DISTRIBUTION SHEET

To: Distribution Tank Farm Projects
From:
Page: 1 of 1
Date: 04/28/95
EDT No.: 611576
ECN No.: --

Project Title/Work Order: Acceptance Test Procedure for Cathodic Protection, Rectifier 41

Project Database
- Central Files (orig. +2)
 - L8-04
 - X
- OSTI (2)
 - L8-07
 - X

U.S. Department of Energy, Richland Operations Office
- C. R. Pacheco
 - S7-52
 - X

ICF Kaiser Hanford Company
- J. L. Henderson
 - E6-22
 - X

Westinghouse Hanford Company
- R. L. Brown
 - B4-08
 - X
- H. M. Chafin
 - G6-07
 - X
- F. T. Clifton
 - G6-06
 - X
- K. A. Colosi
 - R3-27
 - X
- R. A. Dodd
 - S5-05
 - X
- J. H. Haberman
 - R1-30
 - X
- M. D. Harding
 - S5-07
 - X
- M. N. Islam
 - R3-08
 - X
- S. R. Nelson
 - G6-14
 - X
- S. R. Pierce
 - S5-05
 - X
- Project Database
 - G6-51
 - X
- Project Files
 - R1-28
 - X

A-6000-135 (01/93) WEF067
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
These Acceptance Test Procedures are being submitted for your approval.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Document/Drawing No.</th>
<th>Sheet No.</th>
<th>Rev. No.</th>
<th>Title or Description of Data Transmitted</th>
<th>Impact Level</th>
<th>Reason for Transmittal</th>
<th>Origination Disposition</th>
<th>Receiver Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WHC-SD-WO30-ATP-001</td>
<td>0</td>
<td></td>
<td>Cathodic Protection - Rectifier 31</td>
<td>3SQ</td>
<td>Approved</td>
<td>Disapproved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WHC-SD-WO30-ATP-002</td>
<td>0</td>
<td></td>
<td>Cathodic Protection - Rectifier 41</td>
<td>3SQ</td>
<td>Approved</td>
<td>Disapproved</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>WHC-SD-WO30-ATP-003</td>
<td>0</td>
<td></td>
<td>Cathodic Protection - Rectifier 11</td>
<td>3SQ</td>
<td>Approved</td>
<td>Disapproved</td>
<td></td>
</tr>
</tbody>
</table>

Signatures/Distribution

<table>
<thead>
<tr>
<th>Reason Disp.</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
<th>MSIN</th>
<th>Reason Disp.</th>
<th>Name</th>
<th>Signature</th>
<th>Date</th>
<th>MSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Cog. Mgr.</td>
<td>G. L. Parsons</td>
<td>6-57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>QA H. M. Chafin</td>
<td>66-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>Safety M. N. Islam</td>
<td>83-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>Startup F. T. Clifton</td>
<td>66-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>Ops. M. D. Harding</td>
<td>50-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2</td>
<td>Facility Engr.</td>
<td>S. Pierce</td>
<td>51-51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Approved
2. Approved w/comment
3. Disapproved w/comment
4. Reviewed no/comment
5. Reviewed w/comment
6. Receipt acknowledged

Signature of EDT Originator

K. A. Colosi

Authorized Representative for Receiving Organization

K. A. Colosi

Cognizant/Project Engineer's Manager

K. A. Colosi

DOE APPROVAL

[] Approved
[] Approved w/comments
[] Disapproved w/comments

BD-7400-172-2 (07/91) GEFO07
RELEASE AUTHORIZATION

Document Number: WHC-SD-WO30-ATP-002, Rev. 0

Document Title: Acceptance Test Procedure for Cathodic Protection, Rectifier 41

Release Date: April 27, 1995

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

V.L. Birkland

April 27, 1995

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256
Acceptance Test Procedure for Cathodic Protection, Rectifier 41

<table>
<thead>
<tr>
<th>Key Words</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-030, Cathodic, test, procedure</td>
<td>Name: F. T. Clifton</td>
</tr>
</tbody>
</table>

Abstract

Acceptance test procedure for Project W-030 Cathodic Protection Installation, 241-AY and 241-AZ Tank Farm Ventilation Upgrade.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
EXECUTION AND TEST APPROVAL

