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A Parallel Implementation of Kriging with a Trend 

Allyson Gajraj and Wayne Joubert, Los Alamos National Laboratory, 
Jack Jones, Amoco 

A. Summary 
This paper describes the parallelization of the GSLIB’ ktb3dm code. The code is 
parallelized using the message passing paradigm, Parallel Virtual Machine (PVM), under a 
Multiple Instructions, Multiple Data (MIMD) architecture. The code performance is 
analyzed using different grid sizes of 5~5~1,5Ox5Ox1, lOOxlOOxl and 500x500~1 with 1, 
2, 4, 8 and in some cases 16 processors on the Cray T3D supercomputer. The 
parallelization effort focused on the main kriging do loop. The results confirm that there is 
a substantial benefit to be derived in terms of CPU time savings (or execution speed) by 
using the parallel version of the code, especially when considering larger grids. 
Additionally, speed-up and scalability analyses show that actual speed-up is close to 
theoretical, while the code scales appropriately within the 1 to 16 processor range tested. 
The kriging of a quarter-million grid cell system fell from over 9 CPU minutes on one 
Cray T3D processor to about 1.25 CPU minutes on 16 processors on the same machine. 

T- 
B. Introduction 

8.1. Kriging 
B. la  Overview 
Kriging is an interpolation algorithm which may be used as a means of obtaining the 
“best” (in a least squares error sense) estimate of a reservoir model. This is accomplished 
by minimizing the estimation variance from a prior covariance model through generalized 
linear regression techniques.’ The prior covariance model is generally specified using 
variogram models. 
Kriging uses the Minimum Variance, Unbiased Estimate (MVUE) principle. The 
estimation is unbiased in that the expected value of the error is set to zero, i.e. 

E{& - 2;) = 0 (1) 

where 
2, is the true value at location 0, and 

2; is the associated estimated value. 

The error variance may be specified as: 

where 



ai,aj are functions of the kriging weights, and 

Cli. is the covariance between the values at locations i andj. 

Minimizing the error variance is equivalent to setting: 

B.lb. Stationarity 
Property estimation at unsampled locations using kriging (in fact all geostatistical analysis) 
is based on the assumption of stationarity. Simply stated, the region of stationarity defines 
that part of the reservoir, geologic structure, etc. over which the (geo)statistical model is 
valid. For 1st order stationarity, this implies that the 1st statistical moment (the expected 
value) is constant over the region of stationarity. Second order stationarity requires that 

.covariance is a function of the lag distance only. If this is valid, we may relate the 
variogram and the covariance by the relationship: 

C(h) = C(0) - y(E) (4) 

where 

C( E) is the covariance for lag distance, z 
C(0) is the zero-distance covariance (variance), and 

y( h) is the variogram for lag distance, h 

T- 

It should be pointed out that stationarity is a property of the random function (RF) model 
and not of the underlying spatial distribution.' Further, the assumption of a stationary RF 
model does not necessarily have to be applied to the entire data set but only to the search 
neighborhood -- since the kriged value is based on the values from that subset only. Thus 
the local stationarity assumed by kriging is often a viable assumption even in datasets for 
which global stationarity is clearly inappropriate? 

B.lc. Estimation vs Simulation 
It should be noted that the resulting distribution represents an estimate of the truth and, 
while the conditioning information is honored, is a smooth image of the underlying 
reality.3 Thus kriging is not an appropriate algorithm to generate input numerical models 
for flow sirnufation since the extreme permeability values, i.e. the flow paths and barriers 
are critical to the fluid flow re~ponse.~ It may however be used as a pre-cursor or pre- 
processor to stochastic simulation. 

B. 2. Pa ralleliza tion Considera fions5 
B.2a. What is Parallelism? 
Parallelism may be defined as a strategy for performing large, complex tasks faster. This is 
done by: 

Breaking up the task into smaller tasks 
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Coordinating the workers 

Not breaking up the task so small that it takes longer to tell the worker what to do 
than it takes to do it. 

Assigning the smaller tasks to multiple workers to work on simultaneously 

B.2b. Steps for Creating a Parallel Program 
If starting with an existing serial code, debug the serial code completely. 

Identify the parts of the program which may be executed concurrently: 

This requires a thorough understanding of the algorithm. 
Exploit any inherent parallelism which may exist. 
Restructuring of the program andor algorithm may be required or an entirely 
new algorithm may be warranted. 

