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Abstract

We examine the operating modes of a two-bladed
teetered wind turbine. Because of the gyroscopic
asymmetry of its rotor, this turbine’s dynamics can be
quite distinct from those of a turbine with three or more
blades. This asymmetry leads to system equations with
periodic coefficients that are solved using the Floquet
approach to extract the correct modal parameters. The
system equations are derived using a simple analytical
model with four degrees of freedom: nacelle yaw, rotor
teeter, and flapping associated with each blade. Results
confirm that the turbine modes become more dominated
by the centrifugal and gyroscopic effects as the rotor
speed increases. The gyroscopic effect may also cause
dynamic instability. Under certain design conditions,
yaw and teeter modal frequencies may coalesce.

Introduction

Traditionally, modes of a wind turbine are computed
with its rotor in a parked (non-operating) condition.
While such modes help validate a turbine’s structural
properties, they do not capture the dominant centrifugal
and gyroscopic effects associated with an operating
rotor. Operating modes play a key role in identifying
the mechanisms that cause adverse loads and designing
controls to improve stability and loads. Because of the
complexity of dynamic behavior of wind turbines,
consisting of rotating components coupled to stationary
components, only limited attempts [1-8] have been
made to compute operating turbine modes. All these
attempts used time-intensive simulations and post-
processing of time response data to extract modal
frequencies and treated the turbine as a time-invariant
system.

An earlier paper [8] presented the operating modes of a
three-bladed wind turbine. Because of the structural
asymmetry associated with a three-bladed rotor, a
multi-blade coordinate transformation [9] was sufficient
to transform the time-periodic equations into a set of
time-invariant governing equations and therefore
conventional modal identification techniques sufficed.

However, modes were identified from time-intensive
post-processing of several simulations. A new wind
turbine code is under development [10] that would
provide comprehensive aeroelastic models of the full
turbine system in explicit forms required for direct
modal analysis. It will be some time before this code is
developed and validated. Meanwhile, Stol [11] has
developed a simple model with 5+Nb degrees of
freedom, where Nb is the number of blades. This model
is briefly described in the next section; it idealizes the
wind turbine structure as an assemblage of rigid bodies
interconnected by springs and joints. Though it does
not model all the flexibility effects, it does capture the
dominant physics of a rotating wind turbine.

For modal analysis of a two-bladed teetered-rotor
turbine, which is the focus of this paper, we use only
those four degrees of freedom that are essential to
capturing system dynamics without added complexity.
We reduce the 5+Nb degree-of-freedom model,
mentioned earlier, to the desired four-degree-of-
freedom model by locking the degrees of freedom not
relevant to our teetered turbine. The governing system
equations clearly show time-periodic terms as expected
of a two-bladed rotor whose gyroscopic properties
undergo a periodic variation with each rotor revolution.
Since the governing equations are periodic, a
conventional eigenanalysis yields erroneous results.
Therefore, we use Floquet analysis, briefly described in
a following section, to compute the modal properties.
Results are presented for three models: a single-yaw-
degree-of-freedom model (teetered and flapping of
blades locked), a yaw-and-teeter-degree-of-freedom
model (flapping of blades locked), and the full four-
degree-of-freedom model.

Analytical Model

Figure 1 shows a schematic of the wind turbine used for
analytical modeling. It is idealized as an assemblage of
rigid bodies, i.e., tower, bed frame, nacelle, generator
lumped with the high-speed shaft, low-speed shaft, hub,
and the blades, interconnected by revolute joints. Each
revolute joint allows one degree of freedom, which is a



measure of the relative angular displacement between
the two adjacent components it joins. A complete list
of the degrees of freedom and the geometric parameters
that define the turbine configuration is also provided in
the figure. A spring or a damper may restrain each
joint. A flap spring is added to model the blade-
distributed flap flexibility lumped at the flap hinge. A
spring may be placed between the low-speed and high-
speed shafts to model the drivetrain flexibility.
Aerodynamic loading is ignored, but the gravity effects
are included. Complete modeling details, derivation of
the analytical model, and the validation attempts, are
provided in Ref [11]. The analytical model was derived
using Lagrange’s energy approach in conjunction with
the Danavit-Hartenberg convention [12] for defining
system kinematics.

