A Graph-Based Network-Vulnerability Analysis System

Laura Painton Swiler, Cynthia Phillips, Timothy Gaylor

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
A Graph-Based Network-Vulnerability Analysis System

Laura Painton Swiler
Systems Reliability Department

Cynthia Phillips
Applied Mathematics Department

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0746

Timothy Gaylor
3M, Visual Systems Division
Austin, TX 78726

Abstract

This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is “matched” with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.
CONTENTS

1. Introduction ... 1
2. Configuration Files and Attack Templates ... 4
 Configuration files ... 4
 Attacker Profiles ... 4
 Attack template ... 5
3. Generating the Attack Graph ... 6
4. Analysis Methods ... 9
5. Example: Password Guessing .. 10
6. Conclusions .. 13
References ... 14
Figures .. 15
Appendix .. SAND97-3010/2

FIGURES

Figure 1. Example Template for Anonymous ftp attack ... 15
Figure 2. Graph Generation Example ... 16
Figure 3. Test Network .. 17
Figure 4. Password Guessing Attack Template .. 18
Figure 5. Attack Graph: Password Guessing on Test Network 19
Figure 6. Shortest Path Algorithm Solution Method .. 20
1. Introduction

This research effort was motivated by the need for a better methodology to perform risk and vulnerability analyses of computer networks. This problem is extremely important to the military and civilian infrastructure today. For example, the Presidential Commission on Critical Infrastructure recommended increasing spending to a $1B level during the next seven years. The Commission recommended that this money be heavily focused on cyber-security research, including vulnerability assessment, risk management, intrusion detection, and information assurance technologies (Commission Report, Oct. 1997). In this paper, we describe a systematic analysis approach that can be used by persons with limited expertise in risk assessment or vulnerability analysis to (1) examine how an adversary might be able to exploit identified weaknesses in order to perform undesirable activities, and (2) assess the universe of undesirable activities that an adversary could accomplish given that they were able to enter the network using an identified weakness.

This LDRD was funded in FY 1997. Originally it was to be a two-year LDRD. The Risk and Reliability IAT Review Committee decided not to renew funding for this LDRD in FY 1998 because of its similarity to other network related proposals and research funded at Sandia. This report documents the progress that was made in FY 1997, and presents the network vulnerability modeling approach as far as we have been able to take it. As such, this report can be used as a starting point for further work in this area. The LDRD team members who worked on this feel that a significant amount of work remains to be done before our ideas could be turned into a marketable prototype software tool, but we feel this is a worthwhile goal.

Background

The original LDRD proposal had a three-pronged approach:

1. Development of risk sub-models. This refers to categorizing known vulnerabilities and attacks according to the type of network components that are susceptible.
2. Develop a “deductive” risk assessment method, which will examine how an adversary might be able to exploit identified weaknesses in order to perform undesirable activities.
3. Develop an “inductive” risk assessment method, which will examine the set of undesirable activities an adversary could accomplish given that they entered the network.

With respect to (1) above, we have documented the classes of networking components (e.g., workstations, routers) and network service applications (e.g., mail services, firewalls) that are vulnerable to attack, the classes of known attacks, and the current classes of defenses that are used to deter or repel these known classes of attacks (LDRD Task 1 Memo, May 30, 1997). We also spent a significant amount of time identifying the characteristics of networks that need to be incorporated into a risk assessment (RA) method. Ideally, a network-vulnerability risk-analysis system should
be able to model the dynamic aspects of the network (e.g., virtual topology changing),
multiple levels of attacker ability, dynamic behavior of a single attacker (e.g.,
learning), multiple simultaneous events or multiple attacks, user access controls, and
time-dependent, ordered sequences of attacks.