Decompose the program: 

Functional parallelism - consisting of allocating different tasks to different 
processors 
Data parallelism - allocation of sub-sets of the domain to different processors 
Both 

Code development 

Code may be influenced/determined by machine architecture 
Choose a programming paradigm (e.g. message passing or data parallel) 
Determine communication - how information is transferred among processors 
Add code to accomplish task control and communications 

Compile, test, debug 

Optimization 

Measure performance 
Locate problem areas 
Improvethem 
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C. ktb3dm 

C.I.  Theory 
This treatise, for the most part, follows that of reference 1. 

C.la. Kriging with a Trend Model 
For estimating reservoir models for which the expected values (means) are stationary 
within the search neighborhoods, simple and (more usually) ordinary kriging algorithms 
are generally used. However, if there is a discernible trend in the data -- for example a 
thickening of the pay in a particular direction, a modification of the algorithm is used. The 
underlying RF model for a trend model is the sum of a trend component plus a residual: 

z(i) = m ( i )  + R ( i )  (5 )  

The trend component, m( i) = E{ Z( i)}. is usually modeled as smoothly-varying, 
deterministic function of the coordinates vector, u ,  with the unknown parameters fitted 
from the data: 

The fi(i)’s are known functions of 
the trend value is also unknown). 

- 
u while the al( i ) ’s  are unknown paameterq-fhence 
The residual component is usually modeled as a 

stationary random function with a mean of zero, E { R ( i ) }  = 0, and covariance, CR(h), 
where h is the lag separation vector. 

The estimator is: 

z*(i) = $sy(i)z(.a) (7) 
a=l 

and the system of equations for solving for the kriging weights, ep(;)’s, is given by: 

where the pI(i)’s are the (L+l) Lagrange parameters associated with the (L+l) constraints 
on the weights.’ Thus stationarity is restored through the splitting of the variable into a 
trend (non-stationary) component and a residual (stationary) component.6 As shown in 
Equation (8) above, the modeling is performed utilizing the covariance function of the 
residual or stationary component in the kriging equations to which the trend is then added 
back via the calculation of its local means. By convention, &(u) = 1, Vu, thus the case L=O 
corresponds to ordinary kriging with a constant (but unknown) mean, m(i )  = a,. 

C.lb. Kriging with an External Drift 
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This approach is used if the trend in the primary variable (Le. the variable being kriged) can 
be related to that in a secondary variable. As an example, a relationship between the spatial 
trends in the permeability field (the primary variable) and those in the porosity field (the 
secondary variable) may have been observed or inferred. The porosity trend thus represents 
the "external drift" and this may be used in kriging the permeability values if 

the external variable varies smoothly in space (otherwise the resulting kriging 
system may be unstable), and 
the external variable is known at all locations at which there are conditioning data 
for the primary variable as well as at the locations at which the primary variable is 
to be estimated. 

The model is limited to two terms: m(u) = a, + 4 X ( G ) ,  where A(.) is equal to the 
secondary (external) variable. Thus 

.{z(",} = m(i )  = a, + q y ( i )  (9) 

where y(.) is the secondary variable. Thus a linear rescaling of the units from the 
secondary variable is implied by auation (9). Hence the estimate and the corresponding 
system of equations are given by: 

Note that the cross covariance does not figure in this system (unlike in cokriging). In 
practice, the external drift is included as an additional trend term in the execution of the 
ktb3dm algorithm. 

C.2. Overview 
The ktb3dm suite of programs from the GSLIB library of geostatistical software is the 
most flexible of the GSLIB kriging program suites. It allows advanced 3-D point or block, 
simple or ordinary kriging, kriging with a polynomial trend with up to nine monomial 
terms, as well as kriging with an external drift. 