Our two-bladed, teetered-rotor turbine has no tilt degree
of freedom. Its rotor speed is assumed constant; this
amounts to assuming a rigid rotor shaft and a constant-
speed synchronous generator. We therefore lock out
the tilt and the rotor shaft compliance degrees of
freedom in the aforementioned analytical model. The
resulting four-degree-of-freedom model is linearized
about the steady operating state of the turbine. We
assume a steady operating state in which all the degrees
of freedom except the rotor azimuth have zero values.
This leads to a very simplified set of linearized
equations, presented in the Appendix in a matrix form.
The vector of unknowns comprises the four degrees of
freedom, i.e., the yaw angleγ , the teeter angleφ, the

flapping angle 1β for blade 1, and the flapping angle2β
for blade 2. The inertia, gyroscopic, and stiffness

matrices depend on the rotor azimuth position,ψ , and

the turbine geometric, mass, stiffness, and damping
properties listed in Table 1. Note that the gyroscopic
matrix is multiplied by Ω , the rotor speed, and the

stiffness matrix is multiplied by 2Ω . The stiffness
matrix also depends on the gravity,g . For a constant

rotor speed, .tΩ=ψ The governing equations are

therefore periodic in time with period Ω= /2πT .
Physical interpretation of all the terms appearing in
these matrices is outside the intent of this paper.
However, a few observations follow. All the
gyroscopic terms, which of course exclude the
structural damping terms that appear on the diagonal of
the gyroscopic matrix, cross couple the degrees of
freedom. This implies, owing to rotor rotation, a
motion in one degree of freedom would induce a
gyroscopic motion in another degree of freedom. An

exception to this is the direct gyroscopic term,γγg . A

yaw motion of the nacelle causes the two-bladed rotor
also to yaw, and this induces a gyroscopic moment
about the tower yaw axis. This term would not appear
if we had gyroscopic symmetry associated with three or
more blades. The important point to note is that this
self-induced gyroscopic moment is a multiple of

ψ2sin and therefore shows 2p variation, where p
denotesper rotor revolution. All the other terms in the
matrix represent gyroscopic cross coupling and show a
1p variation. We also note that the flap and teeter
motions are gyroscopically decoupled. This is because
both these motions occur about parallel axes and are
referenced to the same hub-fixed rotating frame.

Degrees-of-freedom
γ Bed-plate yaw angle
τ Nacelle tilt angle
ψ Rotor shaft (azimuth) angle
ψg Rotor shaft compliance angle
φ Hub teeter angle
β1 Blade #1 flap angle
β2 Blade #2 flap angle

Geometric constants
a Yaw pivot to tilt pivot distance
b Tilt pivot to shaft axis distance
d Tilt pivot to hub distance
e Blade flap hinge offset
β0 Precone angle

ψψψψψψψψg

γγγγ

ττττ
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Fig. 1. Wind turbine schematic showing degrees of freedom and geometric parameters.



Floquet Approach

For modal analysis, we first transform the linearized
matrix equation shown in the Appendix to a first-order
form:

yy )(tA=r (1)

where the state vector is defined as

[ ]T2121 ββφγββφγ rrr

r=y

and )(tA is the system time-periodic matrix given in

terms of the inertia matrix )(tM , gyroscopic matrix
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According to Floquet theory [9,13], the solution of eq.
(1) can be expressed as

cy )()()( ttPt Λ= (3)

where )(tP is a periodic matrix,c is a vector of

arbitrary constants, and )(tΛ is a diagonal matrix

whose thi diagonal term is

ts
i
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From eq. (3), the solution at time 0=t is

cy )0()0( P= (5)

and, in view of the fact that )(tP is periodic, the

solution at time Tt = is

ccy )()0()()()( TPTTPT Λ=Λ= (6)

We now define the system transition matrixΦ as a
matrix relating the solutions of eq. (1) at time 0=t and
time Tt = as follows

)0()( yy Φ=T (7)

Substituting eqs. (5) and (6) in (7), we obtain

[ ] 0)0()()0( =Φ−Λ cPTP (8)

Becausec is arbitrary, the above equation implies

)()0()0( TPP Λ=Φ (9)

If Φ is known, eq. (9) can be solved as an eigenvalue
problem to yield the eigenvalues matrix )(TΛ and the

eigenvectors matrix )0(P . According to eq. (4), the
characteristic exponent is given by
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where j equals 1− . In view of the foregoing
development, the Floquet approach for modal analysis
comprises the following three steps:

• Compute the transition matrixΦ . Choose N
linearly independent initial conditions

NXNIY =)0( , where N represents dimension of the

state vector. Integrate eqs (1) for each column of the
initial conditions to compute )(TY . In view of eq.