Probabilistic Risk Assessment (PRA) techniques such as fault-tree and event-tree
analysis provide systematic methods for examining how individual faults can either
propagate into or be exploited to cause unwanted effects on systems. For example, in a
fault-tree a negative consequence, such as the compromise of a file server, is the root
of the tree. Each possible event that can lead *directly* to this compromise (e.g., an
attacker gaining root privileges on the machine) becomes a child of the root. Similarly,
each child is broken into a complete list of all events which can directly lead to it and
so on. Wyss, Schriner, and Gaylor (Wyss et. al) have used PRA techniques to
investigate network performance. Their fault tree modeled a loss of network
connectivity, specifically the “all terminal connectivity” problem. Physical security and
vital area analyses have also successfully used PRA techniques (Stack and Hill). Since
PRA methods are able to measure the importance of particular components to overall
risk, it seems that they could provide insights that can help design networks that are more
inherently resistant to known methods of attack. These methods, however, have limited
effectiveness in the analysis of computer networks because they cannot model multiple
attacker attempts, time dependencies, or access controls (see LDRD Task 2 Memo,
March 17, 1997). In addition, fault trees don’t model cycles (such as an attacker
starting at one machine, hopping to two others, returning to the original host, and
starting in another direction at a higher privilege level). Methods such as influence
diagrams and event trees suffer from the same limitations as fault trees.

The major advance of our method over other computer-security-risk methods is that it
considers the physical network topology in conjunction with the set of attacks. Thus, it
goes beyond the scanning tools such as the SATAN (Security Administrator Tool for
Analyzing Networks) tool that are currently available which check a “laundry list” of
services or conditions that are enabled on a particular machine. For example, SATAN
checks for the following vulnerabilities on UNIX based systems:

1. Are NFS file systems exported to unprivileged programs?
2. Are NFS file systems exported to arbitrary hosts?
3. Is X server access control disabled?
4. Is there a writable anonymous FTP home directory?
5. Is there an insecure version of sendmail in use?

... All the vulnerabilities SATAN finds are well known and have either bulletins and/or
patches from an incident response team or a vendor. SATAN is a useful network analysis
tool and can provide a system administrator with a set of items to patch or fix. However,
it cannot identify paths of attacks, alternative network configurations that would be more
robust, or linked attacks such that a combined sequence of attacks would do more harm than an individual attack.

Our approach to modeling network risks is based on the idea of an attack graph. Each node in the graph represents a possible attack state. A node will usually be some combination of physical machine(s), user access level, and effects of the attack so far, such as placement of trojan horses or modification of access control. Edges represent a change of state caused by a single action taken by the attacker (including normal user transitions if they have gained access to a normal user's account) or actions taken by an unwitting assistant (such as the execution of a trojan horse). Figure 4 gives an example attack graph, which will be explained more fully when we describe attack graphs in section 2.

Since the generation of an attack graph will quickly become extremely difficult for one person to build given the combinatorial explosion of the nodes and paths, we propose a method which can automatically generate the graph. The generator requires three types of input: attack templates, a configuration file, and an attacker profile. Attack templates represent generic (known or hypothesized) attacks including conditions, such as operating system version, which must hold for the attack to be possible. The configuration file gives detailed information about the specific system to be analyzed including the topology of the network and configuration of particular network elements such as workstations, printers, or routers. The attacker profile contains information about the assumed attacker's capabilities, such as the possession of an automated toolkit or a sniffer as well as skill level. The attack graph is a customization of the generic attack templates to the specific network specified in the configuration file and the attacker profile. If an attack is possible in this network, its edge weight (probability or cost) will be a function of configuration parameters and/or attacker skill level. Though attack templates represent pieces of known attacks or hypothesized methods of moving from one state to another, their combinations can lead to descriptions of new attacks. That is, any path in the attack graph represents an attack, though it could be cobbled together from many known attacks.

Once the attack graph has been generated, we can apply analysis methods to determine high-risk attack paths. As a preliminary tool for analyzing the graph, we chose a shortest-path algorithm. If we attach a probability or cost to each arc, a shortest-path algorithm can find the attack path with lowest cost or highest probability of success, provided the success probabilities can be modeled as independent. The graph may also be used to run simulations. Additional analysis methods will be explained in more detail in Section 4.

The remainder of the paper is organized as follows. Section 2 gives a more detailed description of attack templates, the configuration file, and attacker profile. Section 3 describes how to generate the attack graph from the attack templates and configuration file. Section 4 discusses analysis methods. Section 5 gives a detailed example, applied to a test network we have built. Section 6 provides some concluding remarks.
2. Configuration Files and Attack Templates

This section explains the inputs required for our method: configuration files, attacker profiles, and attack templates.