EXECUTED BY

<table>
<thead>
<tr>
<th>Role</th>
<th>Date</th>
<th>Role</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Director/Organization</td>
<td></td>
<td>Test Operator/Organization</td>
<td></td>
</tr>
<tr>
<td>Recorder/Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WITNESSES

<table>
<thead>
<tr>
<th>Role</th>
<th>Date</th>
<th>Role</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Witness/Organization</td>
<td></td>
<td>Title III Inspector</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Witness/Organization</td>
<td></td>
</tr>
</tbody>
</table>

A-E APPROVAL

<table>
<thead>
<tr>
<th>Company</th>
<th>Without exceptions</th>
<th>With exceptions resolved</th>
<th>With exceptions outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF Kaiser Hanford Company (ICF KH)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role</th>
<th>Date</th>
<th>Role</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance Inspection</td>
<td></td>
<td>Design Engineer</td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEST APPROVAL AND ACCEPTANCE

<table>
<thead>
<tr>
<th>Role</th>
<th>Date</th>
<th>Role</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westinghouse Hanford Company (WHC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><Title or Department></th>
<th>Date</th>
<th><Title or Department></th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cathodic Protection Engineer</td>
<td></td>
</tr>
</tbody>
</table>

W030002.ATP.1328
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE/PROCEDURE APPROVAL</td>
<td>1</td>
</tr>
<tr>
<td>EXECUTION AND TEST APPROVAL</td>
<td>2</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>3</td>
</tr>
<tr>
<td>1 PURPOSE</td>
<td>4</td>
</tr>
<tr>
<td>2 REFERENCES</td>
<td>4</td>
</tr>
<tr>
<td>3 RESPONSIBILITIES</td>
<td>4</td>
</tr>
<tr>
<td>4 CHANGE CONTROL</td>
<td>7</td>
</tr>
<tr>
<td>5 EXECUTION</td>
<td>7</td>
</tr>
<tr>
<td>6 EXCEPTIONS</td>
<td>7</td>
</tr>
<tr>
<td>7 PREREQUISITES, EQUIPMENT/INSTRUMENTS, AND ABBREVIATIONS</td>
<td>8</td>
</tr>
<tr>
<td>8 RECTIFIER, CABLES, PIPE TEST CONDUCTORS, ANODES, AND SYSTEM OPERATION</td>
<td>10</td>
</tr>
<tr>
<td>EXCEPTION FORM (sample)</td>
<td>19</td>
</tr>
</tbody>
</table>

NOTE: At completion of test, enter pages added during performance of test to this Table of Contents.
1 PURPOSE

This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria.

2 REFERENCES

2.1 DRAWINGS

H-2-131378, Sh 2, Rev 0 Cathodic Protection - Plan 241-AZ to 241-AY
H-2-131379, Sh 1, Rev 0 Cathodic Protection - Details

2.2 SPECIFICATIONS

W-030-C3, Rev 0 Construction Specification (Section 16640)

2.3 ENGINEERING CHANGE NOTICES (ECN)

Prior to final test approval, enter ECNs written against this ATP.

3 RESPONSIBILITIES

3.1 GENERAL

Each company or organization participating in this ATP will designate personnel to assume the responsibilities and duties as defined herein for their respective roles. The designees shall become familiar with this ATP and the systems involved to the extent that they can perform their assigned duties.

3.2 WHC PROJECT ENGINEER

3.2.1 Designates a Test Director.
3.2.2 Coordinates testing with the Facility Manager.
3.2.3 Acts as liaison between the participants in acceptance testing.
3.2.4 Distributes the approved testing schedule before start of testing.
3.2.5 Schedules and conducts a pretest kickoff meeting with test participants when necessary.
3.2.6 Notifies the persons performing and witnessing the test 2 days before the start of testing.
3.2.7 Schedules a dry run when necessary.
3.2.8 Notifies concerned parties when a change is made in the testing schedule.
3.2.9 Signs Execution and Test Approval page when test is approved and accepted.
3.2.10 Takes necessary action to clear exceptions to the test.
3.2.11 Signs Exception Form when exception has been resolved.
3.2.12 Provides a distribution list for the approved and accepted ATP(ADR).

