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Abstract However, modes were identified from time-intensive

. h . d ¢ blad ost-processing of several simulations. A new wind
We examine the operating modes of a two-bladed, ine code is under development [10] that would

teetered winfd_ turbine. h_BecaLt;_se , 0‘; the _gyroscogicprovide comprehensive aeroelastic models of the full
asymmetry of its rotor, this turbine’s dynamics can bey e system in explicit forms required for direct
quite distinct from those of a turbine with three or more odal analysis. It will be some time before this code is
blades. This asymmetry leads to system equations Witye,eoned and validated. Meanwhile, Stol [11] has
periodic coefficients that are solved using the Floquetdeveloped a simple model with 5Ndegrees of
approach to extract the correct modal parameters. Th eedom, where Nis the number of blades. This model

system equations are derived using a simple analyticay yyiefly described in the next section; it idealizes the

model with four degrees of freedom: nacelle yaw, rotoryinq trhine structure as an assemblage of rigid bodies

teeter, and flapping _associated with each blade. Resulg terconnected by springs and joints. Though it does
confirm that the turbine modes become more dominated . o del all the flexibility effects, it does capture the

by the_centrifugal and gyroscop_ic effects as the rotoryominant physics of a rotating wind turbine.
speed increases. The gyroscopic effect may also cause _
dynamic instability. Under certain design conditions, For modal analysis of a two-bladed teetered-rotor

yaw and teeter modal frequencies may coalesce. turbine, which is the focus of this paper, we use only
those four degrees of freedom that are essential to
Introduction capturing system dynamics without added complexity.

N ) ] We reduce the 5+\N degree-of-freedom model,
Traditionally, modes of a wind turbine are computed ynentioned earlier, to the desired four-degree-of-
with its rotor in a parked (non-operating) condition. freedom model by locking the degrees of freedom not
While such modes help validate a turbine’s structuralg|evant to our teetered turbine. The governing system
properties, they do not capture the dominant centrifugabquations clearly show time-periodic terms as expected
and gyroscopic effects associated W|th_ar_1 operatingf a two-bladed rotor whose gyroscopic properties
rotor. Operating modes play a key role in identifying yndergo a periodic variation with each rotor revolution.
the mechanisms that cause adverse loads and designig¢hce  the governing equations are periodic, a
controls to improve stability and loads. Because of thegonyentional eigenanalysis yields erroneous results.
complexity of dynamic behavior of wind turbines, Therefore, we use Floguet analysis, briefly described in
consisting of rotating components coupled to stationary following section, to compute the modal properties.
components, only limited attempts [1-8] have beenResyits are presented for three models: a single-yaw-
made to compute operating turbine modes. All thesgjegree-of-freedom model (teetered and flapping of
attempts used time-intensive simulations and posty|ades locked), a yaw-and-teeter-degree-of-freedom

processing of time response data to extract modahodel (flapping of blades locked), and the full four-
frequencies and treated the turbine as a t|me-mvanaqyegree_of_freedom model.

system.

An earlier paper [8] presented the operating modes of a Analytical Model

three-bladed wind turglne._ hBecarl]Jse %fl tgedStrUCtural:igure 1 shows a schematic of the wind turbine used for
asymmetry associated with a three-bladed rotor, aanaly’cical modeling. Itis idealized as an assemblage of
multi-blade coordinate transformation [9] was sufﬂmentrigid bodies, i.e., tower, bed frame, nacelle, generator
to transform the time-periodic equations into a set Oflumped with,tﬁe.i\igh-sp’eed shaft Io’w-speed’ shaft. hub

time-invariant governing equations and therefore, ' yhe plades, interconnected by revolute joints. Each
conventional modal identification techniques sufficed. .o, o1 te joint allows one degree of freedom, which is a



measure of the relative angular displacement betweematrices depend on the rotor azimuth positi¢h, and

the two adjacent components it joins. A complete listthe turbine geometric, mass, stiffness, and damping
of the degrees of freedom and the geometric parametefsoperties listed in Table 1. Note that the gyroscopic
that (_jeﬂne the turt_)lne configuration is also prov_|ded N atrix is multiplied by Q , the rotor speed, and the

the figure. A spring or a damper may restrain each o o 5 .
joint_ A ﬂap Spring is added to model the blade- stiffness matrix is multlplled byQ . The stiffness
distributed flap flexibility lumped at the flap hinge. A Mmatrix also depends on the gravitg. For a constant

spring may be placed between the low-speed and highotor speed,(/ = Qt. The governing equations are

speed shafts to model the drivetrain flexibility. heref iodic in ti ith iod =271/ Q
Aerodynamic loading is ignored, but the gravity effects Nereéfore periodic in time with period = £71/22.