The original suite of fides required is: 
ktb3dm.f: an example driver for ktb3dm. This code is comprised of the main 
driver and the subroutine readparm which reads the input data. The readparm 
routine is called first, then ktb3d is called and the program terminates after that. 
kt3d.inc: an include file with maximum array dimensions. 
kt3d.f: some subroutines required by ktb3dm. These routines are: 

Subroutines: 
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super: sets up the 3-D “super block” model and orders the data by super 
block number. 
picksup: establishes which super blocks must be searched given that the 
point being estimated falls within the super block centered at (0’0’0). 
search searches through all the data which were tagged in the super block 
routine. 
matbld: computes the terms of the kriging matrix which are common to 
ordinary and ‘universal’ kriging. 
setrot: sets up the matrix to transform Cartesian coordinates to coordinates 
which account for the angles and anisotropies. 
ktsol: solves the system of linear equations by Gaussian elimination with 
partial pivoting. 
sortem: sorts a real array in ascending order; 1-7 associated arrays are also 
sorted based on the sorting order of the primary array. 

Functions: 
cova3: returns the covariance associated with a variogram model which is 
specified by a nugget effect and up to four different nested variogram 
structures. 
sqdist: calculates the anisotropic distance between two points. 3- 

ktb3d.f: the main kriging routine. This code contains the ktb3d subroutine which 
performs the actual knging. There are three main parts to this subroutine: 

Initializations: Routines called are: 
setrot 
super 
picksup 
cova3 

Main Do Loop: The values are kriged here. The looping is over all (x-y-z) 
locations to be estimated. Routines called are: 

search 
matbld 
k t d  
cova3 

a Output of results and debugging information. 
ktb3d.p~: an example parameter file for ktb3dm 
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D. Parallelization Strategy 

D.I. Overview 
After considering the recommended parallelization steps outlined above, it was decided to 
use the node-only model of “crowd” computing -- multiple instances of a single program 
execute with one process taking over the non-computational responsibilities in addition to 
contributing to the computation i t~e l f .~  In addition, that same processor also performs all 
initializations which is then shared with the other processors. So the approach is a Single- 
Program, Multiple-Data (SPMD) model. PVM under a MIMD architecture is the message 
passing paradigm used. Also, switching among alternative message passing paradigms is 
facilitated by the use of C preprocessor directives (##ifdef statements) built into the message 
passing routine. 

0.2. Modifications to Serial Code 
The serial code was developed using Fortran 77. Upgrading to Fortran 90 was undertaken 
to facilitate the use of dynamic storage allocation. The improved functionality of Fortran 90 
also prompted the upgrade.* In general, the pardelization approach was modeled on the 
FALCON code.9 Apart from the language upgrade, the major modifications of the serial 
code were in the areas of 

Dynamic storage allocation for arrays (although not entirely). Dynamic storage 
allocation for some of the arrays was deemed unnecessary since these arrm were 
relatively small -- and would continue to be so regardless of the grid size -- and to 
“force” dynamic allocation would have entailed substantial coding modifications 
which would not have justified the additional effort in doing so. 
Parallelization of the main do loop within the ktb3d subroutine via a message 
passing interface. This part of the algorithm was the only paxt which was naturally 
parallelizable using the paradigm selected. It was also the only part of the code 
which was strongly a function of the grid size (see below). 
input/output (YO). Broadly speaking, the input parameter file was unchanged, 
except that a switch to set the output format was added. In addition, the new include 
file explicitly defines the number of input conditioning data values, whereas this 
number was not defined in the serial version of the code. The serial code generated 
a geoEAS-type output for the kriged values. Our modified code allowed output in 
either the geoEAS-type format or in the FALCON format. The default output is the 
FALCON format since we found that to output a very large grid in the geoEAS 
format was much more computationally expensive. 

E. Results 
The parallelized code was tested on a variety of grid sizes, ranging from 25 to 250,000 grid 
block systems. In one case, using a 2,500 gridblock system, an external drift was included. 
The CPU times for different segments of the code were noted, using from 1 to 8 
processors on the Cray T3D supercomputer (and up to 16 processors in the case of the 
250,000 gridblock case). Figures 1 to 8 summarize the timing results obtained. As shown, 
for the smaller grids, there is little or no improvement in execution time by using more 
processors -- in fact for the 25-gridblock case we suffer an increase in CPU time. This is 
because the CPU time taken for the parallelized part of the code is relatively much smaller 
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than the other parts of the code for small grids. With increase in grid size however, we 
begin to obtain some gains in execution time with additional processors, as the parallelized 
code requires increasingly more CPU time. 