(7), )(TY=Φ .

• Compute the eigenvalues )(TΛ of the transition

matrix using any standard software package.

• Compute modal dampings and frequencies. In
view of eq. (10), the modal damping is given by

ii T
Λ= ln

1ς

and the modal frequency is given by
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Results and Discussion

As mentioned earlier, we model the turbine as a four-
degree-of-freedom system. These degrees of freedom
comprise nacelle yaw, hub teeter, and flapping of the
two blades. Before analyzing the modal behavior of
this model, we consider two simple cases. In the first
case, we allow only the yaw degree of freedom (the
rotor of course is spinning at a constant rate). In the
second case, we allow the hub teeter motion as well.
For each case, we use the structural and configuration
parameters listed in Table 1 to build our turbine model.

Case I: Turbine with only Yaw Degree of Freedom

We first try conventional modal analysis on this model
(yaw spring and damper are removed to further simplify
the model). Since the governing equation is second



Symbol Description Value

Ω0 Nominal shaft rotation rate 6.02 rad/s (57.5 rpm)
τ Nacelle tilt angle 0°
β0 Precone angle 7°
a Longitudinal distance from yaw pivot to tilt pivot 0 m
b Vertical distance from tilt pivot to shaft axis 0 m
d Longitudinal distance from tilt pivot to hub (overhang) 2.388 m
e Flap-hinge offset 0.28 m
cb Center of mass distance of blade from hinge 4.21 m
mb Mass of each blade 569 kg
Iyaw Moment of inertia about the yaw axis (excludes blades) 16 599 kgm2

Ib Moment of inertia of blade about flap hinge 16 857 kgm2

Ib-long Moment of inertia of blade about longitudinal (pitch) axis 5 kgm2

Ih-lat Moment of inertia of hub about a lateral axis 50 kgm2

Ih-long Moment of inertia of hub about the spin axis 5 kgm2

Kyaw Yaw spring stiffness 573 Nm/rad
Kteeter Teeter spring stiffness 573 Nm/rad
Kflap Flap spring stiffness 358 200 Nm/rad

Table 1. Structural and geometric properties of the two-bladed wind turbine.

order in yaw,γ , we get two eigenvalues. One

eigenvalue is zero implying undamped rigid body yaw
mode; the other eigenvalue has a zero imaginary part,
implying zero frequency, and an azimuth-dependent
real part, implying a time-varying damping. Figure 2
shows the azimuth-dependent real part, normalized with
respect to the rotor speed (henceforth, all the
eigenvalues will be shown normalized with respect to
the rotor speed). The yaw damping shows a 2p
variation (p denotesper rotor revolution). We may be
tempted to interpret this as a periodic loss and gain of
the nacelle kinetic energy to the rotor. This is because
the rotor angular momentum about the yaw axis is
conserved and its yaw angular velocity must vary to
accommodate the 2p variation of its inertia about the
yaw axis. This causes 2p variation in the rotor kinetic
energy. The nacelle responds by varying its yaw

velocity to keep the total system energy constant. We
shall soon see that the total system energy is in fact
conserved and the overall system damping is zero for
any time instants. The direct eigenanalysis therefore
yields erroneous results. Even the exchange of kinetic
energy between the nacelle and the rotor is not correctly
captured by the damping variation shown in the figure.