Configuration files

The configuration file contains information relevant to operating system, network type, router configuration, and network topology. More specifically, each device (i.e., workstation, printer, file server, etc.) should have the following information:

1. **Machine class**: workstation, printer, router, etc.
2. **Hardware type**: e.g., SUN SPARCstation™ 5
3. **Operating System**
 a. O.S. patches that have been installed.
4. **Users** (Initially just the classes of users, i.e. root, normal, privileged.)
5. **Configuration**
 a. Ports enabled
 b. Services enabled
 c. Any intrusion detection applications installed
6. **Type of network(s)** the device is on (Ethernet, FDDI, ATM, etc.)
7. **Physical link** information such as type of communications media

A configuration file also includes a graph of the topology of the network. Building and maintaining configuration files by hand will be a tedious, time-consuming and error-prone task which could seriously limit the utility of the system. Therefore, we envision an automated tool that will automatically generate and maintain this configuration file. For example, a root-level daemon on each network component can periodically send information to a central server. The configuration file could be based upon the information available from a tool like SATAN, augmented to match the conditions in the set of attack templates. We hope the system administrator will have reasonable defenses in place to protect this data when using the tool. For example, it may only be available online in one place while the administrator is running analyses.

Attacker Profiles

The attacker profile contains information about an assumed attacker’s capabilities, such as the possession of an automated toolkit, a sniffer, etc. The attacker profile also contains an assumption about the skill level of an attacker, which is used to determine the probability of success for particular attack methods. The attacker profile represents the initial capabilities of the attacker in the same way that the configuration file represents the initial state of the network. To assist the analyst, default profiles for various attacker skill levels such as novice vs. expert could be provided. The network owner’s security policies and strategies can be guided by the level of attacker they wish to strongly deter and their available budget.
Attack template

Attack templates represent generic steps in known attacks, including conditions which must hold for the attack to be possible. Each node in the attack template represents a state of an attack, as detailed below. The nodes are distinguishable, and therefore, each edge represents a change in state on one or more devices. Examples of state changes are: a file was changed, a configuration setting was altered, an executable was run, etc. An example of attack templates using the following definitions and fields is shown in Figure 1. A more complete list of attack templates is shown in the Appendix (SAND 97-3010/2). These templates have varying degrees of aggregation and completeness, and they do not all fit into our definition. However, they are provided for information purposes. For more specific details about Java attack templates, see (Harris, 1997).

Nodes have the following fields:

1. **User level:** Possible user levels include: none, guest (anonymous), normal user, privileged user, root, or system administrator.
2. **Machine(s):** For the attack templates, the machine field will most likely be used to specify an individual machine or set of machines, all machines on a subnet, or all machines on multiple subnets. In the attack templates, this field contains placeholders (variables) that are instantiated in the attack graph.
3. **Vulnerabilities:** The vulnerabilities field can be used to indicate changes to the original configuration caused by attacker actions. When building the attack graph, the vulnerabilities "overwrite" the relevant portions of the configuration file for a given node.
4. **Capabilities:** The capabilities field can include physical access to part of the network, installation of a trojan horse, delivery of mail or an applet with executable content, or installation of a sniffer on an edge of the network. It can also indicate other programs that the attacker has successfully installed or has access to, such as crack programs, root kits, etc. The capabilities gained can locally overwrite the attacker profile in the same way that the vulnerabilities field will overwrite the configuration file.
5. **State:** The state field is primarily used to break attacks into atomic pieces. An attack may require several steps, each of which could fail and none of which adds a new capability, vulnerability, etc. The states distinguish the nodes by indicating progress in the attack.

Edges in an attack template represent actions by the attacker or his/her victim/unwitting assistant. They can also indicate an event such as the detection of a particular type of packet on a network by some hardware and/or software under attacker control. To allow maximum detection of new attack sequences, these events should be atomic and nontrivial (probability of success is strictly between 0 and 1). Probability-one edges must change the environment (introduce a vulnerability, change user level, etc.). Each edge has conditions on the users and/or machines. If all the conditions are met, the attack succeeds with a given probability and/or cost. Our examples model this measure as static, but it can more generally be a function of configuration and attacker experience.
If a user is only interested in viewing the possible universe of attacks regardless of cost/success probability, then these functions could be extremely simple.

