
. A proved forpublic release;
-&tribution is unlimited

Title:

Author(s):

Submitted to:

A Parallel Implementation of Kriging with a Trend

Allyson Gajraj
Wayne J o u be rt
Jack Jones

For External Distribution

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied. or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Los Alamos
National Laboratory

Form 836 (10196)

Los Alamos National Laboratory, an affirmative actioWequal opportunity employer, is operated by the University of California for the
US. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the US. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's right to publish: as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

.

A Parallel Implementation of Kriging with a Trend

Allyson Gajraj and Wayne Joubert, Los Alamos National Laboratory,
Jack Jones, Amoco

A. Summary
This paper describes the parallelization of the GSLIB’ ktb3dm code. The code is
parallelized using the message passing paradigm, Parallel Virtual Machine (PVM), under a
Multiple Instructions, Multiple Data (MIMD) architecture. The code performance is
analyzed using different grid sizes of 5~5~1,5Ox5Ox1, lOOxlOOxl and 500x500~1 with 1,
2, 4, 8 and in some cases 16 processors on the Cray T3D supercomputer. The
parallelization effort focused on the main kriging do loop. The results confirm that there is
a substantial benefit to be derived in terms of CPU time savings (or execution speed) by
using the parallel version of the code, especially when considering larger grids.
Additionally, speed-up and scalability analyses show that actual speed-up is close to
theoretical, while the code scales appropriately within the 1 to 16 processor range tested.
The kriging of a quarter-million grid cell system fell from over 9 CPU minutes on one
Cray T3D processor to about 1.25 CPU minutes on 16 processors on the same machine.

T-
B. Introduction

8.1. Kriging
B. la Overview
Kriging is an interpolation algorithm which may be used as a means of obtaining the
“best” (in a least squares error sense) estimate of a reservoir model. This is accomplished
by minimizing the estimation variance from a prior covariance model through generalized
linear regression techniques.’ The prior covariance model is generally specified using
variogram models.
Kriging uses the Minimum Variance, Unbiased Estimate (MVUE) principle. The
estimation is unbiased in that the expected value of the error is set to zero, i.e.

E{& - 2;) = 0 (1)

where
2, is the true value at location 0, and

2; is the associated estimated value.

The error variance may be specified as:

where

ai,aj are functions of the kriging weights, and

Cli. is the covariance between the values at locations i andj.

Minimizing the error variance is equivalent to setting:

B.lb. Stationarity
Property estimation at unsampled locations using kriging (in fact all geostatistical analysis)
is based on the assumption of stationarity. Simply stated, the region of stationarity defines
that part of the reservoir, geologic structure, etc. over which the (geo)statistical model is
valid. For 1st order stationarity, this implies that the 1st statistical moment (the expected
value) is constant over the region of stationarity. Second order stationarity requires that

.covariance is a function of the lag distance only. If this is valid, we may relate the
variogram and the covariance by the relationship:

C(h) = C(0) - y(E) (4)

where

C(E) is the covariance for lag distance, z
C(0) is the zero-distance covariance (variance), and

y(h) is the variogram for lag distance, h

T-

It should be pointed out that stationarity is a property of the random function (RF) model
and not of the underlying spatial distribution.' Further, the assumption of a stationary RF
model does not necessarily have to be applied to the entire data set but only to the search
neighborhood -- since the kriged value is based on the values from that subset only. Thus
the local stationarity assumed by kriging is often a viable assumption even in datasets for
which global stationarity is clearly inappropriate?

B.lc. Estimation vs Simulation
It should be noted that the resulting distribution represents an estimate of the truth and,
while the conditioning information is honored, is a smooth image of the underlying
reality.3 Thus kriging is not an appropriate algorithm to generate input numerical models
for flow sirnufation since the extreme permeability values, i.e. the flow paths and barriers
are critical to the fluid flow re~ponse.~ It may however be used as a pre-cursor or pre-
processor to stochastic simulation.

B. 2. Pa ralleliza tion Considera fions5
B.2a. What is Parallelism?
Parallelism may be defined as a strategy for performing large, complex tasks faster. This is
done by:

Breaking up the task into smaller tasks

2

Coordinating the workers

Not breaking up the task so small that it takes longer to tell the worker what to do
than it takes to do it.

Assigning the smaller tasks to multiple workers to work on simultaneously

B.2b. Steps for Creating a Parallel Program
If starting with an existing serial code, debug the serial code completely.