3.3 TEST DIRECTOR

3.3.1 Coordinates and directs acceptance testing.
3.3.2 Confirms that field testing and inspection of the system or portion of the system to be tested has been completed.
3.3.3 Stops any test which, in his or her judgment, may cause damage to the system until the problem has been resolved.
3.3.4 After verifying there is no adverse impact, may alter the sequence in which systems or subsystems are tested.
3.3.5 Ensures that required environmental conditions are maintained.
3.3.6 If a test is to be suspended for a period of time, ensures that the system is left in a safe mode.
3.3.7 Before restarting suspended test, re-verifies the test prerequisites.
3.3.8 Initiates ECNs to document required changes to the ATP.
3.3.9 Reviews recorded data, discrepancies, and exceptions.
3.3.10 Obtains information or changes necessary to clear or resolve objections during the performance of the test.
3.3.11 Signs Execution and Test Approval page when test has been performed.
3.3.12 Signs Exception Form when exception has been resolved.
3.3.13 Obtains required signatures on the ATP Master prior to reproduction and distribution.

3.4 WITNESSES (Provided by Participating Organizations. One witness shall be a Title III acceptance inspector.)

3.4.1 Witness the tests.
3.4.2 Review results of testing.
3.4.3 Assist the Test Director when requested.
3.4.4 Sign Execution and Test Approval page when test has been performed.
3.4.5 Sign Exception Form when exception has been resolved.
3.5 Recorder (Provided by ICF KH)

3.5.1 Prepares a Field copy from the ATP Master.

3.5.2 Records names of all designated personnel on Field copy of ATP prior to start of testing.

3.5.3 Records test instrument identification numbers and calibration expiration dates.

3.5.4 Initials and dates every test step on the Field copy as it is completed next to the step number or on a data sheet, when provided. Records test data. On data sheets where there is not room for both the initial and date, date may be entered at bottom of column.

3.5.5 Records objections and exceptions on an Exception form. Uses additional Exception forms as needed. Notifies the Test Director at time the objection is made.

3.5.6 Signs Execution and Test Approval page when test has been performed.

3.5.7 After test is finished, assigns alpha numeric page numbers to added data sheets and Exception forms. Records page numbers in the Table of Contents.

3.5.8 Transfers Field copy entries for each step to the Master in ink or type, signs, and dates. Transmits the completed Master to the Test Director for approval signature routing. Transmits the Field copy to Construction Document Control for inclusion in the official project file.

3.5.9 Signs Exception Form when exception has been resolved and transmits to Test Director.

3.6 Test Operator

3.6.1 Performs test under direction of the Test Director.

3.6.2 Provides labor, equipment, and test instruments required for performing tests which have not been designated as being provided by others.

3.6.3 Requests in writing from the Test Director those services, materials, or equipment that have been designated as being supplied by others.

3.6.4 Confirms that all equipment required for performing test will be available at the start of testing.

3.6.5 Signs the Execution and Test Approval page.

3.7 Design Engineer Acceptance Inspection

3.7.1 Evaluate results.

3.7.2 Sign for A-E Approval on Execution and Test Approval page.
4 CHANGE CONTROL

Required changes to this ATP must be processed on ECNs in accordance with company procedures. If a need for change is discovered in the course of running the test, the test shall be stopped until the ECN is approved. However, this does not prevent the running of another portion of the test unaffected by the change.

5 EXECUTION

5.1 OCCUPATIONAL SAFETY AND HEALTH

Individuals shall carry out their assigned work in a safe manner to protect themselves and others from undue hazards and to prevent damage to property and environment. Facility line managers shall assure the safety of activities within their areas to prevent injury, property damage, or interruption of operation. Performance of test activities shall always include safety and health aspects.

5.2 PERFORMANCE

5.2.1 Conduct testing in accordance with ICF KH Procedure CON 3.5 (Performance and Recording of Acceptance Test Procedures).

