Channeling acceleration: A path to ultrahigh energy colliders

PDF Version Also Available for Download.

Description

Acceleration of charged particles along crystal channels has been proposed earlier in an attempt to achieve high acceleration gradient while at the same time to suppress excessive emittance growth. Recently the authors demonstrated that a particle in a generic focusing channel can in principle absolutely damp to its transverse ground state without any quantum excitation. This yields the minimum beam emittance that one can ever attain, {gamma}{epsilon}{sub min} = {h_bar}/2mc, limited only by the uncertainty principle. In this paper they discuss sources of excitation when a more realistic channel is considered, including bremsstrahlung and multiple Coulomb scattering. They investigate the ... continued below

Physical Description

7 p.

Creation Information

Chen, P.; Huang, Z. & Ruth, R.D. May 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Acceleration of charged particles along crystal channels has been proposed earlier in an attempt to achieve high acceleration gradient while at the same time to suppress excessive emittance growth. Recently the authors demonstrated that a particle in a generic focusing channel can in principle absolutely damp to its transverse ground state without any quantum excitation. This yields the minimum beam emittance that one can ever attain, {gamma}{epsilon}{sub min} = {h_bar}/2mc, limited only by the uncertainty principle. In this paper they discuss sources of excitation when a more realistic channel is considered, including bremsstrahlung and multiple Coulomb scattering. They investigate the possibility of colliding ultrahigh energy particles in such strong focusing channels without the need of a final focusing system, where the concept of luminosity departs from the conventional approach. They show that a high luminosity can be attained with a rather modest beam power.

Physical Description

7 p.

Notes

INIS; OSTI as DE95010695

Source

  • 4. Tamura symposium on accelerator physics, Austin, TX (United States), 14-16 Nov 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95010695
  • Report No.: SLAC-PUB--95-6814
  • Report No.: CONF-9411120--4
  • Grant Number: AC03-76SF00515
  • Office of Scientific & Technical Information Report Number: 52876
  • Archival Resource Key: ark:/67531/metadc694998

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1995

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • Feb. 2, 2016, 5:22 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Chen, P.; Huang, Z. & Ruth, R.D. Channeling acceleration: A path to ultrahigh energy colliders, article, May 1, 1995; Menlo Park, California. (digital.library.unt.edu/ark:/67531/metadc694998/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.