Identify the parts of the program which may be executed concurrently:

This requires a thorough understanding of the algorithm.
Exploit any inherent parallelism which may exist.
Restructuring of the program andor algorithm may be required or an entirely
new algorithm may be warranted.

Decompose the program:

Functional parallelism - consisting of allocating different tasks to different
processors
Data parallelism - allocation of sub-sets of the domain to different processors
Both

Code development

Code may be influenced/determined by machine architecture
Choose a programming paradigm (e.g. message passing or data parallel)
Determine communication - how information is transferred among processors
Add code to accomplish task control and communications

Compile, test, debug

Optimization

Measure performance
Locate problem areas
Improvethem

3

C. ktb3dm

C.I. Theory
This treatise, for the most part, follows that of reference 1.

C.la. Kriging with a Trend Model
For estimating reservoir models for which the expected values (means) are stationary
within the search neighborhoods, simple and (more usually) ordinary kriging algorithms
are generally used. However, if there is a discernible trend in the data -- for example a
thickening of the pay in a particular direction, a modification of the algorithm is used. The
underlying RF model for a trend model is the sum of a trend component plus a residual:

z(i) = m (i) + R (i) (5)

The trend component, m(i) = E{ Z(i)}. is usually modeled as smoothly-varying,
deterministic function of the coordinates vector, u , with the unknown parameters fitted
from the data:

The fi(i)’s are known functions of
the trend value is also unknown).

-
u while the al(i) ’s are unknown paameterq-fhence
The residual component is usually modeled as a

stationary random function with a mean of zero, E { R (i) } = 0, and covariance, CR(h),
where h is the lag separation vector.

The estimator is:

z*(i) = $sy(i)z(.a) (7)
a=l

and the system of equations for solving for the kriging weights, ep(;)’s, is given by:

where the pI(i)’s are the (L+l) Lagrange parameters associated with the (L+l) constraints
on the weights.’ Thus stationarity is restored through the splitting of the variable into a
trend (non-stationary) component and a residual (stationary) component.6 As shown in
Equation (8) above, the modeling is performed utilizing the covariance function of the
residual or stationary component in the kriging equations to which the trend is then added
back via the calculation of its local means. By convention, &(u) = 1, Vu, thus the case L=O
corresponds to ordinary kriging with a constant (but unknown) mean, m(i) = a,.

C.lb. Kriging with an External Drift

4

This approach is used if the trend in the primary variable (Le. the variable being kriged) can
be related to that in a secondary variable. As an example, a relationship between the spatial
trends in the permeability field (the primary variable) and those in the porosity field (the
secondary variable) may have been observed or inferred. The porosity trend thus represents
the "external drift" and this may be used in kriging the permeability values if

the external variable varies smoothly in space (otherwise the resulting kriging
system may be unstable), and
the external variable is known at all locations at which there are conditioning data
for the primary variable as well as at the locations at which the primary variable is
to be estimated.

The model is limited to two terms: m(u) = a, + 4 X (G) , where A(.) is equal to the
secondary (external) variable. Thus

.{z(",} = m(i) = a, + q y (i) (9)

where y(.) is the secondary variable. Thus a linear rescaling of the units from the
secondary variable is implied by auation (9). Hence the estimate and the corresponding
system of equations are given by:

Note that the cross covariance does not figure in this system (unlike in cokriging). In
practice, the external drift is included as an additional trend term in the execution of the
ktb3dm algorithm.

C.2. Overview
The ktb3dm suite of programs from the GSLIB library of geostatistical software is the
most flexible of the GSLIB kriging program suites. It allows advanced 3-D point or block,
simple or ordinary kriging, kriging with a polynomial trend with up to nine monomial
terms, as well as kriging with an external drift.

The original suite of fides required is:
ktb3dm.f: an example driver for ktb3dm. This code is comprised of the main
driver and the subroutine readparm which reads the input data. The readparm
routine is called first, then ktb3d is called and the program terminates after that.
kt3d.inc: an include file with maximum array dimensions.
kt3d.f: some subroutines required by ktb3dm. These routines are:

Subroutines:

5

super: sets up the 3-D “super block” model and orders the data by super
block number.
picksup: establishes which super blocks must be searched given that the
point being estimated falls within the super block centered at (0’0’0).
search searches through all the data which were tagged in the super block
routine.
matbld: computes the terms of the kriging matrix which are common to
ordinary and ‘universal’ kriging.
setrot: sets up the matrix to transform Cartesian coordinates to coordinates
which account for the angles and anisotropies.
ktsol: solves the system of linear equations by Gaussian elimination with
partial pivoting.
sortem: sorts a real array in ascending order; 1-7 associated arrays are also
sorted based on the sorting order of the primary array.

