Degradation: all products soluble in H_2O.</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>REX-18</td>
<td>Same as above</td>
<td>Same as above</td>
</tr>
<tr>
<td>DNPCl</td>
<td>REX-18</td>
<td>Refluxing heptane, 9 days</td>
<td>$M_n = 1350$, very viscous, gummy mass.</td>
</tr>
<tr>
<td>AFN-25Cl</td>
<td>REX-18</td>
<td>Same as above</td>
<td>$M_n = 1450$, hard, almost a glass.</td>
</tr>
</tbody>
</table>
In the previous Status Report, contradictory results (quantitative yield, but low molecular weight) were noted for the DMPCl/REX-18 combination after reaction in the presence of K2CO3. Solvent fractionation of this material subsequently showed that unreacted diol was present, accounting for the apparent anomaly. Removal of 10% of the original weight as REX-18 starting material only increased the \bar{M}_n of the residue from 700 to 800, so fractionation was not pursued further.

Reviewing this and prior months' results allow us to reach the following conclusions:

1. The classical techniques do not readily yield high molecular weight polyesters with these materials; the simplest technique, a melt polymerization wherein HCl is thermally eliminated under refluxing heptane, gave the best results.

2. The best (most reactive, highest molecular weight) combination is AFN-25Cl/REX-18 which is a little surprising, since both the diacid and the diol are asymmetrical. However, this best combination only polymerized to the extent of about 6 units (3 each of diacid and diol) on the average.

3. At molecular weights of 2000+, these combinations would probably yield solid prepolymer.

This program is now complete. The final report is being drafted.