It should be pointed out that the results obtained substantially agreed with serial code runs 
on a Sun Sparcstation (using equivalent input datasets) in terms of the kriged block values 
as well as the variances of those estimates. There were slight differences which were 
determined to be due to the slight differences in sorting on the Sun and the T3D. There is 
no reason to favor one sorting set over the other because the differences pertain to alternate 
sorting of values which were equidistant from the value being kriged. 

F. Optimization 
Speedup. To further analyze the CPU timing, the breakdown of the time required for 
various parts of the main kriging do loop was determined for various grid sizes. 
Specifically, the times spent on calls to the search, matbld and ktsol subroutines were 
measured. It was found that about 45% of the main loop's CPU time was spent in the 
search subroutine, while about 30% was spent in the matbld routine with about 14% in 
ktsol. Figures 9 and 10 show these timing results for the case of a 250,000-block system, 
with 1 to 16 processors on the Cray T3D. 
Amdahl's Law5 defines the expected speed-up based on the paralleked fraction of the 
code. This equation is given by: 

1 speedup = - 
1-f 

where f is the fraction of the code which can be parallelized. If we consider the number of 
processors performing the parallelization, the equation becomes: 

1 speedup= 
J+(l-  f )  
n 

where n is the number of processors used. Thus, it can be seen that Equation (12) is a 
limiting case of Equation (13), i.e. for an infinite number of processors the speedup is 
defined by Equation (12). 
To determine the fraction of code which was parallelized, we ran the cases from 25 to 
250,000 grid blocks on one processor and determined the fraction of the total CPU time 
required for the main do loop. This was an attempt at estimating the fraction to use in 
Amdahl's equation. As Figure 1 1  shows, this fraction increased monotonically and 
appeared to be leveling off at the high end. Since we were more interested in the larger grid 
sizes, we focused on the largest used and determined the fraction of CPU time spent on 1 
processor for the main do loop. This was found to be 93.52%. This was then taken as the 
parallelized fraction of the code,$ To compare the speedup obtained to that expected from 
Equation (13), we additionally ran the 250,000-block case with 2, 4, 8 and 16 processors 
and determined the CPU times for the total run in each case. Taking the 16-processor run 
as an example, the CPU time for the total run was 75.020 CPU seconds, while for a single 
processor run that time was 551.017 CPU seconds. This means that we obtained a speedup 
of 7.34. Using 93.52% in Equation (13), we see that the expected speedup with 16 
processors is 8.11. Thus our observed performance, while not optimum, is within the 
expected "ballpark". Further work is being done in improving this value. 
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Scahbiliity. Should the parallel implementation be scaling appropriately, then there would 
be a inverse relationship between the number of processors used and the CPU time for 
taken for the parallelized part of the code -- the Main Do Loop; i.e. 

1 
CPU Time 

Number of processors = 

Thus a plot of the inverse of CPU Time vs Number of Processors should be a straight line; 
as Figure 12 shows, this is approximately so. 

G. Conclusions and Further Work 

G. I = Conclusions 
The conclusions from this work are: 

The parallelization of the ktb3dm code was successful, both in terms of replicating 
the results of the serial code -- which are assumed to be the correct values -- and 
also in terms of the objective of speeding up the algorithm, especially for the larger 
grids for which it will be used. 
The observed speed-up is within the range of the expected or theoretical value. 

The scalability analysis verifies that the code scales appropriately within the 1 to 16 
processor range tested. 

T- 

G.2. Furfher Work 
In summary, the further work is: 

Based on the breakdown of the main do loop CPU time, almost one-half of the 
time is required for the search routine, hence this is a prime study target for 
improvement. This routine calls a sorting routine, in which a modified quicksort is 
currently used. We intend to try to improve this sorting algorithm. 
The next most expensive part of the main do loop is the matbld code, There seems 
to be little room for improvement there, but we will study this code as well. 

The ktsol code uses Gaussian elimination with partial pivoting. The matrix size is 
relatively small, with a rank of about 30. This code will also be studied to see if 
there may be room for improvement. 
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Figure 1: Comparisons of CPU Time as a Figure 2: Breakdown of ktb3d CPU Time as a 
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Figure 3: Comparisons of CPU Time as a Figure 4: Breakdown of ktb3d CPU Time as a 
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T3D Run for a 50x50~1 Kriged Grid T3D Run for a 50x50~1 Kriged Grid 
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