Functions:
cova3: returns the covariance associated with a variogram model which is
specified by a nugget effect and up to four different nested variogram
structures.
sqdist: calculates the anisotropic distance between two points. 3-

ktb3d.f: the main kriging routine. This code contains the ktb3d subroutine which
performs the actual knging. There are three main parts to this subroutine:

Initializations: Routines called are:
setrot
super
picksup
cova3

Main Do Loop: The values are kriged here. The looping is over all (x-y-z)
locations to be estimated. Routines called are:

search
matbld
k t d
cova3

a Output of results and debugging information.
ktb3d.p~: an example parameter file for ktb3dm

6

D. Parallelization Strategy

D.I. Overview
After considering the recommended parallelization steps outlined above, it was decided to
use the node-only model of “crowd” computing -- multiple instances of a single program
execute with one process taking over the non-computational responsibilities in addition to
contributing to the computation i t~e l f .~ In addition, that same processor also performs all
initializations which is then shared with the other processors. So the approach is a Single-
Program, Multiple-Data (SPMD) model. PVM under a MIMD architecture is the message
passing paradigm used. Also, switching among alternative message passing paradigms is
facilitated by the use of C preprocessor directives (##ifdef statements) built into the message
passing routine.

0.2. Modifications to Serial Code
The serial code was developed using Fortran 77. Upgrading to Fortran 90 was undertaken
to facilitate the use of dynamic storage allocation. The improved functionality of Fortran 90
also prompted the upgrade.* In general, the pardelization approach was modeled on the
FALCON code.9 Apart from the language upgrade, the major modifications of the serial
code were in the areas of

Dynamic storage allocation for arrays (although not entirely). Dynamic storage
allocation for some of the arrays was deemed unnecessary since these arrm were
relatively small -- and would continue to be so regardless of the grid size -- and to
“force” dynamic allocation would have entailed substantial coding modifications
which would not have justified the additional effort in doing so.
Parallelization of the main do loop within the ktb3d subroutine via a message
passing interface. This part of the algorithm was the only paxt which was naturally
parallelizable using the paradigm selected. It was also the only part of the code
which was strongly a function of the grid size (see below).
input/output (YO). Broadly speaking, the input parameter file was unchanged,
except that a switch to set the output format was added. In addition, the new include
file explicitly defines the number of input conditioning data values, whereas this
number was not defined in the serial version of the code. The serial code generated
a geoEAS-type output for the kriged values. Our modified code allowed output in
either the geoEAS-type format or in the FALCON format. The default output is the
FALCON format since we found that to output a very large grid in the geoEAS
format was much more computationally expensive.

E. Results
The parallelized code was tested on a variety of grid sizes, ranging from 25 to 250,000 grid
block systems. In one case, using a 2,500 gridblock system, an external drift was included.
The CPU times for different segments of the code were noted, using from 1 to 8
processors on the Cray T3D supercomputer (and up to 16 processors in the case of the
250,000 gridblock case). Figures 1 to 8 summarize the timing results obtained. As shown,
for the smaller grids, there is little or no improvement in execution time by using more
processors -- in fact for the 25-gridblock case we suffer an increase in CPU time. This is
because the CPU time taken for the parallelized part of the code is relatively much smaller

7

than the other parts of the code for small grids. With increase in grid size however, we
begin to obtain some gains in execution time with additional processors, as the parallelized
code requires increasingly more CPU time.

It should be pointed out that the results obtained substantially agreed with serial code runs
on a Sun Sparcstation (using equivalent input datasets) in terms of the kriged block values
as well as the variances of those estimates. There were slight differences which were
determined to be due to the slight differences in sorting on the Sun and the T3D. There is
no reason to favor one sorting set over the other because the differences pertain to alternate
sorting of values which were equidistant from the value being kriged.