are included. Complete modeling details, derivation of N1¥ysical interpretation of all the terms appearing in
the analytical model, and the validation attempts, ar¢€S€ matrices is outside the intent of this paper.
provided in Ref[11]. The analytical model was derived However, a few observations follow. Al the

using Lagrange’s energy approach in conjunction withdyroscopic terms, which of course excll_Jde the
the Danavit-Hartenberg convention [12] for defining Suctural damping terms that appear on the diagonal of
system kinematics the gyroscopic matrix, cross couple the degrees of

freedom. This implies, owing to rotor rotation, a
Our two-bladed, teetered-rotor turbine has no tilt degreenotion in one degree of freedom would induce a
of freedom. Its rotor speed is assumed constant; thigyroscopic motion in another degree of freedom. An
amounts to assuming a rigid rotor shaft and a ConStaméxception to this is the direct gyroscopic terg,,. A

speed synchronous generator. We therefore lock out )
the t”t and the rotor Shaft Comp"ance degrees OfyaW motion Of the nace”e causes the tWO'bIaded rotor

freedom in the aforementioned analytical model. ThelSO to yaw, and this induces a gyroscopic moment
resulting four-degree-of-freedom model is linearized@bout the tower yaw axis. This term would not appear
about the steady operating state of the turbine. Wdf we had gyroscopic symmetry associated with three or
assume a steady operating state in which all the degred8ore blades. The important point to note is that this
of freedom except the rotor azimuth have zero values$elf-induced gyroscopic moment is a multiple of
This leads to a very simplified set of linearized SIN2( and therefore shows 2p variation, where p
equations, presented in the Appendix in a matrix form.denotesper rotor revolution All the other terms in the
The vector of unknowns comprises the four degrees omatrix represent gyroscopic cross coupling and show a
freedom, i.e., the yaw angje the teeter anglgg, the  1p variation. We also note that the flap and teeter

: . motions are gyroscopically decoupled. This is because
flapping angle,q for blade 1, and the flapping angj@ both these motions occur about parallel axes and are

for blade 2. The inertia, gyroscopic, and stiffness eferenced to the same hub-fixed rotating frame.

Bo
Degrees-of-freedom
y Bed-plate yaw angle
Blade#1 1 Nacelle tilt angle
a ¢  Rotor shaft §zimuth angle
B. Yy Rotor shaft compliance angle
¢ Hubteeter angle
/ Wy Ty Shaft g R B, Blade #1 flap angle
H Ih (;N B, Blade #2 flap angle
\ Generator < >
d Geometric constants
Bedplate a Yaw pivot to tilt pivot distance
Nacelle b  Tilt pivot to shaft axis distance
d Tilt pivot to hub distance
Blade #2 e Blade flap hinge offset
B, Precone angle

Bo
Fig. 1. Wind turbine schematic showing degrees of freedom and geometric parameters.



Floguet Approach eigenvectors matril(0) . According to eq. (4), the

For modal analysis, we first transform the linearizedCharacteristic exponent is given by
matrix equation shown in the Appendix to a first-order

form: S =6+ W

y = A(t)y (1) - £|n|/\|| + jitan—l Re(/\|) (10)

where the state vector is defined as T T lm(/\i )

y= [y o B B, Vv ¢ B :Bz]T wherej equals/—1. In view of the foregoing

development, the Floquet approach for modal analysis
andA(t) is the system time-periodic matrix given in comprises the following three steps:

terms of the inertia matriM (t), gyroscopic matrix Compute the transition matr. Choose N

C(t), and the stiffness matriK (t) : linearly independent initial conditions
Y(0) = I \xy . Where N represents dimension of the
0 I
At) = 4X4 ) state vector. Integrate eqs (1) for each column of the
-M7K -MTC initial conditions to comput¥(T). In view of eq.

According to Floquet theory [9,13], the solution of eq. (7)., ®=Y(T).

