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Effect of Enhanced Themm.1Dissipation
on the Rayleigh-Taylor Instability

in Emulsion-Like Media

A. Toor, D. Ryutov,*

Lawrence Livemwre N&”onalbborato~, Livermore, CA94551, USA

Abstract. Rayleigh-Taylorinstabilityin a finelystructuredemulsion-likemediumconsisting
of the two componentsof differentcompressibilityis considered.Although the term
“emulsion”is used to describethe structureof the mdlum, undertypical fast Z-pinch
conditionsbothcomponentsbehaveas gases.The two componentsarechosenin such a way
that their densities in the unperturbed state are approximately equal. Specific emphasis has been
made on the analysis of perturbations with the scale %considerably exceeding the size of the
grains a. Averagedequationsdescribing such perturbations m derived. The diffemce in
compressibility of the two components leads to the formation of temperature variations at the
scale a, and increasesthe rate of the thermal dissipation by a factor (M#. The strongest
stabilizing effect of the thermal dissipation takes place when the thermal relaxation time is
comparable with the instability growth rate.

In this paper we consider a phenomenon that maybe helpful in mitigating the
Rayleigh-Taylor instability of imploding liners, namely a phenomenon of enhanced
thermal dissipation in emulsion-like media. We assume that the fluid (or gas) is two-
component, with fine grains of one component randomly, but on the average
uniformly, distributed in the other component. With respect to motions with the
scale ~ considerably exceeding the scale of the fme structure, a, this fluid behaves
more or less as a uniform fluid, with some average density and average
thermodynamic functions. In particular, it may have a gradient of the average density
that would drive the Rayleigh-Taylor instability. We use the word “emulsion” in a
somewhat loose sense, just because its visual image is close to the structures we are
studying. In fusion-related and pulse-power applications, the initial state will most
probably be that of a heterogeneous solid. In fusion-related experiments, this solid
usually experiences fast heating and becomes a gas (inhomogeneous in our case)
early in the pulse. For this reason, all our analysis will be based on the
hydrodynamics equations, without accounting for elastic forces.

Our approach to the mitigation of the Rayleigh-Taylor instability is based on
the observation that the presence of a fme internal scale may considerably enhance
the dissipation rate (Cf. [l]). The origin of the enhanced dissipation is as follows:
the two components that form the emulsion, have, generally speaking, different
compressibilities. Therefore, when the pressure perturbation associated with the
Rayleigh-Taylor instability develops, the temperature perturbation becomes unequal
in the two components. Then the thermal dissipation begins, but at the scale a which
is much smaller than the scale X of the perturbation, accordingly the dissipation rate
becomes (A/a)2 times higher than for a homogeneous fluid. Clearly, the just-
discussed mechanism works only in compressible media.

In the case of wire arrays, it might be simpler to produce a kind of 2D
emulsion. The simplest way would be to use the wire array where the neighboring
wires would be made of different materials (Fig. la). This would produce a “coarse-
grained” emulsion. A more sophisticated way would be to use bunches of wires of
different composition, possibly interwoven within every bunch. The whole array
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would then be assembled of a large number of such bunches (Fig. lb). After
evaporation at early stages of the discharge, separate conductom gradually merge
and form a continuous shell of the liner, but the initially embedded non-uniformities
should survive this process because of a very low diffusion coeftlcient. Of issue
may be the convective mixing of the two components. However, one should expect
that under optimum conditions, where the instabilities are kept under control, the~
won’t be too violent convective motions in the liner.

One can expect that the maximum dissipation will occur if the grain size is
chosen in such a way that the characteristic heat exchange time between the grains,

w?” (1)

(where ~ is thermal diffusivity) is of the order of a time-scale 0-1 of development of
the instability. Indeed, if compassion (rarefaction) occurs too rapidly, so that heat
exchange between the neighboring grains doesn’t have time to develop, the process
is purely adiabatic and dissipation is absent. On the contrary, if the change of the
volume occurs too slowly, the temperature remains uniform and dissipation vanishes
again. The compressibilities of the medium, @/@, in these two limiting cases m
different: in the fmt case the compressibility is adiabatic, in the second case it is
isothermal. By @ and @we mean perturbations of the pressure and of the density
of macroscopic volumes, i.e., the volumes containing many grains. One has:

(2)

wheres is a sound speed for the respective process (sf@>s~~).
As was shown in Ref. [2], one can use the following interpolation that

covers intermediate frequencies (where thermal dissipation is important):

where

(4)

The subscript “L” in Eq. (3) shows that @ and fip are Lugrangianperturbations,
related to a particular element of the fluid. The Lagrangian and Eulerian perturbations
are related to each other in a standard way:

i5p=-~.vp+6pL; 6p=-~. vp+8pL, (5)

with c!lp~= -pV. ~, and ~ being a displacement of a certain macroscopic element
with respect to its unperturbed position.