F. Optimization
Speedup. To further analyze the CPU timing, the breakdown of the time required for
various parts of the main kriging do loop was determined for various grid sizes.
Specifically, the times spent on calls to the search, matbld and ktsol subroutines were
measured. It was found that about 45% of the main loop's CPU time was spent in the
search subroutine, while about 30% was spent in the matbld routine with about 14% in
ktsol. Figures 9 and 10 show these timing results for the case of a 250,000-block system,
with 1 to 16 processors on the Cray T3D.
Amdahl's Law5 defines the expected speed-up based on the paralleked fraction of the
code. This equation is given by:

1 speedup = -
1-f

where f is the fraction of the code which can be parallelized. If we consider the number of
processors performing the parallelization, the equation becomes:

1 speedup=
J+(l- f)
n

where n is the number of processors used. Thus, it can be seen that Equation (12) is a
limiting case of Equation (13), i.e. for an infinite number of processors the speedup is
defined by Equation (12).
To determine the fraction of code which was parallelized, we ran the cases from 25 to
250,000 grid blocks on one processor and determined the fraction of the total CPU time
required for the main do loop. This was an attempt at estimating the fraction to use in
Amdahl's equation. As Figure 1 1 shows, this fraction increased monotonically and
appeared to be leveling off at the high end. Since we were more interested in the larger grid
sizes, we focused on the largest used and determined the fraction of CPU time spent on 1
processor for the main do loop. This was found to be 93.52%. This was then taken as the
parallelized fraction of the code,$ To compare the speedup obtained to that expected from
Equation (13), we additionally ran the 250,000-block case with 2, 4, 8 and 16 processors
and determined the CPU times for the total run in each case. Taking the 16-processor run
as an example, the CPU time for the total run was 75.020 CPU seconds, while for a single
processor run that time was 551.017 CPU seconds. This means that we obtained a speedup
of 7.34. Using 93.52% in Equation (13), we see that the expected speedup with 16
processors is 8.11. Thus our observed performance, while not optimum, is within the
expected "ballpark". Further work is being done in improving this value.

8

Scahbiliity. Should the parallel implementation be scaling appropriately, then there would
be a inverse relationship between the number of processors used and the CPU time for
taken for the parallelized part of the code -- the Main Do Loop; i.e.

1
CPU Time

Number of processors =

Thus a plot of the inverse of CPU Time vs Number of Processors should be a straight line;
as Figure 12 shows, this is approximately so.

G. Conclusions and Further Work

G. I = Conclusions
The conclusions from this work are:

The parallelization of the ktb3dm code was successful, both in terms of replicating
the results of the serial code -- which are assumed to be the correct values -- and
also in terms of the objective of speeding up the algorithm, especially for the larger
grids for which it will be used.
The observed speed-up is within the range of the expected or theoretical value.

The scalability analysis verifies that the code scales appropriately within the 1 to 16
processor range tested.

T-

G.2. Furfher Work
In summary, the further work is:

Based on the breakdown of the main do loop CPU time, almost one-half of the
time is required for the search routine, hence this is a prime study target for
improvement. This routine calls a sorting routine, in which a modified quicksort is
currently used. We intend to try to improve this sorting algorithm.
The next most expensive part of the main do loop is the matbld code, There seems
to be little room for improvement there, but we will study this code as well.

The ktsol code uses Gaussian elimination with partial pivoting. The matrix size is
relatively small, with a rank of about 30. This code will also be studied to see if
there may be room for improvement.

References
1. Deutsch, C.V. and Journel, A.G.: GSLIB Geostatistical Software Library and

User’s Guide, Oxford University Press, New York (1992).
2. Isaaks, E.H. and Srivastava, R.M.: An Introduction to Applied Geostatistics,

Oxford University Press Inc., New York (1989).

9

3. Journel, A.G.: Fundamentals of Geostatistics in Five Lessons. Volume 8 Short
Course in Geology, American Geophysical Union, Washington, D.C. (1989).

4. Deutsch, C.V.: “Annealing Techniques Applied to Reservoir Modeling and the
Integration of Geological and Engineering (Well Test) Data”, Ph.D. dissertation,
Stanford University, Stanford, CA (1992).

5. Maui High Performance Computing Center: “SP Parallel Programming Workshop
Introduction to Parallel Computing”, 02 July 1996 Revision by Blaise Barney,
Copyright 1995 Maui High Performance Computing Center. All rights reserved.
http://www .mhpcc.edu/training/workshop/htmvparallel-intro~~allel~tro.html.

6. Kelkar, B.G. : Applications of Statistics to Reservoir Characterization, self-
published, Tulsa, OK (1989).

7. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V.:
PVM: Parallel Virtual Machine A User’s Guide and Tutorial for Networked
Parallel Computing, The MIT Press, Cambridge, Massachusetts (1994).