A number of issues are not completely resolved. There is some flexibility in assigning conditions to the arcs (requirements for the attack) vs. the nodes (part of the state). For example, possession of a root kit may be required for a certain attack. It can be made a condition of the edge (hence the edge is not added to the attack graph unless the attacker possesses a root kit) or it can be made a state of the start node (thus the attacker must have a root kit in order for the node to be reached in the first place). In addition, one must carefully choose levels of machine aggregation. Generating nodes for all possible subsets of machines will be impossible even for small systems. However, we believe the design described above can model a wide variety of attacks. For example, we have developed a set of templates for several attacks in each of the following classes: sendmail, ftp, telnet, Windows NT, and Java. Furthermore, the system has sufficient flexibility to evolve smoothly as new, previously unanticipated modeling needs arise.

The attack templates are “matched” to the configuration file and the attacker profile to create an attack graph which contains all of the possible attack paths for the particular network in the configuration file. Paths are labeled by cost, effort, or probability of success, which are functions of attacker capability and level of knowledge. The following section discusses the attack graph generation.

3. Generating the Attack Graph

In this section we describe how one might generate the attack graph from a configuration file, an attacker profile, and a database of attack templates. The latter part of this section also discusses implementation issues. As described before, nodes of the attack graph represent stages of an attack, and edges represent an attack that changes the state. In general the nodes of the attack graph look like nodes of the attack templates instantiated with particular users and machines. Edges are labeled only by a probability-of-success (or cost) measure, and a documentation string for the user interface. For ease of exposition, for the remainder of this section, we will call the measure the weight of the edge. This weight is determined by an instantiation function associated with each edge of an attack template. This function accesses the configuration file and the attacker profile. If an edge goes from node \(u \) to node \(v \), then we call node \(u \) the tail of the edge and node \(v \) the head of the edge.

We now describe how the attack graph could be generated by building backwards from a goal node. One could also build forward from a start node (to explore the universe of possibilities) or assume both a start and a goal node. We illustrate this description with the simple example in Figure 2. The attacker profile, which is not shown in Figure 2 for space reasons, assumes that the attacker has physical access to B and the boot CD. We
maintain a queue of generated nodes which have not been processed. Initially this queue contains only the goal node and nodes are added as they are created.

Start with the goal node: achievement of user-level access on machine M. The graph generator checks the database of attack templates and identifies all edges whose heads match the goal node. Assuming this database contains only the two templates shown in Figure 2, we find two matches, namely the head of each attack template. Consider the first template for an rlogin attack. Machine M matches the variable M_2 in the template. The instantiation function can then generate the tail node (node N_1) by generating all (user, machine) pairs that meet the constraints (the user has an account on this machine and M, and an appropriate rlogin file on M). Note that if machine M has rlogin disabled, then node N_1 would not be generated. On the assumption that machines A and B can communicate with M (given the rlogin file), the probability of the edge from node N_1 to the goal is 1. Node N_1 is an OR node, meaning that achievement of any (user, machine) pair suffices.

The goal node also matches the last node of the second template for physical access. Machine M matches the variable X and the instantiation function creates node N_4, which in turn generates N_5. However, the attacker does not have physical access to M. Thus, the nodes N_4 and N_5 are marked with a dotted line to show that under existing conditions, they would not be reachable from the start state. There could be other attack templates which would lead to physical access to M, and then these nodes would be enabled. In this case, the capability of physical access to M is an addition (or overwrite) to the attacker profile.

Since there are no more matches for the goal, node N_1 is removed from the queue and matched against the database against both heads and tails. In principle, it can again match with the head of the rlogin attack. However, assuming transitivity (i.e. that a user has rlogin set up symmetrically for all his accounts), applying this edge again will give no new information. Recognizing and preventing this in all cases is still a research issue. Node N_1 also matches with the last node of the second template on physical access, which generates node N_2.

Node N_2 matches the middle node of the second template. The attacker profile indicates that the attacker has physical access to machine B, but not to machine A. Since N_2 is an OR node, it can be satisfied by the attacker becoming root on B. In this example, node N_3 is created with a subset of the machines in node N_2. Alternatively, we could have generated an intermediate node for becoming root only on B rather than A or B. The advantage of this is that additional paths to the goal or start can pass through this intermediate node. When both goal and start nodes are specified, either method is likely to work, since if this node is required for a path, it will be generated later. If only one of goal and start are specified, the more verbose method may be advantageous. We recognize node N_3 as a start node in this graph, and thus we do not try to match backwards from it. Although it is not shown, the attack graph would also contain a node.
for A similar to N₃ which, like nodes N₄ and N₅, is unreachable because the attacker has no physical access to A.