(1) can be expressed as + Compute the eigenvaludgT)of the transition

y(t) = P()A(t)c (3) matrix using any standard software package.
whereP(t)is a periodic matrixgis a vector of * COmpute modal dampings and frequenciesn

iew of eq. (10), the modal damping is given b
arbitrary constants, and\(t)is a diagonal matrix view a- (10) ping 1s given by

whosd " diagonal term is G = Tiln|/\i|

A (t) =e™ (4) and the modal frequency is given by
From eq. (3), the solution at tinfe= Ois w = itan_l Re(\)

y(0) = P(O)c 5) T Im(A,)

and, in view of the fact thd®(t)is periodic, the

solution at timd =T is Results and Discussion

As mentioned earlier, we model the turbine as a four-
y(T) = P(T)A(T)c = P(OA(T)c (6) degree-of-freedom system. These degrees of freedom
We now define the system transition mafixas a comprise nacelle yaw, hub teeter, and flapping of the
matrix relating the solutions of eq. (1) attifhe= 0 and ~ two blades. Before analyzing the modal behavior of
timet =T as follows this model, we consider two simple cases. In the first

case, we allow only the yaw degree of freedom (the

y(T) = ®y(0) 7) rotor of course is spinning at a constant rate). In the
second case, we allow the hub teeter motion as well.
Substituting egs. (5) and (6) in (7), we obtain For each case, we use the structural and configuration
[P(O)/\(T) _ CDP(O)]C -0 ®) parameters listed in Table 1 to build our turbine model.
Because is arbitrary, the above equation implies Case |: Turbine with only Yaw Degree of Freedom
®P(0) = PO)A(T) ©) We first try conventional modal analysis on this model

(yaw spring and damper are removed to further simplify

If ®is known, eq. (9) can be solved as an eigenvalue the model). Since the governing equation is second

problem to yield the eigenvalues mat/™T) and the



Symbol Description Value
Qo Nominal shaft rotation rate 6.02 rad/s (57.5 rpm)
T Nacelle tilt angle 0°
Bo Precone angle 7°
a Longitudinal distance from yaw pivot to tilt pivot 0Om
b Vertical distance from tilt pivot to shaft axis 0Om
d Longitudinal distance from tilt pivot to hub (overhang) 2.388 m
e Flap-hinge offset 0.28m
G Center of mass distance of blade from hinge 4.21m
my Mass of each blade 569 kg
lyaw Moment of inertia about the yaw axis (excludes blades) 16 59 kgm
lp Moment of inertia of blade about flap hinge 16 857 Kgm
lp-long Moment of inertia of blade about longitudinal (pitch) axis 5 Kgm
lh-tat Moment of inertia of hub about a lateral axis 50 Kgm
Ih-long Moment of inertia of hub about the spin axis 5 Kgm
Kyaw Yaw spring stiffness 573 Nm/rad
Kieeter Teeter spring stiffness 573 Nm/rad
Kiiap Flap spring stiffness 358 200 Nm/rad

Table 1. Structural and geometric properties of the two-bladed wind turbine.

i , velocity to keep the total system energy constant. We
order in yawy, we get two eigenvaluesOne  ghajl soon see that the total system energy is in fact
eigenvalue is zero implying undamped rigid body yawconserved and the overall system damping is zero for
mode; the other eigenvalue has a zero imaginary partny time instants. The direct eigenanalysis therefore
implying zero frequency, and an azimuth-dependentjields erroneous results. Even the exchange of kinetic
real part, implying a time-varying damping. Figure 2 energy between the nacelle and the rotor is not correctly
shows the azimuth-dependent real part, normalized witltaptured by the damping variation shown in the figure.

respect to the rotor speed (henceforth, all theW trv the FI i h noting that th
eigenvalues will be shown normalized with respect to''¢ NOW Uy th€ Hoquet approach noting that the

the rotor speed). The yaw damping shows a 2pgov_e_rning eqqation is periodic in the.rotor -azimuth
variation (p denoteper rotor revolutior). We may be  Position, ¢. Since{ equaldt, the azimuth in fact
tempted to interpret this as a periodic loss and gain ofepresents non-dimensionalized time. Floguet analysis
the nacelle kinetic energy to the rotor. This is becausgields two zero eigenvalues implying two rigid body
the rotor angular momentum about the yaw axis ismodes, both undamped. The first mode is a constant-
conserved and its yaw angular velocity must vary toyaw-position rigid body mode, and the other mode is a
accommodate the 2p variation of its inertia about theconstant-yaw-velocity rigid body motion modulated by
yaw axis. This causes 2p variation in the rotor kinetica time-periodic modal amplitude. The modal amplitude
energy. The nacelle responds by varying its yaw
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Fig. 2. Conventional-modal-analysis-predicted yaw modal damping variation with rotor azimuth (nominal
rotor speedQ ,=57.5 rpm).
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Fig. 3. Yaw response due to initial conditions (turbine model with yaw degree of freedom only).