5.2.2 Perform test following the steps and requirements of this procedure.

6 EXCEPTIONS

6.1 GENERAL

Exceptions to the required test results are sequentially numbered and recorded on individual Exception forms. This enables case-by-case resolution and approval of each exception.

Errors/exceptions in the ATP itself shall NOT be processed as test exceptions (see Section 4 CHANGE CONTROL).

6.2 RECORDING

6.2.1 Number each exception sequentially as it occurs and record it on an Exception Form (KEH-428), sample appended.

6.2.2 Enter name and organization of objecting party for each exception.

6.2.3 Enter planned action to resolve each exception when such determination is made.

6.3 RETEST/RESOLUTION

Record the action taken to resolve each exception. Action taken may not be the same as planned action.

6.3.1 When action taken results in an acceptable retest, sign and date Retest Execution and Acceptance section of the Exception Form.

6.3.2 When action taken does not involve an acceptable retest, strike out the Retest Execution and Acceptance section of the Exception Form.
6.4 APPROVAL AND ACCEPTANCE

The customer provides final approval and acceptance of exceptions by checking one of the following on Exception Form:

6.4.1 Retest Approved and Accepted: Applicable when Retest Execution and Acceptance section is completed.

6.4.2 Exception Accepted-As-Is: Requires detailed explanation.

6.4.3 Other: Requires detailed explanation.

The customer signs and dates the Exception Form and obtains other customer internal approvals, if required.

6.5 DISTRIBUTION

A copy of the approved Exception Form is distributed to each participant. The signed original is attached to the ATP Master.

7 PREREQUISITES, EQUIPMENT/INSTRUMENTS, AND ABBREVIATIONS

7.1 PREREQUISITES

The following conditions shall exist at start of testing for that portion of the system being tested.

7.1.1 All tank farm buried piping systems and the cathodic protection system have been inspected for compliance with construction documents.

7.1.2 Reference documents (including this ATP) have been verified for correct revision number and outstanding ECNs.

7.1.3 A Prejob Safety Analysis has been prepared and a Prejob Safety Meeting has been conducted.

7.1.4 Test instruments (except Waveform Analyzer) have a valid calibration stamp attached. Test instrument identification numbers and calibration expiration dates have been recorded in Para 7.2.

7.2 EQUIPMENT/INSTRUMENTS

Supplied by Test Operator unless otherwise noted. {Delete items not required. Add any additional necessary items.}

7.2.1 Voltohmmeter (VOM): Digital, portable, 0-150 V ac/dc.

Instrument No. ________ Expiration Date ________

7.2.2 Waveform Analyzer: Hand held instrument with display of ON-OFF pipe-to-soil potential, DC potential or AC potential, MCMiller Co, Model WFA-1.

7.2.3 Test leads with insulated covers for wire clips.
7.2.4 Portable test reel, containing a minimum of 200 feet of test wire, 600 V, No. 18 AWG minimum.

7.2.5 Portable copper-copper sulphate reference electrode.

7.2.6 Pipe locator.

7.3 ABBREVIATIONS

ADC/UCNI Authorized Derivative Classifier/Unclassified Controlled Nuclear Information

ECN Engineering Change Notice
RECTIFIER, CABLES, PIPE TEST CONDUCTORS, ANODES, AND SYSTEM OPERATION

8.1 The following steps will verify (1) rectifier nameplate data, (2) rectifier input wiring is correctly terminated and color coded, and (3) anode header cable, anode loop cable, and negative return cables are labeled and connected in accordance with the design.

8.1.1 Record nameplate data for Rectifier 41.

<table>
<thead>
<tr>
<th>Make</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>AC Line Input Voltage</td>
<td></td>
</tr>
<tr>
<td>AC Line Frequency</td>
<td></td>
</tr>
<tr>
<td>Number of Phases</td>
<td></td>
</tr>
<tr>
<td>DC Output Voltage</td>
<td></td>
</tr>
<tr>
<td>DC Output Current</td>
<td></td>
</tr>
</tbody>
</table>