We now try the Floquet approach noting that the
governing equation is periodic in the rotor azimuth
position,ψ . Sinceψ equals tΩ , the azimuth in fact
represents non-dimensionalized time. Floquet analysis
yields two zero eigenvalues implying two rigid body
modes, both undamped. The first mode is a constant-
yaw-position rigid body mode, and the other mode is a
constant-yaw-velocity rigid body motion modulated by
a time-periodic modal amplitude. The modal amplitude
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Fig. 2. Conventional-modal-analysis-predicted yaw modal damping variation with rotor azimuth (nominal
rotor speed, 0Ω =57.5 rpm).



can be identified with )(tP in eq. (3). To confirm
Floquet analysis results, we look at yaw response
histories due to two sets of initial conditions. The first
set of initial conditions, a unit yaw position and a zero
yaw velocity, results in a constant-yaw-position
response (see Figure 3). This corresponds to the first
rigid body mode. The second set of initial conditions, a
zero yaw position and a unity yaw velocity, results in a
constant-yaw velocity response with a 2p variation
superimposed on it. This 2p variation is the result of

the direct gyroscopic term,γγg , described earlier. Also,

both the position and velocity response histories in the
figure show zero damping. Floquet analysis therefore
yields correct modal properties and we use it to obtain
all the subsequent results.

Case II: Turbine with only Yaw and Teeter Degrees of
Freedom

This represents a fourth-order system. All spring and
damping values are again assumed zero. Floquet
analysis of this system yields four
eigenvalues:
( )0.10476.00.10476.000 jj −−+
The first two zero eigenvalues correspond to the rigid-
body yaw modes. The third eigenvalue corresponds to
a teeter-yaw mode in which teeter motion is coupled
with an in-phase yaw motion. The mode associated

with the fourth eigenvalue is exactly like the third mode
except that the yaw motion participation is out of phase
with the teeter motion. The interesting point to note is
that, unlike a set of complex conjugate eigenvalues
characterizing a conventional system, the third and
fourth eigenvalues have their real parts also of opposite
sign. The third eigenvalue, with a positive real part,
implies instability, and the fourth eigenvalue, with a
negative real part, implies stability. A gyroscopic
system can exhibit this type of self-excited instability.
The energy that causes this instability, i.e., divergent
teeter oscillation, comes from the rotor rotational
kinetic energy about its shaft. The rotor speed, if
allowed to vary, would drop in response to the energy
drawn by the divergent teeter motion and instability
would be arrested. Constant rotor speed implies that
the induction generator behaves as a motor, draws
energy from the electric grid, and feeds it to the rotor.
It should be pointed out that the aerodynamic forces,
which we have neglected, could drastically alter the
system damping levels, if not the frequencies.

We now examine the system response due to four sets
of initial conditions: unity yaw displacement alone,
unity yaw velocity alone, unity teeter displacement
alone, and unity teeter velocity alone. An initial unit
yaw displacement causes participation of only the first
rigid-body yaw mode, and the system remains in the
same displaced state (figure not shown). Each of the
other three sets of initial conditions causes participation
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Fig. 3. Yaw response due to initial conditions (turbine model with yaw degree of freedom only).



of all the modes, including the unstable teeter mode.
The relative participation of different modes of course
depends on the initial condition. Figures 4a-4c show
teeter and yaw responses due to these three initial
conditions. Note that all the responses are unstable; this
is due to the participation of the third coupled teeter-
yaw mode.

Case III: The Four-Degree-of-Freedom Turbine
Model

This represents an eighth-order periodic system. The
joint springs, gravity, and precone are reintroduced in
this model. At the rotor nominal speed,Ω0=57.5 rpm,
the Floquet analysis yields two real eigenvalues and six
complex eigenvalues:
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(±0.00096, ±0.0415±j1.0, ±j1.0196, ±j14.1029)

The first pair of real eigenvalues represents two rigid-
body yaw modes, one marginally damped and the other
marginally unstable. The second complex pair of

eigenvalues represents two coupled teeter-yaw modes
having the same 1p frequency, but opposite damping
levels. The third complex pair corresponds to the
collective flap mode in which the two blades flap in
phase. The fourth pair corresponds to the differential
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flap mode wherein the blades flap differentially, i.e.,
out of phase; this differential flapping is coupled with a
significant hub teeter motion. The collective flap
frequency is predominantly dictated by the centrifugal
stiffening effect associated with theΚββ=

term in the
stiffness matrix (see Appendix). The differential mode
is determined by the oscillation of the hub while

resisting the centrifugal pulling by the two blades.