When a node is matched with a template in the database, the other endpoint could either be generated as in the example above, or be a node already generated. Thus the generator must be able to efficiently search the nodes generated so far. Edges created between two nodes already generated can lead to interactions between attack templates and the "discovery" of new attack sequences.

The instantiation function may generate multiple nodes if reachability is a condition on an edge and there are multiple routers between a pair of machines (see the example in section 5). The steps necessary for routing a message, telnet session, etc., are explicitly included in the attack graph because this access is an important security parameter. If a worrisome attack path involves going through multiple routers, the system administrator has the option of modifying the access control tables to forbid the access.

There are a number of implementation issues which must be resolved when the system is tested on large datasets. For example, it may be useful to allow some hierarchy in the attack graph generation. If there is a common set of attack paths that allow an attacker to become root from a normal user account on the same machine, this could be a useful building block. If multiple machines have identical parameters, this subgraph need only be built once. It can be collapsed to one edge, with the option of expanding the graph for the system administrator via the user interface.

For each piece of the configuration or attacker profile files, it would be useful to maintain a list of edges whose probability was influenced by that attribute. This will allow quick recomputation of edge weights if a configuration or attacker parameter is changed. However, it is more challenging to leave such a "trail" for pieces that were missing in the configuration file or lead to edges not existing.

Instantiation functions could become quite complicated. For example, suppose one is searching for the universe of possible consequences from a break-in. In "spam" attacks on networks, an attack is replicated on many machines. If one wants to predict the number of machines compromised, the instantiation function must have an inclusion/exclusion calculation if the weights are probabilities.

There are two possible ways to represent the users and/or machines in a node: as an explicit list, or as a list of conditions (from edge conditions). Since each condition is associated with an instantiation function, one can go from condition lists to explicit user lists. One could imagine that both representations could be used in different parts of the attack graph during generation depending upon the ways the lists will be refined. For example, the list-of-conditions method may be better for matching.

Another issue is how to model attacks that require access to two different user accounts possibly on two different machines. This could be done as a 2-step process in the attack
template. However, in the attack graph, getting access to two users' accounts is highly correlated within the various attacks, and this correlation must be incorporated into the both instantiation functions. Therefore, obtaining access to two or more accounts should probably be combined as a single atomic event. Since we expect most attacks to require access to only a small number of accounts simultaneously, this consolidation/duplication should not increase the size of the graph too much.

Matching methods will evolve experimentally. However, unification techniques used in logic programming languages are a natural starting place. It is possible that using lists of conditions, one can search the set of generated nodes efficiently using hashing techniques.

4. Analysis Methods

After the attack graph is generated by the procedure outlined above, some analysis tools are needed to identify the attack paths which are most likely to succeed in a particular threat scenario. We are currently using a shortest-path algorithm. These algorithms generally compute the best paths from a source to all other nodes. Bicriteria shortest-path algorithms can be used to compute strategies that, for example, maximize the probability of success within a fixed budget constraint. Current exact solution methods involve shortest-path computations in significantly expanded graphs. However, scaling provides a graceful tradeoff between approximation quality and the time and space needed to compute the solution (Phillips). Very recently, Tayi et al. have shown how to compute all undominated (Pareto optimal) paths for multiple edge weights using a psuedo-polynomial time algorithm. Efficiently solving variants with many more than two optimization criteria is an open problem. In practice, the success probability or cost of an attack depends upon the attacker's experience. We would like to develop new single-cost shortest-paths algorithms to incorporate adaptive attacker experience (experience increases as the attack progresses). An issue for these augmented algorithms is quality of the larger, more complex, and more speculative input data set.

Another research issue is computation of cost-effective defense strategies. Given a set of possible defenses, each with a cost (financial, loss-of-service, etc.), we would like to compute a set of defenses to implement which will maximally decrease the probability of success (or increase attacker cost). We expect this to be a challenging problem because implementing a defense strategy on a particular machine could have a wide-spread effect on the attack graph.