In the stability analysis, we assume that the gravity acceleration is directed
downward along the z axis, g,-g, with gzO. Equilibrium pressure distribution
obeys the barometric law:

P’=-Pg=–Plh (6)

where the prime designates the z-derivative, and h is a scale-length of the
unperturbed pressure and density variation. We consider perturbations of the form
jl’z)exp(-icot+ikx) and assume that the scale-length of the perturbations satisfies
condition tixz. In this case, the basic set of equations describing small
perturbations reads as:
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@2P~== ik~ , (7)

to=p& = ~+ @p , (8)

dp = -p(ik~x +~:)- ~,p’ , (9)

@= -P’g, - F(@)ps~(ik~x+ ~:) . (lo)

All the quantities entering Eqs. (6)-(10) are volume-averaged over a scale
much greater than a but much smaller than 2. There is a subtlety at this point
although the densities of the two components are equal in the unperturbed state, they
become unequal in the pertwbations. The gravity force causes then mutual
displacements of the elements of different density, and displacement ~ that enters
Eqs. (7)-(10) should be understood as the average over these elements. However,
as shown in Ref. [2], in the typical situation, mutual displacements of the two
components are insignitlcant, and a simple inteqxetation of ~ as a displacement of
the whole macroscopic volume remains essentially correct.

Consider stability of localized modes, with the wave-length much less than
the scale-length h of the unperturbed state. For such modes one can use the eikonal
appro~tion in the z direction by taking the z dependence of the unkpoyn
functions in the form exp(iqz), where q is tie wave number Of the pe~ba~on ~
the z direction. For the fastest growing modes, one has b>q (see, e.g., [3]). For
such modes, the dispemion relation reads as:

[

P’ ~ P’Cl)z=-g —–——
P F(a) Ps:o. )

. (11)

At this point, it is convenient to introduce, instead of the complex fkequency ~, the

complex growth rate ~, r=-i W,RefiO corresponds to an instability.
It is convenient to present the resulting dispersion relation in the

dnensionless form

(12)

where

and

r=:;,=,,+J;,=[I$’ J.l, ,13,
r

(14)

When switching from Eq. (11) to (12), we used the equilibrium condition (6). The

growth rate r~m, corresponds to fmt (pmely ~abatic) pe~bations! for which ~

Cm be considered infiite. ne growth mte ~’1.. corresponds to S1OWperturbations,

for which Tcan be considered zero. We imply that both r2ti and r2~,0Ware positive
d!(i.e., the system is unstable with respect to both slow an fast perturbations). Note

that r.h > rfat.
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The solutions of the dimensionless dispersion relation (12) vs. the
dimensionless relaxation time am presented in Fig. 2. The effect of the thermal
relaxation processes on the unstable root becomes noticeable at q’s exceeding a few
tenths. Note that in a broad range of the dimensionless nhxation times ?, there
appeass a mode of an oscillatory damping (Reco =-lm~fl). The presenee of this
mode may considerably change the nonlinear behavior of the system leading to a
slower nonlinear growth @cause additional - and dampd -- *= of tiom
appears in the system). halysis of this part of the problem goes beyond the scope
of the present paper. Note also that the appearance of this new mode is a very robust
phenomenon it exists in a broad range of relaxation times, even if the difference of
slow and fast com~ressibilities (characterized by the parameter @ is as low as 5%.

At higher z ‘s, there appears a weakly damped mode (the A-B branch of the
dispersion curve in Fig. 2). This mode should also have a stabilizing effect at the
nonlinear stage.
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Fig.1 Wire arrays consisting of the wires of two
d~fferentmaterials(a) and a wirearrayconsisting
of many bunchesof interwoventhin wiresof two
materials(b); O is the axis of the array.
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Fig.2 Solutions of the dispersion relation
(12): q=o (dashed lines); ?I=O.25(solid lines).
In the latter case there appears a broad interval
of relaxation times (0.53<?d 1) where
hnlldl (hn~is shown in the dotted line).
Note the presence of weakly damped mode
at large ?‘s (the segment AB)
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