Figure 5 shows the effect of rotor speed on the modal
frequencies. The collective flap frequency increases
with rotor speed because of the centrifugal stiffening
effect and asymptotically tends towards 1p. Not shown
in the figure is the differential flap frequency, which
also increases with the rotor speed. The teeter mode
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frequency follows the 1p trend and the yaw mode
frequency stays close to zero.

Figure 6 shows the results of a typical parametric study
wherein the yaw stiffness is varied from a zero value to
a value ten times the nominal stiffness. Results are
somewhat counter-intuitive. Figure 6a shows that for
yaw stiffness values below the 3.3Kyaw0 level, the yaw
frequency remains zero despite increasing yaw
stiffness. This is because the rotor gyroscopic forces
rather than the low yaw spring force control the yaw
dynamics. The rotor teeters at a frequency of 1p, when
observed from the hub-attached rotating frame. The
nacelle, the motion of which is defined with respect to
the ground-fixed frame, experiences this as a 0p and 2p
forcing. This causes a zero-frequency yaw mode
modulated by a 2p frequency, just as pointed out under
Case I. Beyond the 3.3Kyaw0 value, the yaw spring
force dominates the gyroscopic coupling effect and
therefore the yaw frequency tends to increase. The
nacelle yaw frequency,ωγ, is seen in the rotor frame as
a 1p±ωγ frequency. The 1p-ωγ motion of the nacelle
couples with the hub teeter dynamics and causes a
reduction in the teeter frequency. Thus, the nacelle yaw
motion, as observed in the rotating frame, is locked
with teeter motion and remains so until Kyaw exceeds
3.7 times the nominal stiffness. Beyond this value, the
yaw stiffness almost exclusively controls the yaw
frequency and the teeter frequency tends to revert back
to the 1p value. Figure 6b shows that for low yaw
stiffness values, wherein the gyroscopic effects
dominate, both the teeter and the yaw modes exhibit
instability (associated with positive real parts of their
corresponding eigenvalues). After Kyaw exceeds 3.7
times the nominal yaw stiffness value, the yaw-spring
dominates the gyroscopic coupling effects and the
damping levels fall to zero.

Concluding Remarks

Modal behavior of a two-bladed wind turbine, modeled
as a simple four-degree-of-freedom system, was
analyzed. We established that the time-periodic
governing equations mandate a Floquet analysis.
Results showed that centrifugal stiffening dictates the
rotor flap modes, whereas gyroscopic effects control the
yaw and teeter modes. The gyroscopic effects may
cause instability. We also showed that, under certain
design conditions, two modes might coalesce at a single
frequency.

Our studies ignored flexibility and aerodynamic effects.
A code is under development that will include these
effects as well as other degrees of freedom like the
tower deflections and the blade inplane and twist
defections. The Floquet analysis will also be extended

to handle an aeroelastic system with a large number of
degrees of freedom.
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Appendix

The linearized equations for the four-degree-of-freedom turbine model are:
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where 21,,, ββφγ denote the yaw, teeter, blade-1 flap, and blade-2 flap degrees of freedom, respectively. To
express entries in the inertia, gyroscopic, and stiffness matrices, we use the following notation:

=S sinψ
=C cosψ
=qk torsion stiffness in the thq degree of freedom

=qc torsion damping in the thq degree of freedom

The entries in the inertia matrix are:

( )0
222222 222222 βγγγ bbbbb dCSeCSedmICISIm

long
++++++=

( )SdCSeCSemSISImm bbbhb lat 0
2 222 βφγγφ ++++==

( )
2211 0 γβγβγβγβ β mdSCeSCmSImmm bbbb −=++=−==

( )bbhb eCemIIm
lat

422 2 +++=φφ

bbb meCImmmm +=−==−= φβφβφβφβ 2121

bImm ==
2211 ββββ

The entries in the gyroscopic/damping matrix are:

( ) Ω+++−= /22sin2 2
γγγ ψ cmeCmeIIg bbbbb long

( )bbhhb mdCIIICg
longlatlong 0422 βγφ +−+=

( )bbb mdCICgg
long 02

21
βγβγβ +=−=

( )bbbhbb meCmeIIICg
longlong

8424 2 +++−=φγ



Ω= /φφφ cg

( )bbbb meCIICgg
long

22
21

+−=−= γβγβ

2,1;/ =Ω= kcg
kkk βββ

The entries in the stiffness matrix are:
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