8.1.2 Verify disconnect switch at rectifier is OPEN.

8.1.3 Using a VOM, verify no DC voltage at rectifier output terminals.

8.1.4 Verify rectifier case is filled with oil to the indicated level and that oil is CLEAR.

8.1.5 Verify ac supply wiring from disconnect switch is terminated on ac input terminals of rectifier.

8.1.5.1 Line 1 (Red or Black).

8.1.5.2 Neutral (White or Gray).

8.1.5.3 Ground (Green)

8.1.6 Verify rectifier output cables are properly labeled.

8.1.6.1 (+) HR41-1 (Anode Header Cable)

8.1.6.2 (+) LR41-1 (Anode Loop Cable)

8.1.6.3 (+) HR41-2 (Anode Header Cable)

8.1.6.4 (+) LR41-2 (Anode Loop Cable)

8.1.6.5 (-) R41 (Negative return cable)
8.1.7 Verify Anode Header Cable and Anode Loop Cable are terminated at rectifier positive terminals.

8.1.7.1 (+) HR41-1 (Anode Header Cable)

8.1.7.2 (+) LR41-1 (Anode Loop Cable)

8.1.7.3 (+) HR41-2 (Anode Header Cable)

8.1.7.4 (+) LR41-2 (Anode Loop Cable)

8.1.8 Verify Negative Return Cable is terminated at rectifier negative terminal.

8.1.8.1 (-) R41

8.1.9 Verify rectifier frame is connected to ground rod.

8.1.10 Verify Anode Header Cable (+) HR41-1 and Anode Loop Cable (+) LR41-1 are connected together at Anode Junction Box AJB (41-1).

8.1.11 Verify Anode Header Cable (+) HR41-2 and Anode Loop Cable (+) LR41-2 are connected together at Anode Junction Box AJB (41-2).

8.2 The following steps will verify continuity of the Anode Header Cable and the Anode Loop Cable.

8.2.1 Record the following VOM data:

Manufacturer

Model

Serial Number

Calibration Sticker Data

8.2.2 Disconnect Anode Header Cable (+) HR41-1 and Anode Loop Cable (+) LR41-1 in Anode Junction Box AJB (41-1).

8.2.3 Disconnect Anode Header Cable (+) HR41-2 and Anode Loop Cable (+) LR41-2 in Anode Junction Box AJB (41-2).

8.2.4 Using VOM, verify continuity (less than 1 ohm) across Anode Header Cable (+) HR41-1 and Anode Loop Cable (+) LR41-1 in Anode Junction Box AJB (41-1).

8.2.5 Using VOM, verify continuity (less than 1 ohm) across Anode Header Cable (+) HR41-2 and Anode Loop Cable (+) LR41-2 in Anode Junction Box AJB (41-2).

8.2.6 Reconnect Anode Header Cable and Anode Loop Cables that were disconnected in Steps 8.2.2 and 8.2.3.
NOTE: The steps in Paragraphs 8.3 and 8.4 may be done concurrently.

8.3 The following steps will verify pipe test conductors are 1) terminated on designated terminals in accordance with the Drawings and 2) labeled correctly with the pipe number or reference electrode. Record terminal number to which each conductor is connected.

8.3.1 Test Station T(41-1)
10-inch V-AZ2102-M9 w/14" ENC-M26 Terminals ___ and ___
Reference Electrode Terminal ___

8.3.2 Test Station T(41-2)
2-inch V-0608-M9 w/4" ENC-M26 Terminals ___ and ___
1-inch PC-AZ503-M27 w/3" ENC-M26 Terminals ___ and ___
Reference Electrode Terminal ___

8.3.3 Test Station T(41-2a)
1-inch IA-2600-M7 Terminals ___ and ___
3-inch PA-1600-M7 Terminals ___ and ___
4-inch RW-3600-M5 Terminals ___ and ___
Reference Electrode Terminal ___

8.3.4 Test Station T(41-3)
3-inch DR-0086-M27 w/6" ENC-M26 Terminals ___ and ___
2-inch DR-0085-M5 Terminals ___ and ___
2-inch PW-4602-M5 Terminals ___ and ___
2-inch DR-0081-M5 Terminals ___ and ___
Reference Electrode Terminal ___

8.3.5 Test Station T(41-4)
10-inch V-AY1102-M9 w/14" ENC-M26 Terminals ___ and ___
3-inch V113 Terminals ___ and ___
Reference Electrode Terminal ___
8.3.6 Test Station T(41-5)

10-inch V-AY1102-M9
and
w/14" ENC-M26

3-inch NHW-714-M9
w/6" ENC-M26a

Reference Electrode

8.4 Using a VOM, measure and record resistance between each set of pipe test conductors that are identified as being connected to the same pipe. Resistance measured shall be less than 1 ohm.