can be identified with P(t)in eq. (3). To confirm with the fourth eigenvalue is exactly like the third mode
Floguet analysis results, we look at yaw responsee)_(CeIOt that the yaw motion p_articipafcion iS.OUt of pha$e
histories due to two sets of initial conditions. The first With the teeter motion. The interesting point to note is
set of initial conditions, a unit yaw position and a zeroat: unlike a set of complex conjugate eigenvalues
yaw velocity, results in a constant-yaw-position characterizing a conventional system, the third and

response (see Figure 3). This corresponds to the firgf_)urth eigenvz_ilues_ have their f9a' parts "."l.so of opposite
rigid body mode. The second set of initial conditions, aS!an. The th'F‘?‘ eigenvalue, with a positive real_part,
zero yaw position and a unity yaw velocity, results in a|mpI|e_s instability, and the fourth_ _elgenvalue, with a
constant-yaw velocity response with a 2p variation"€gative real part, w_nphes stabilty. .A gyroscopic
superimposed on it. This 2p variation is the result ofSystem can exhibit this type O.f self-_e_xcngd ms_tablllty.

) ) ) ) The energy that causes this instability, i.e., divergent
the direct gyroscopic terng,, , described earlier. AlSO, (geter oscillation, comes from the rotor rotational
both the position and velocity response histories in thekinetic energy about its shaft. The rotor speed, if
figure show zero damping. Floquet analysis thereforeallowed to vary, would drop in response to the energy
yields correct modal properties and we use it to obtairdrawn by the divergent teeter motion and instability
all the subsequent results. would be arrested. Constant rotor speed implies that

the induction generator behaves as a motor, draws
Case lI: Turbine with only Yaw and Teeter Degrees of energy from the electric grid, and feeds it to the rotor.
Freedom It should be pointed out that the aerodynamic forces,

This represents a fourth-order system. All spring andvs:;] ich we have neglected, could drastically alter the

. . stem damping levels, if not the frequencies.
damping values are again assumed zero. Floque
analysis of this system yields four We now examine the system response due to four sets
eigenvalues: of initial conditions: unity yaw displacement alone,

(o 0 00476+ (1.0 -0.0476- jl.O) unity yaw velocity alone, unity teeter displacement

The first two zero eigenvalues correspond to the rigid_alone, and unity teeter velocity alone. An initial unit

body yaw modes. The third eigenvalue corresponds yaw displacement causes participation of only the first

a teeter-yaw mode in which teeter motion is coupledr"g”d'bOdy yaw mode, and the system remains in the

with an in-phase yaw motion. The mode associated2M® displaced state (figure hot shown). Eac_h_ of _the
other three sets of initial conditions causes participation
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Fig. 4a. Yaw and teeter response due to an initial unit teeter displacement (turbine model with yaw

and teeter degrees of freedom only).

of all the modes, including the unstable teeter modeCase lIl: The Four-Degree-of-Freedom Turbine
The relative participation of different modes of course Model

depends on the initial condition. Figures 4a-4c show.
teeter and yaw responses due to these three |n|t|al
conditions. Note that all the responses are unstable; tht
is due to the participation of the third coupled teeter-
yaw mode.

This represents an eighth-order periodic system. The
int springs, gravity, and precone are reintroduced in
this model. At the rotor nominal speedy=57.5 rpm,

the Floquet analysis yields two real eigenvalues and six
complex eigenvalues:

20

15

10

Yaw & Teeter Response

-10

-15 : : :
Fig. 4b. Yaw and teeter response due to an |n|t|al unit yaw velocity (turbine model with yaw and teeter degrees
of freedom only).
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Fig. 4c. Yaw and teeter response due to an initial unit teeter velocity (turbine model with yaw and teeter degrees
of freedom ony).
. . . eigenvalues represents two coupled teeter-yaw modes
(+0.00096, +0.041%j1.0, #/1.0196, ]14.1029) having the same 1p frequency, but opposite damping
The first pair of real eigenvalues represents two rigid-levels. The third complex pair corresponds to the
body yaw modes, one marginally damped and the othegollective flap mode in which the two blades flap in
marginally unstable. The second complex pair ofphase. The fourth pair corresponds to the differential
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Fig. 5. Operating modal frequencies for the four-degree-of-freedom turbine mQgeb(.5 rpm).
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flap mode wherein the blades flap differentially, i.e.,
out of phase; this differential flapping is coupled with a
significant hub teeter motion. The collective flap
frequency is predominantly dictated by the centrifugal
stiffening effect associated with thi€g; term in the

stiffness matrix (see Appendix). The differential mode
is determined by the oscillation of the hub while

resisting the centrifugal pulling by the two blades.