Alternatively, a system administrator could use the attack graph as the foundation for a simulation tool. The simulation could start from the node where the attacker breaks in, and follow high probability paths until the attacker fails, in which case the simulation can backtrack to an earlier node and try another path. This kind of a model could represent the real behavior of attackers (going down one branch, figuring that it is too difficult to do something such as get root on a particular machine, so backing up and trying another method). Another strategy would be that the attacker chooses his next attack arc based on
configuration knowledge of all outgoing links, plus an estimate of the shortest path from neighboring nodes. This simulation technique would be very appropriate for a graphical user interface which could show a network designer the paths the attacker is most likely to take (for example, by lighting up nodes with a green light as the attacker is successful, and displaying a red light where the attacker gets blocked).

Finally, we would like to investigate generating and pruning exhaustive graphs from the recursive algorithms used in solving event trees. Selective pruning of insignificant paths will be a key aspect of a solution method. The algorithm of (Naor and Brutlag) uses a canonical representation for all epsilon-optimal paths. This would allow us to generate all paths that are no more than epsilon larger than the shortest path, and also allow for the identification of arcs (attack “edges”) which are common to many of the epsilon-optimal paths.

5. Example: Password Guessing

This section presents an example of the graph-based vulnerability assessment method, specifically a password guessing attack on a small network. The network, shown in Figure 3, is small but has a somewhat complex topology and also has many of the main technologies we are interested in modeling: an ATM-switched network, an Ethernet network, two routers of differing types, a firewall to the Internet, SGI workstations, and SUN workstations.

Figure 4 is an attack template showing several possible ways to gain illegal access to a machine by password guessing. For example, an attacker can use anonymous ftp to plant a trojan horse which when executed mails him back the password file. He then can run a password cracking program on the password file. Or, if the attacker has a sniffer and sniffs the password, if the password is plaintext, the attacker can login as a normal user with that password. As shown in Figure 4, attack templates are multigraphs. That is, there can be multiple edges between two nodes indicating different attack methods. For example, in Figure 4, trojan horses can lead to attacker acquisition of the password file in three different ways. We chose password guessing because it is a common attack estimated to be used in approximately one-quarter of attacks, based on the analysis of incidents reported to the Computer Emergency Response Team (CERT), in the dissertation by John Howard, 1997. This example is not meant to be exhaustive even for password guessing. In general an assessment is only as complete as allowed by the coverage of the database.

Attack graphs assume a start and/or goal state. For this example, we assumed that the attacker had access to a normal user account on the Sun workstation SUN1. That is, the attacker could be an insider with an account on SUN1 or could have gained access to SUN1 from the Internet by getting through the firewall. The file server in this network is the Silicon Graphics workstation SGII on the Ethernet network. We assumed that the attacker’s goal was to access protected data files on the file server SGII. The starting and
goal states are specified in the attacker profile. Only one of these is needed and the attack
graph can be built from that point. In this example, however, we specify both.

Figure 5 shows the attack graph generated from the password-guessing attack template
and the network configuration information. This graph shows specific steps the attacker
would take to get the protected files. We will not step through the graph generation in
detail, but the overall idea is that the user on SUN1 is going to try and access an account
on SGI2. From there, she sniffs the password of a user on the broadcast Ethernet network
who is logging into SGI1.

This graph was generated as follows: the start node (the attacker having access to a
normal user account on SUN1) matches the conditions of the lower start node on the
password-guessing template (normal user on a machine M). From the template start
node, there are two paths, one involving email and one involving anonymous ftp. The
graph-generation algorithm checks the configuration file to see if email is enabled
between SUN1 and SGI1. It is not, because SGI1 is configured to be a protected server
which only has privileged users who must logon for access. Likewise, anonymous ftp is
turned off on SGI1. However, SGI2 has these services. Thus, the paths of planting a
trojan horse via email or obtaining the password file via anonymous ftp are matched to
the SGI2 where SGI2 is machine B on the attack template. To access SGI2 via ftp or
email, the packets must go through both the NetEdge and Cisco routers. This is
information that is in the configuration file. These show up as states in the attack graph
because they represent stages necessary to perform the ftp or email actions. (Note: this
approach can help show where it will be beneficial to prevent attack. For example, one
could configure the routers to not allow any traffic from the ATM network to the Ethernet
network).