8.4.1 Record the following VOM data:

Manufacturer

Model

Serial Number

Calibration Sticker Data

8.4.2 Test Station T(41-1)

10-inch V-AZ2102-M9
w/14" ENC-M26a

8.4.3 Test Station T(41-2)

2-inch V-0608-M9
w/4" ENC-M26

1-inch PC-AZ503-M27
w/3" ENC-M26

8.4.4 Test Station T(41-2a)

1-inch IA-2600-M7

3-inch PA-1600-M7

4-inch RW-3600-M5

8.4.5 Test Station T(41-3)

3-inch DR-0086-M27
w/6" ENC-M26

2-inch DR-0085-M5

2-inch PW-4602-M5

2-inch DR-0081-M5

ohms

ohms

ohms

ohms

ohms
8.5.1 Verify Rectifier 41 input circuit breaker is OPEN.

8.5.2 Verify all COARSE and FINE output transformer taps on rectifier are set at the lowest levels (Coarse - A and Fine - 1).

8.5.3 Close Circuit Breaker 16 in Power Panelboard PP-5 located in Vent Facility Building 241-AZ-702.

8.5.4 Close rectifier input circuit breaker and disconnect switch at rectifier. Using meter on rectifier, record volts and amperes, and then open input circuit breaker. Set fine tap to next higher setting and leave coarse tap as previously set. Close input circuit breaker again and record volts and amperes, then open the input circuit breaker. Continue adjusting the output of the rectifier in steps until either the dc volts or dc amperes (whichever is first) approaches, but does not exceed, the nameplate rating of rectifier.

<table>
<thead>
<tr>
<th>Transformer Taps</th>
<th>dc Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>
Transformer Taps

<table>
<thead>
<tr>
<th>Transformer Taps</th>
<th>dc Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coarse</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
</tr>
</tbody>
</table>

8.5.5 Open rectifier input circuit breaker.

8.6
The following steps will verify that if either the Anode Header Cable or the Anode Loop Cable is severed, the cathodic protection system will continue to function properly.

8.6.1 Close rectifier input circuit breaker and record the current shown on the rectifier ammeter. ________ amperes.

8.6.2 Open rectifier input circuit breaker.

8.6.3 Disconnect Anode Header Cables (+) HR41-1 and (+) HR41-2 from positive terminals of rectifier, leaving Anode Loop Cables (+) LR41-1 and (+) LR41-2 connected.

8.6.4 Close rectifier input circuit breaker and record the current shown on the rectifier ammeter. ________ amperes.

8.6.5 Open rectifier input circuit breaker and disconnect Anode Loop Cables (+) LR41-1 and (+) LR41-2 and reconnect Anode Header Cables (+) HR41-1 and (+) HR41-2 disconnected in Step 8.6.3.

8.6.6 Close rectifier input circuit breaker and record the current shown on the rectifier ammeter. ________ amperes.

8.6.7 Open rectifier input circuit breaker and reconnect Anode Loop Cables disconnected in Step 8.6.5.

8.7
The following steps will verify proper operation of the ground bed system.

8.7.1 Verify the Mode switch, on the Wave Form Analyzer, is in the OFF position.
8.7.2 Connect positive terminal of the Wave Form Analyzer to a protected pipeline test conductor through a portable test reel at various convenient test stations for the following procedure.

8.7.3 Connect common terminal of the Wave Form Analyzer to a portable copper-copper sulfate reference electrode.

8.7.4 Turn the Mode switch, on the Wave Form Analyzer, from the OFF position to the DC position.

8.7.5 Record the following portable reference electrode data:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model and type</th>
</tr>
</thead>
</table>

8.7.6 Close rectifier input circuit breaker, place the portable reference electrode over each anode location and measure pipe to soil potential using the Wave Form Analyzer. Record pipe to soil potential at each anode location. Values should be more negative than \((-0.85\text{ V dc})\) (ie, \((-0.86\text{ V dc})\)) or the ON values should be 100 mV more negative than the OFF values. If these values are not attainable by use of the permanent reference electrode, a portable reference electrode may be used.