Figure 5 shows the effect of rotor speed on the modal
frequencies. The collective flap frequency increases
with rotor speed because of the centrifugal stiffening
effect and asymptotically tends towards 1p. Not shown
in the figure is the differential flap frequency, which
also increases with the rotor speed. The teeter mode

Real part of eigenvalue / Qo

10

Normalized Yaw Stiffness, Kyaw/Kyaw_0

. 6b. Effect of yaw stiffness on modal damping (nominal stiffnegss; B70 Nm/rad)



frequency follows the 1p trend and the yaw modeto handle an aeroelastic system with a large number of
frequency stays close to zero. degrees of freedom.

Figure 6 shows the results of a typical parametric study
wherein the yaw stiffness is varied from a zero value to
a value ten times the nominal stiffness. Results aréOE supported this work under contract number DE-
somewhat counter-intuitive. Figure 6a shows that forac36-83CcH10093

yaw stiffness values below the 3.3 level, the yaw

frequency remains zero despite increasing yaw

stiffness. This is because the rotor gyroscopic forcefReferences

rather than the low yaw spring force control the yaw u .
dynamics. The rotor teeters at a frequency of 1p, wherLl] James, G.H., E_xtractlon of M_odal Parameters
observed from the hub-attached rotating frame. The [fom an Operating HAWT” using the Natural
nacelle, the motion of which is defined with respect to ~ EXcitation Technique (NExT)"Proceedings of the
the ground-fixed frame, experiences this as a Op and 2p 1994 ASME Wind Energy Symposium, Wind
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Appendix

The linearized equations for the four-degree-of-freedom turbine model are:

mw myw myﬁl myﬁz y gw gW gyﬁl gyﬁz y kw sz kyﬁl k;ﬁz y
m, M, Mg M, ga +q % Y 0 0 go 102 0 Kk, kyg kg l|lo )
Mg, Mgy Mge 0 1B 90 0 9gs 0 ||B 0 kp Kgg O ||B
Mg, Mg, 0 Mg, |8, 9py O 0 Gpg |18, 0 kg 0 kg |15,

where Y, @, B,, B, denote the yaw, teeter, blade-1 flap, and blade-2 flap degrees of freedom, respectively. To
express entries in the inertia, gyroscopic, and stiffness matrices, we use the following notation:

S=siny

C =cosyy

kq =torsion stiffness in theqth degree of freedom

Cq = torsion damping in theqth degree of freedom

The entries in the inertia matrix are:
m, =1, +25%, +2C%, +2m,(d® +26’S? + 2eG,S* +2dG, 5,
m, =m,, =2S|, +Sl, +2m, (€°S+2eC,S+dC,5,9)
my, =m,, =-m, , =S|, +m,(eSG +dSGA,)=-m,,
m,, =21, +1, + mo(2e2 +4eCD)
My = ~Myg, =My, =—Mg, =1, +eGm,
Mg = Mg, =1y
The entries in the gyroscopic/damping matrix are:
g,, = 2sin 2://(I b~ Iy, +E'M, +2eCDmO)+ c,/Q
g, =Cl21,,, +21, -1, +4dC,Am,)
Oy, =0y, =Clly,, +2dC,5m,)
9, =Cldl, -2, +1, +4e’m, +8eGm,)



9, =C,/Q
Ogy =~9p, =Cl21, -1, +2eCm))
gﬁkﬁk - Cﬁk /Q’ k =12

The entries in the stiffness matrix are:

k
k —
w QZ
K —s{2| .. +mo(2e +4eC, - 2dCb,[>’0)}

Sil oy * M (€G, =G5, )
K
kw:ZIb+2Iqmg—Ihm+Ihlmg+2e2rno+4eCDmD+Q—”;

L = gC
Ko, =Kpp =15~ on+moc[ j

Q?
_ _ gC
Ky, =Kpgp =1y +1,,  —mGC, [e+sz
_ gC\ . K
Kgp = 1o~ 1y, MGy [ sz+ 0

_ L9CY, Ks
Koo =ly=ly +mGCy|e+ >y |+
ﬁzﬁz b lqong rTlD b[ Q j QZ