Note that the start node did not match the upper start state in the password template based
on the sniffing route. That is because SUN1 is on an ATM network, which is a switched
packet network. It is very difficult to sniff packets on a switched network but relatively
easy to do on a broadcast network.

Follow the attack graph to the “normal user on SGI2” node. The intermediate nodes
between SUN1 normal user and SGI2 normal user are an instantiation of the password
template states, based on our actual test network. Now the graph generation algorithm
examines what states on the attack template match “normal user on SGI2.” The lower
start node matches “normal user on SGI2” but it doesn’t match the subsequent nodes
because email and ftp are disabled on SGI1. We have assumed in the attacker profile that
the attacker has access to a sniffer for broadcast Ethernet networks that requires root
capability. These are publicly available; we downloaded one from the web. We have
also assumed that the attacker can get root access on SGI2 once she is a normal user on
SGI2 (there are a variety of attack templates which could outline how to get from normal
user to root on a machine, including use of a toolkit, physical access, etc.). From root on
SGI2, the attacker can install the sniffer to listen to the Ethernet traffic. So, the attacker
can sniff the password of a privileged user or the system administrator logging into SGI1. With that, she will have access to the files on SGI1.

During the attack-graph generation, each edge is labeled with the probability of that the attacker will successfully transition between the two adjoining nodes. Some of the probabilities are based on knowledge of the frequency of events. For example, the probability that a person will click on an email attachment and run it is fairly high. We estimated it at .9. Other probabilities will be based on configuration information and attacker skill level. An edge in the attack template could have several probabilities for different conditions and attacker skill level, and these will be generated by the instantiation function on the edge. For example, the function to generate the probability for successfully sniffing the packet containing the password could be a function of the number of users and the frequency of login for each user over the network. For another example, the configuration file will indicate whether traffic going to M is encrypted or not. If the traffic is plaintext, then the probability of successfully guessing the password when it is sniffed is 1. If the password is encrypted, then the edge has probability 1 if the attacker possesses the key (as indicated in the attacker profile). Otherwise, it is set to some probability according to the instantiation function (either a probability based on attacker experience or financial ability, or 0 if it is assumed that the profile is complete in regard to key possession). The probabilities we used may not be very representative: more research is needed to obtain more accurate probability estimates. Alternatively, “level of effort” estimates could be used on the arcs.

Finally, we used a shortest-path algorithm to find the path that has the highest probability of success. This path is shown in Figure 5 by the gray-colored nodes. To obtain this path, we modified a shortest-path code that was publicly available on the web. This code is called SPLIB, version 1.3, December 20, 1996, written by Cherkassky, Goldberg, and Radzik. SPLIB contains codes, generators, and generator inputs for shortest-path algorithms. We used one of the shortest-path algorithms based on the Dijkstra algorithm.

Figure 6 shows the steps necessary to modify the probabilities so they can be used as input to a shortest path algorithm: the problem was turned from a maximization into a minimization by multiplying by -1, and from a multiplication of arc probabilities to addition of the logs of the arc probabilities. The most successful path had a probability of success of $1 \times 0.98 \times 0.95 \times 0.75 \times 0.98 \times 1 \times 0.95 = 0.65$.

We built a test network of the network shown in Figure 3. We found that implementing a test network is a useful tool for understanding attacks, identifying various paths, and getting a sense of the probability of success for various attacks by having different people attempt them.
6. Conclusions

We have spoken with computer security experts, and general consensus is that an attack-graph analysis should work well for modeling enterprise-level (commercial or military) network risks. We would like to take this work further and develop a robust tool with a graphical interface which is easy to use and which links to a large list of vulnerabilities, such as the databases that commercial vendors (i.e., Internet Security Systems' X-force database) have created or that CERT has compiled.

This paper has presented a method for risk analysis of computer networks. The method is based on the idea of an attack graph which represents attack states and the transitions between them. The attack graph can be used to identify attack paths that are most likely to succeed, or to simulate various attacks. The attack graph could also be used to identify undesirable activities an attacker could perform once they entered the network. The major advance of this method over other computer security risk methods is that it considers the physical network topology in conjunction with the set of attacks. Thus, it goes beyond the scanning tools that are currently available which check a "laundry list" of services or conditions that are enabled on a particular machine.

