ICRF heating and current drive experiments on TFTR

PDF Version Also Available for Download.

Description

Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in ... continued below

Physical Description

7 p.

Creation Information

Rogers, J.H.; Hosea, J.C. & Phillips, C.K. December 31, 1996.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li{sup 7} cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be{sup 9} could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed.

Physical Description

7 p.

Notes

INIS; OSTI as DE97005295

Source

  • 16. International Atomic Energy Agency (IAEA) international conference on plasma physics and controlled nuclear fusion research, Montreal (Canada), 7-11 Oct 1996

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE97005295
  • Report No.: PPPL-CFP--3639
  • Report No.: IAEA-CN--64/EP-2;CONF-961005--29
  • Grant Number: AC02-76CH03073
  • Office of Scientific & Technical Information Report Number: 519112
  • Archival Resource Key: ark:/67531/metadc694572

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 31, 1996

Added to The UNT Digital Library

  • Aug. 14, 2015, 8:43 a.m.

Description Last Updated

  • April 15, 2016, 5:32 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Rogers, J.H.; Hosea, J.C. & Phillips, C.K. ICRF heating and current drive experiments on TFTR, article, December 31, 1996; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc694572/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.