NOTE: A pipe locator may be used to locate anodes if necessary.

8.7.7

<table>
<thead>
<tr>
<th>Anode</th>
<th>Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(41-1)</td>
<td></td>
</tr>
<tr>
<td>A(41-2)</td>
<td></td>
</tr>
<tr>
<td>A(41-3)</td>
<td></td>
</tr>
<tr>
<td>A(41-4)</td>
<td></td>
</tr>
<tr>
<td>A(41-5)</td>
<td></td>
</tr>
<tr>
<td>A(41-6)</td>
<td></td>
</tr>
<tr>
<td>A(41-7)</td>
<td></td>
</tr>
<tr>
<td>A(41-8)</td>
<td></td>
</tr>
<tr>
<td>A(41-9)</td>
<td></td>
</tr>
<tr>
<td>A(41-10)</td>
<td></td>
</tr>
<tr>
<td>A(41-11)</td>
<td></td>
</tr>
<tr>
<td>A(41-12)</td>
<td></td>
</tr>
<tr>
<td>A(41-13)</td>
<td></td>
</tr>
<tr>
<td>A(41-14)</td>
<td></td>
</tr>
<tr>
<td>A(41-15)</td>
<td></td>
</tr>
<tr>
<td>A(41-16)</td>
<td></td>
</tr>
</tbody>
</table>
8.7.8 Turn the Mode switch, on the Wave Form Analyzer, to the OFF position and disconnect leads.

8.7.9 Open the disconnect switch at the rectifier.

8.8 The following steps will verify proper operation of the cathodic protection system:

8.8.1 Position the ten position DIP switch on the Pulse Generator (located in the rectifier control panel) as follows: SW1, 2, and 3 in the OFF position and SW4, 5, 6, 7, 8, 9, and 10 in the ON position.

8.8.2 Open the input circuit breaker in existing Rectifier 11, located approximately 50 feet south of Building 241-AN-271 and in Rectifier 31, located outside the "AY" Tank Farm fence near Building 241-AY-801.

8.8.3 Close Rectifier 41 input circuit breaker and the disconnect switch at the rectifier and verify the rectifier has been energized for 24 hours prior to this test.

8.8.4 Measure and record the ON and OFF pipe to soil potential of each protected pipe by use of the Waveform Analyzer. OFF values should be equal to or more negative than (-) 0.85 V dc or ON values should be 100 mV more negative than the OFF values.

NOTE: Connect reference electrode lead to the positive terminal and the pipe test conductor lead to the common terminal on the Waveform Analyzer. Turn the Mode switch from the OFF position to the WFA position. Record values, then turn to the OFF position.

8.8.4.1 Test Station T(41-1)
Reference Electrode and 10 inch V-AZ2102-M9 w/14" ENC-M26

8.8.4.2 Test Station T(41-2)
Reference Electrode and 2 inch V-0608-M9 w/4" ENC-M26
Reference Electrode and 1 inch PC-AZ503-M27 w/3" ENC-M26

8.8.4.3 Test Station T(41-3)
Reference Electrode and 3 inch DR-0086-27 w/6" ENC-M26

8.8.4.4 Test Station T(41-4)
Reference Electrode and 10 inch V-AY1102-M9 w/14" ENC-M26
8.8.4.5 Test Station T(41-5) Volts
Reference Electrode and 10 inch ON OFF
V-AY1102-M9 w/1/4" ENC-M26

8.8.4.6 Turn the Mode switch, on the Wave Form Analyzer, to the OFF position and disconnect leads.

8.8.4.7 Open disconnect switch at the rectifier.

8.8.4.8 Close the input circuit breaker on existing Rectifiers 11 and 31 that were opened in Step 8.8.2.

8.8.5 Testing complete, secure from test.

END OF TEST