The method we have presented addresses many of the modeling issues that a traditional PRA method such as fault trees do not. Specifically, our graph-based approach allows for modeling dynamic aspects of the network (this can be done by overwriting the configuration file as the attacker makes system changes). Our approach allows for several levels of attacker capability, and can capture the learning behavior of the attacker by adding capabilities to the attacker profile as the graph gets built. It allows for the modeling of user access levels and transitions between them, which are critical in network security. And it represents the time dependencies in sequences of attacks.

There are potential limitations with our method. We have not generated a realistic size attack graph based on 10 or 20 templates, and we have not resolved all of the issues associated with the matching of templates to configuration and attacker profile. Also, the existence of attack templates and of the configuration file could be another vulnerability in itself. If these got into the wrong hands, they would be very valuable tools for the attacker. However, we believe that the approach we have presented is an advance in network-vulnerability modeling and will ultimately help network security if implemented in a reasonable way.

Acknowledgments

The basic notion of an attack graph is due to Fred Cohen of Sandia National Laboratories. The authors thank Greg Wyss and John Howard of Sandia National Laboratories, and Jean Camp at the Kennedy School of Government/Harvard University for helpful discussions.
References

SATAN. (Security Administrator Tool for Analyzing Networks) tool. SATAN’s creators, Mr. Dan Farmer and Mr. Wietse Venema, made SATAN widely available over the Internet without cost starting April 5, 1995. It can be obtained from the web site: http://142.3.223.54/~short/SECURITY/satan.html

Figure 1. Example template for anonymous ftp attack
Figure 2. Graph Generation Example

GOAL STATE

Hacker gains normal user status on Machine M

Network Configuration

Unix machine rlogin enabled

Unix machine

Attacker has physical access

Template 1: rlogin

user level: normal machine: M

rlogin enabled on M-2

user has rlogin file

user has accounts on machine M-1 and M-2

Template 2: Physical Access

user level: none machine: X

capabilities: Physical access to X, Boot CD

user level: root machine: X

User 1, Mach. A

User 2, Mach. A

User k-1, Mach. B

User k, Mach. B

Attack Templates

Attack Graph
Figure 4. Password Guessing Attack Template

Figure 5.
Attack Graph:
Password Guessing on Test Network

- **Normal User on SGI2**
 - **Cracker program**
 - **Guess PW**
 - **Obtain root user on SGI2**
 - **Install Sniffer**
 - **Sniff Password of Privileged User**
 - **Obtain PW of user on SGI1**
 - **Loginto SGI1 with password**
 - **Hacker is user on SGI1 and accesses protected files**

- **NetEdge Router**
 - **Pass Traffic from ATM network**
 - **p = 0.98**
 - **SG12 user has email in mbox**
 - **p = 0.95**
 - **SG12 user gets email**
 - **p = 0.98**
 - **Cracker program**
 - **Guess PW**
 - **Obtain root user on SGI2**
 - **Install Sniffer**
 - **Sniff Password of Privileged User**
 - **Obtain PW of user on SGI1**
 - **Loginto SGI1 with password**
 - **Hacker is user on SGI1 and accesses protected files**

- **Cisco Router**
 - **SGI2 has anon. FTP**
 - **p = 0.95**
 - **SGI2 user executes email attachment**
 - **p = 0.9**
 - **PW file emailed back**
 - **p = 0.75**
 - **Backdoor, p = 0.6**
 - **/etc and anon. FTP directory commonly owned**
 - **p = 0.7**
 - **Anon. FTP not configured correctly**
 - **p = 0.75**
Figure 6. Shortest Path Algorithm Solution Method

Goal: Find the path with the highest probability of success

Steps:
1. Assign probabilities to all arcs in the network
2. Label arcs and nodes
3. Convert probabilities to natural logarithms
4. Multiplying probabilities is the same as adding logs:
 \[a \times b = c \Rightarrow \ln(ab) = \ln(c), \ln(a) + \ln(b) = \ln(c) \]
5. Maximizing the probability of success is the same as minimizing the negative probability of success:
 Convert all the logs to positive numbers by multiplying by -1
6. The shortest path code only takes integer arc lengths, multiply by 10,000
7. After the shortest path is obtained, take the total distance, multiply by -1, divide by 10,000.
 Raise \(e \) to this power to obtain the highest probability path length.