Pulsations and outbursts of luminous blue variables

PDF Version Also Available for Download.

Description

We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. ... continued below

Physical Description

8 p.

Creation Information

Cox, A.N.; Guzik, J.A.; Soukup, M.S. & Despain, K.M. June 1, 1997.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We propose an outburst mechanism for the most luminous stars in our and other galaxies. These million solar luminosity stars, with masses (after earlier mass loss) of between 20 and maybe 70 solar masses, are pulsationally unstable for both radial and low-degree nonradial modes. Some of these modes are ``strange,`` meaning mostly that the pulsations are concentrated near the stellar surface and have very rapid growth rates in linear theory. The pulsation driving is by both the high iron line opacity (near 150,000 K) and the helium opacity (near 30,000 K) kappa effects. Periods range from 5 to 40 days. Depending on the composition, pulsations periodically produce luminosities above the Eddington limit for deep layers. The radiative luminosity creates an outward push that readily eases the very low gamma envelope to very large outburst radii. A key point is that a super-Eddington luminosity cannot be taken up by the sluggish convection rapidly enough to prevent an outward acceleration of much of the envelope. As the helium abundance in the envelope stellar material increases by ordinary wind mass loss and the luminous blue variable outbursts, the opacity in the deep pulsation driving layers decreases. This makes the current Eddington luminosity even higher so that pulsations can then no longer give radiative luminosities exceeding the limit. For the lower mass and luminosity luminous blue variables there is considerably less iron line opacity driving, and pulsations are almost all caused by the helium ionization kappa effect.

Physical Description

8 p.

Notes

OSTI as DE98002651

Source

  • Workshop: a half century of stellar pulsation interpretations - a tribute to Arthur N. Cox, Los Alamos, NM (United States), 16-20 Jun 1997

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE98002651
  • Report No.: LA-UR--97-4190
  • Report No.: CONF-9706195--
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 626048
  • Archival Resource Key: ark:/67531/metadc694877

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1997

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • May 5, 2016, 7:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Cox, A.N.; Guzik, J.A.; Soukup, M.S. & Despain, K.M. Pulsations and outbursts of luminous blue variables, article, June 1, 1997; New Mexico. (digital.library.unt.edu/ark:/67531/metadc694877/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.