8. Adams, J.C., Brainerd, W.S., Martin, J.T., Smith, B.T. and Wagener, J.L.:
Fortran 90 Handbook Complete ANSIBSO Reference, Intertext Publications,
McGraw-Hill Book Company, New York, New York (1992).

9. Joubert, W., Koch, K., Lubeck, O., van Bloemen Waanders, B., Stephenson, R.
and Shiralkar, G.: “Next Generation Oil Reservoir Simulations”, presented at the
Spring 1996 Cray Users Group Meeting, Barcelona, Spain, March 1 1 - 15, 1996.

k

,-

l o

http://www

I
I Comparison of CPU Times for Different Rocusor Numbers 5 x 5 ~ 1

GridModu Kriging (ktb3dm) Run
Breakdown of Mb3d C d CPU Timea for Different Processor

Numbers 5 ~ 5 x 1 GridMoch Kriging (ktb3dm) R u j 0.7

0.6
I

'' Overall C W Time

0.5

1 0 . 4
J
c 1 0.3

0.2

0 1

n.0
I 4 8

Figure 1: Comparisons of CPU Time as a Figure 2: Breakdown of ktb3d CPU Time as a
Function of Number of Processors Used in a Cray- Function of Number of Processors Used in a Cray-

T3D Run for a 5x5~1 Kriged Grid T3D Run for a 5x5~1 Kriged Grid

II CPU Times for DifTarnt Processor . -. . . ,. . - . . - I . .-

Figure 3: Comparisons of CPU Time as a Figure 4: Breakdown of ktb3d CPU Time as a
Function of Number of Processors Used in a Cray- Function of Number of Processors Used in a Cray-

T3D Run for a 50x50~1 Kriged Grid T3D Run for a 50x50~1 Kriged Grid

11

i Bmakdown of ktb3d Call CPU Times for D i S m t Processor jj Numben 1OOrlWxl Gndblocks Krighg (IdbMm) Run I
Comparison of CPU Timcs for DifVemt Pmcrwor Numbers

1OOx1OOx1 GlidMoch W n g (ktb3dm) Run

I /I 6o I 60

2 4

Nmbr ar -n

Figure 5: Comparisons of CPU Time as a Figure 6: Breakdown of ktb3d CPU Time as a
Function of Number of Processors Used in a Cray- Function of Number of Processors Used in a Cray-

T3D Run for a 10OxlOOxl Kriged Grid T3D Run for a 1OOxlOOxl Kriged Grid

Compsrism of CPU Tim, for Diflercal P-or Numben
-1 Gridblocks w c (ldb3dm) R m

I 2 4 8

N O M b n d R r u o n

~mkdarn of ktb3d Call CPU Tima for ItTerrat PmeMor
Numben 5oodMhrl GridMoele Kriring (ktb3dm) Ron

600

SW

~ 400

E
I j 300

2w

100

0
I 2 4 8

N U & d -
Figure 7: Comparisons of CPU Time as a Figure 8: Breakdown of ktb3d CPU Time as a

Function of Number of Processors Used in a Cray- Function of Number of Processors Used in a Cray-
T3D Run for a 500x500x1 Kriged Grid T3D Run for a 500x500~1 Kriged Grid

Figure 9: Breakdown of Main Do Loop CPU
Times for 500~500xl-Block Kriging Run on a

Cray T3D

Figure 10: Breakdown of ktb3d Call CPU Times
for a 500x500~1 Kriged Grid on a Cray T3D

12

c

Main Do Loop CPU Time vs Grid Size
(I Processor on T3D)

100 L -
E
F 8U

B
;
3 6 0

5 40

E
fz 20

U
I

1E+OO IE+OI 1EW2 1EW3 1EW4 1EW5 1EW6
X of Grid Bhcka

Figure1 1: Comparison of CPU Times for Main Do
Loop for Different Grid Sizes Using 1 T3D

Processor

Inverse of CPU Time for Main Do Loop vs Number of
Processors: 5DOr50(hl Gridblock T3D Roo

3 E-02

3 E d 2
* w

; 2 M 2
F e l E 4 2
u
% I E 0 2

5 M 3

0 E M

;

0 2 4 6 8 10 I2 14 16
Nnmber of Pnmwn

Figure 12: Plot of Inverse of the Main Do Loop
CPU Time as a Function of the Number of

Processors for the 250,000-Block Kriging Run on
the T3D

13

